帳號:guest(3.144.172.125)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):孫建國
作者(外文):Sun, Jian Guo
論文名稱(中文):超 長 銀 線 仿 生 組 裝 的 柔 性 透 明 電 極 在 電 子 皮 膚 中 的 傑 出 應 用
論文名稱(外文):Transparent Flexible Electrodes Constituted of Bioinspired Network Assembled with Ultra-long Silver Nanowires for High-Performance Electronic Skin
指導教授(中文):陳力俊
指導教授(外文):Lih-Juann Chen
口試委員(中文):吳文偉
呂明諺
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:103031466
出版年(民國):105
畢業學年度:104
語文別:英文
論文頁數:74
中文關鍵詞:超长仿生电子皮肤
外文關鍵詞:ultra-longbio-inspirede-skin
相關次數:
  • 推薦推薦:0
  • 點閱點閱:153
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
現代光電元件,尤其是在特殊領域的諸如電子皮膚,智慧穿戴和
機器人皮膚等智慧元件呼籲新一代柔性透明電極的發展。
在本文中,我們在沒有添加任何外部封端劑的情況下以一種快速
便捷環保的凡爾尼置換法合成了一種長度超過1cm 的超長奈米銀線。
此外,受仿生結構的啟發,我們發展了一種以葉脈協助幹法轉印的技
術組裝我們合成的銀線將其排列成像葉脈一樣的形狀來用作透明電
極。歸因於葉脈結構的不斷進化以期獲得營養傳輸和吸收陽光之間的
平衡,我們的葉脈狀銀線網路透明度高達95%而與此同時片電阻只有
5Ω/sq,此外還獲得了很好的機械特性。以仿生的概念製造透明電極
的過程十分迅速,低廉,綠色的,適合大面積生產具有優異光電效果
的電極。
最後重中之重,為了證明我們電極的有效性,我們用銀奈米線電
極通過整合一個柔性奈米發電機和一個柔性電致變色元件建立了一
款變色龍仿生的電子皮膚,比較得出使用我們的電極比傳統的ITO 電
極組裝的元件需要的反應時間更短(2.9s)。值得一提的是,通過人
體的活動和元件顏色變化的互動效應,這款電子皮膚可以用來表演川
劇變臉(在表演中快速連續地變更臉譜來展示不同的心情和感受),
同時視覺化地監測人體的生理健康。重要的是這款臉譜可以讓我們每
個人都能以簡單有趣的方式感受川劇變臉而傳統的方式卻需要專門
的人受專門的訓練來表演。
總之,我們以仿生的方式,簡單的方法通過多功能重點突出奈米
科技在健康護理和藝術活動中的重要作用完成了一項具有創新性和
深遠意義的工作
Modern optoelectronics, especially smart devices in unique fields like electronic skins, wearable electronics and robotic skins call for development of new flexible transparent electrodes (TEs).
In the present work, we synthesized ultra-long silver nanowires over 1 cm through a relatively fast, environmental friendly and facile galvanic displacement method without adding external capping agent. In addition,
inspired by biostructures, we developed a facile leaf venation (LV)-assisted dry transfer printing technique to fabricate the transparent electrodes with silver nanowires, assembling silver nanowires into LV-like network. The LV-like network of ultra-long silver nanowires can help achieve a remarkable balance between transparency and conductivity (ultra-high transparency of 95% with ultra-low sheet resistance of 5 Ω/sq simultaneously),which is attributed to the ever-evolution of LV structure to obtain an optimized balance between transparency and transportation of nutrition, as well as excellent mechanical flexibility. The process of fabricating TEs with bio-inspired concept is fast, low-cost and green, which is suitable for large scale production with remarkable electro-optical performances.
The last but not least, A chameleon-inspired e-skin was established via integrating a transparent flexible triboelectric nanogenerator (TENG) with a flexible electrochromic device (ECD) using our Ag NWs electrodes to
demonstrate the effectiveness of our TE, which shows a significant shorter response time (2.9s) compared to that with traditional ITO. It should be noted that the smart e-skin could be used to replace special effect in the performance of Sichuan Opera named face changing (changing of masks in quick succession to show different emotions and feelings of the character in the play) through relative interactions between dynamical friction induced by body motions and color of e-skin, as well as monitor the health conditions visually. It is of great significance that the smart e-skin with our TE opens up a possibility for every person to experience traditional facechanging culture in a simple and interesting way. In contrast, the art normally takes a very skillful person to perform.
In a word, we completed a creatively profound work through
highlighting versatile applications of nanotechnology to heath care and artistic activity with bio-inspired concept through a relatively simple way
Acknowledgments…………………………………………………………………………………………………Ⅰ
Abstract……………………………………………………………………………………………………………………Ⅱ
Chapter 1.Introduction………………………………………………………………………………1
1-1 Motivation……………………………………………………………………………………………………1
1-2 Transparent Conductive Films……………………………………………………3
1-2-1 Indium Tin Oxide (ITO)………………………………………………………………4
1-2-2 Graphene and Nanotubes………………………………………………………………7
1-2-3 Metal Films………………………………………………………………………………………9
1-2-4 Silver Nanowires………………………………………………………………………………12
1-2-5 Assembly of Nanowires for TEs……………………………………………14
1-3 Electrochromic Devices (ECDs)……………………………………………….16
1-4 Triboelectric Nanogenerator (TENG)………………………………….18
Chapter 2. Experiment Procedures……………………………………………………20
2-1 Preparation of Ultra-long Silver Nanowires………………20
2-2 Substrate Preparation…………………………………………………………………… 20
2-3 Leaf Etching………………………………………………………………………………………………20
2-4 LV-assisted Dry Transfer Process…………………………………………21
2-5 Synthesis of Prussian Blue (PB) and Ni-PB Nanoparticles.……………………………………………………………………………………………………23
2-6 Fabrication of Flexible ECDs……………………………………………………24
2-7 Surface Modification on PET………………………………………………………24
2-8 Analyses…………………………………………………………………………………………………………25
2-8-1 Sheet Resistance Measurement………………………………………………25
2-8-2 X-Ray Diffractometor (XRD)……………………………………………………27
2-8-3 Scanning Electron Microscope………………………………………………27
2-8-4 Sample Preparation for Transmission Electron Microscopy Observation………………………………………………………………………………27
2-8-5 Transmission Electron Microscopy……………………………………28
2-8-6 Cyclic Voltammetry…………………………………………………………………………28
2-8-7 UV-visible Spectroelectrochemistry………………………………29
2-8-8 Measurements of Nanogenerator……………………………………………29
Chapter 3. Results and Discussion…………………………………………………30
3-1 Transparent Electrodