|
1 D. S. Hecht, L. Hu, G. Irvin, “Emerging Transparent Electrodes Based on Thin Films of Carbon Nanotubes, Graphene, and Metallic Nanostructures,” Adv. Mater. 2011, 23, 1482-1513. 2 S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, “Roll-to-Roll Production of 30-inch Graphene Films for Transparent Electrodes,” Nat. Nanotechnol. 2010, 5, 574-578. 3 X. Wang, L. Zhi, K. Müllen, “Transparent, Conductive Graphene Electrodes for Dye-Sensitized Solar Cells,” Nano Lett. 2008, 8, 323-327. 4 Gomez De Arco, L. et al. “Continuous, Highly Flexible, and Transparent Graphene Films by Chemical Vapor Deposition for Organic Photovoltaics,” ACS Nano, 2010, 4, 2865–2873. 5 J. Cui, A. Wang, N. R. Armstrong, T. J. Marks, “Indium Tin Oxide Alternatives-High Work Function Transparent Conducting Oxides as Anodes for Organic Light-Emitting Diodes,” Adv. Mater. 2001, 13, 1476–1480. 6 S. Coskun, E. S. Ates, H. E. Unalan, “Optimization of Silver Nanowire Networks for Polymer Light Emitting Diode Electrodes,” Nanotechnology, 2013, 24, 125202-125210. 7 F. Xu, Y. Zhu, “Highly Conductive and Stretchable Silver Nanowire Conductors,” Adv. Mater. 2012, 24, 5117–5122. 8 Darren J. Lipomi, Courtney H. Fox and Zhe-nan Bao, “Skin-like Pressure and Strain Sensors Based on Transparent Elastic Films of Carbon Nanotubes,” Nat. Nanotechnol. 2011, 6, 784-787. 9 Po-Kang Yang, Long Lin, Yue Zhang, and Zhong Lin Wang, “A Flexible, Stretchable and Shape-Adaptive Approach for Versatile Energy Conversion and Self-Powered Biomedical Monitoring,” Adv. Mater. 2015, 27, 3817–3824. 10 S. L. Hellstrom, H. W. Lee, Z. Bao, “Polymer-Assisted Direct Deposition of Uniform Carbon Nanotube Bundle Networks for High Performance Transparent Electrodes,” ACS Nano, 2009, 3, 1423-1430. 11 Tung V. C, Allen M. J, Yang. Y, Kaner R. B, “High-throughput Solution Processing of Large-scale Graphene,” Nat. Nanotechnol. 2009, 4, 25–29. 12 H. Wu, D. Kong, S. Wang, Z. Yu , Y. Cui, “A Transparent Electrode Based on a Metal Nanotrough Network,” Nat. Nanotechnol. 2013, 8, 421-425. 13 J. van de Groep, P. Spinelli, A. Polman, “Transparent Conducting Silver Nanowire Networks,” Nano Lett. 2012, 12, 3138-3144. 14 Takehiro Tokuno, Masaya Nogi, Jinting Jiu, Tohru Sugahara, and Katsuaki Suganuma, “Transparent Electrodes Fabricated via the Self-Assembly of Silver Nanowires Using a Bubble Template,” Langmuir, 2012, 28, 9298−9302. 15 Bo-Ru, Yang. et al. “Microchannel Wetting for Controllable Patterning and Alignment of Silver Nanowire with High Resolution,” ACS Appl. Mater. Interfaces, 2015, 7, 21433−21441. 16 Jian-Wei Liu, Jin-Long Wang, Zhi-Hua Wang, Wei-Ran Huang, and Shu-Hong Yu, “Manipulating Nanowire Assembly for Flexible Transparent Electrodes,” Ange Chem. Int. Ed. 2014, 53, 13477 –13482. 17 K. C, Chen. et al, “Observation of Atomic Diffusion at Twin-Modified Grain Boundaries in Copper,” Science, 2008, 321, 1066-1069. 18 K. C, Chen. et al, “Stability of Nanoscale Twins in Copper under Electric Current Stressing,” Appl. Phys. 2010, 108, 066103-066109. 19 K. C, Chen. et al, “Direct Observation of Electromigration-induced Surface Atomic Steps in Cu Lines by in Situ Transmission Electron Microscopy,” Appl. Phys. Lett. 2007, 90, 203101-203104. 20 K. Badeker, “Concerning the Electricity Conductibility and the Thermoelectric Energy of Several Heavy Metal Bonds,” Ann. Phys. 1907,22, 4, 749. 21 A.W, Metz. et al, “Transparent Conducting Oxides: Texture and Microstructure Effects on Charge Carrier Mobility in MOCVD-derived CdO Thin Films Grown with a Thermally Stable, Low-melting Precursor,” J. Am. Chem. Soc. 2004, 126, 8477–8492. 22 L. Holland, G. Siddall, “The Properties of Some Reactively Sputtered Metal Oxide Films,” Vacuum, 1953, 3, 375–391. 23 C. K. Choi, C. H. Margraves, S. I. Jun, A. E. English, P. D. Rack and K. D. Kihm, “Opto-Electric Cellular Biosensor Using Optically Transparent Indium Tin Oxide (ITO) Electrodes,” Sensors, 2008, 8, 3257-3270. 24 H. V. Rizo, I. M. Gullon and M. Terrones, “Hybrid Films with Graphene Oxide and Metal Nanoparticles Could Now Replace Indium Tin Oxide,” ACS Nano, 2012, 6, 4565–4572. 25 A. B. Kuzmenko, E. van Heumen, F. Carbone and D. van der Marel, “Universal Optical Conductance of Graphite,” Phys. Rev. Lett. 2008, 100, 117401–117409. 26 R. R. Nair. et al, “Fine Structure Constant Defines Visual Transparency of Graphene,” Science, 2008, 320, 1308-1310. 27 Du, X.; Skachko, I.; Barker, A.; Andrei, E. Y. Andrei, “Approaching Ballistic Transport in Suspended Graphene,” Nat. Nanotechnol. 2008, 3, 491−495. 28 Huang, P. Y. et al, “Grains and Grain Boundaries in Single-layer Graphene Atomic Patchwork Quilts,” Nature, 2011, 469,389−393. 29 Yazyev, O. V, Louie, S. G, “Electronic Transport in Polycrystalline Graphene,” Nat. Mater. 2010, 9, 806−809. 30 Ni. G. X, “Quasi-Periodic Nanoripples in Graphene Grown by Chemical Vapor Deposition and Its Impact on Charge Transport,” ACS Nano, 2012, 6, 1158−1164. 31 Chen. J. H, Jang. C, Xiao. S. D, Ishigami. M, Fuhrer. M. S, “Intrinsic and Extrinsic Performance Limits of Graphene Devices on SiO2,” Nat. Nanotechnol. 2008, 3, 206−209. 32 Kholmanov, I. N. et al, “Healing of Structural Defects in the Topmost Layer of Graphite by Chemical Vapor Deposition,” Adv. Mater. 2011, 23, 1675−1678. 33 Karoui. S, Amara. H, Bichara. C, Ducastelle. F, “Nickel-Assisted Healing of Defective Graphene,” ACS Nano, 2010, 4, 6114−6120. 34 S. Iijima, T. Ichihashi, “Single-shell Carbon Nanotubes of 1-nm Diameter,” Nature, 1993, 363, 603-605. 35 J.W. G. Wildoer, L. C. Venema, A. G. Rinzler, R. E. Smalley, C. Dekker, “Electronic Structure of Atomically Resolved Carbon Nanotubes,” Nature, 1998, 391, 59-62. 36 T. Durkop, S. A. Getty, E. Cobas, M. S. Fuhrer, “Extraordinary Mobility in Semiconducting Carbon Nanotubes,” Nano Lett. 2004, 4, 35-39. 37 A. Javey, et al, “High-kappa Dielectrics for Advanced Carbon-nanotube Transistors and Logic Gates,” Nat. Mater. 2002, 1, 241-246. 38 D. S. Ghosh, L. Martinez, S. Giurgola, P. Vergani, V. Pruneri, “Widely Transparent Electrodes Based on Ultrathin Metals,” Optics Lett. 2009, 34, 325-327. 39 R. B. Pode, C. J. Lee, D. G. Moon, J. I. Han, “Transparent Conducting Metal Electrode for Top Emission Organic Light-emitting Devices: Ca–Ag Double Layer,” Appl. Phys. Lett. 2004, 84, 4614-4616. 40 M. G. Kang , M. S. Kim, J. S. Kim, L. J. Guo, “Organic Solar Cells Using Nanoimprinted Transparent Metal Electrodes,” Adv. Mater. 2008, 20, 4408-4413. 41 M. G. Kang, L. J. Guo, “Nanoimprinted Semitransparent Metal Electrodes and Their Application in Organic Light-Emitting Diodes”, Adv. Mater. 2007, 19, 1391-1396. 42 M. G. Kang, L. J. Guo, “Semitransparent Cu Electrode on A Flexible Substrate and its Application in Organic Light Emitting Diodes,” J. Vacuum Sci. Technol. B, 2007, 25, 2637-2641. 43 D. Azulai, T. Belenkova, H. Gilon, Z. Barkay, G. Markovich, “Transparent Metal Nanowire Thin Films Prepared in Mesostructured Templates,” Nano Lett. 2009, 9, 4246-4269. 44 J. Y. Lee, S. T. Connor, Y. Cui, P. Peumans, “Solution-Processed Metal Nanowire Mesh Transparent Electrodes,” Nano Lett. 2008, 8, 689-692. 45 Y, Q, Keorder. et al. “Magnetic and Structural Phase Transitions in Fe1+ySexTe1−x,” Phys. Rev. B, 2009, 79, 054503-054510. 46 S, De. et al. “Silver Nanowire Networks as Flexible, Transparent, Conducting Films: Extremely High DC to Optical Conductivity Ratios,” ACS Nano. 2009, 3, 1767–1774. 47 D. Azulai, T. Belenkova, H. Gilon, Z. Barkay, G. Markovich, “Transparent Metal Nanowire Thin Films Prepared in Mesostructured Templates,” Nano Lett. 2009, 9, 4246-4249. 48 Mao-xiang Jing, Min Li, Cui-yu Chen, Zhou Wang and Xiang-qian Shen, “Highly Bendable, Transparent, and Conductive AgNWs-PET Films Fabricated via Transfer-printing and Second Pressing Technique,” Journal of Materials Science, 2015, 50, 6437–6443. 49 Shengrong Ye, Aaron R. Rathmell, Zuofeng Chen, Ian E. Stewart, and Benjamin J, “Metal Nanowire Networks: The Next Generation of Transparent Conductors,” Adv. Mater. 2014, 26, 6670– 6687. 50 Jinhwan Lee. et al. “Very long Ag Nanowire Synthesis and its Application in A Highly Transparent, Conductive and Flexible Metal Electrode Touch Panel,” Nanoscale, 2012, 4, 6408-6414. 51 K. Lu, L. Lu, S. Suresh, “Strengthening Materials by Engineering Coherent Internal Boundaries at the Nanoscale,” Science, 2009, 324, 349-352. 52 L. Lu, Y. F. Shen, X.H. Chen, L. H. Qian, K. Lu, “Ultrahigh Strength and High Electrical Conductivity in Copper,” Science, 2004, 304, 422-426. 53 L. Lu, M. L. Sui, K. Lu, “Superplastic Extensibility of Nanocrystalline Copper at Room Temperature,” Science, 2000, 287, 1463-1466. 54 S. Zhong et al.“Nanoscale Twinned Copper Nanowire Formation by Direct Electrodeposition,” Small, 2009, 5, 2265-2270. 55 B. Wang et al. “Controlled Growth and Phase Transition of Silver Nanowires with Dense Lengthwise Twins and Stacking Faults,” Crystal Growth & Design. 2008, 8, 3073-3076. 56 Kim, S, Kim, S. Y, Kim, J, Kim, J. H. “Highly Reliable AgNW/PEDOT:PSS Hybrid Films: Efficient Methods for Enhancing Transparency and Lowering Resistance and Haziness,” J. Mater. Chem. C, 2014, 2, 5636−5643. 57 Park, J. D, Lim, S, Kim, H. “Patterned Silver Nanowires using the Gravure Printing Process for Flexible Applications,” Thin Solid Films, 2015, 586, 70−75. 58 Finn D. J, Lotya M, Coleman. J. N, “Inkjet Printing of Silver Nanowire Networks,” ACS Appl. Mater. Interfaces, 2015, 7, 9254−9261. 59 Minemawari, H. et al. “Inkjet Printing of Single-Crystal Films,” Nature, 2011, 475, 364−367. 60 G. S. Liou, H. Y. Lin, “Electrochemical and Electrochromic Properties of Novel Aromatic Poly(amine–amide)s Derived from N,N0 -bis(4-carboxyphenyl)-N,N0-diphenyl-1,4-phenylenediamine,” Eur Polym. J. 2006, 42, 1051–1058. 61 V.D. Neff, “Electrochemical Oxidation and Reduction of Thin Films of Prussian Blue,” J. Electrochem. Soc.1978, 125, 886-887. 62 D.H. Kim et al. “Epidermal Electronics,” Science, 2011, 333, 838-843. 63 B. Han et al. “Bio-inspired Networks for Optoelectronic Applications,” Nat. Commun, 2014. 5, 5674-5681. 64 Cui-yu Chen, Mao-xiang Jing, Zhi-chao Pi, Sheng-wen Zhu, Xiang-qian shen, “Preparation and Properties of Double-Sided AgNWs/PVC/AgNWs Flexible Transparent Conductive Film by Dip-Coating Process,” Nanoscale Research Lett. 2015, 10, 315-321. 65 H. Shiozaki et al. “Electromechanical Properties of Nd-doped Bi4 Ti3O12 Films: A Candidate for Lead-free Thin-film Piezoelectrics,” J. Appl. Phys. 2003, 82, 1760-1762. 66 Argun. A A, Cripan. A, & Reynolds. J R, “The First Truly All-polymer Electrochromic Devices,” Adv. Mater. 2003, 15, 1338–1341. 67 Tzu Chieh. Liao, Wei Han. Chen, Hung Yun. Liao, Lin Chi. Chen, “Multicolor Electrochromic Thin Films and Devices Based on the Prussian Blue Family Nanoparticles,” Solar Energy Materials & Solar Cells, 2016, 145, 26–34. 68 C. Y. Wang, M. Y. Lu, H. C. Chen, L. J. Chen, “Single-crystalline Pb Nanowires Grown by Galvanic Displacement Reactions of Pb Ions on Zinc Foils and Their Superconducting Properties,” J. Phys. Chem. C, 2007, 111, 6215-6219. 69 Anuj R. Madaria, et al, “Uniform, Highly Conductive, and Patterned Transparent Films of a Percolating Silver Nanowire Network on Rigid and Flexible Substrates Using a Dry Transfer Technique,” Nano Res. 2010, 3, 564–573. 70 B. Han et al. “Uniform Self-Forming Metallic Network as a High-Performance Transparent Conductive Electrode,” Adv. Mater. 2014, 26, 873–877. 71 Saewon, Kang. et al. “Capillary Printing of Highly Aligned Silver Nanowire Transparent Electrodes for High-Performance Optoelectronic Devices,” Nano Lett. 2015, 15, 7933–7942. 72 C.C. Hsun et al. “Spray-Deposited Large-Area Copper Nanowire Transparent Conductive Electrodes and Their Uses for Touch Screen Applications,” ACS Appl. Mater. Interfaces, 2016, 8, 13009–13017. 73 Y. Yang et al. “Human Skin Based Triboelectric Nanogenerators for Harvesting Biomechanical Energy and as Self-Powered Active Tactile Sensor System,” ACS NANO, 2013, 10, 9213–9222. 74 Hua Yang Li, Li Su, Shuang Yang Kuang, Cao Feng Pan, Guang Zhu, Zhong Lin Wang, “Significant Enhancement of Triboelectric Charge Density by Fluorinated Surface Modification in Nanoscale for Converting Mechanical Energy,” Adv. Funct. Mater. 2015, 25, 5691–5697. 75 Min Hsin Yeh, Long Lin, Po Kang Yang, and Zhong Lin Wang, “Motion-Driven Electrochromic Reactions for Self-Powered Smart Window System,” ACS NANO, 2015, 5, 4757-4765. 76 H.Y. Xiao, “A Self-powered Electrochromic Device Driven by a Nanogenerator,” The Royal Society of Chemistry, 2012, 10, 1039-1044. 77 Po, Chun Hsu. et al. “Performance Enhancement of Metal Nanowire Transparent Conducting Electrodes by Mesoscale Metal Wires”, NATURE COMMUN. 2013, 4, 2522-2529. 78 H.P. Sang et al. “Spray-Assisted Deep-Frying Process for the In Situ Spherical Assembly of Graphene for Energy-Storage Devices,” Chem. Mater. 2015, 27, 457−465. 79 Z.H. Tang, J. Zhuang, and X. Wang, “Exfoliation of Graphene from Graphite and Their Self-Assembly at the Oil-Water Interface,” Langmuir, 2010, 26, 9045-9049.
|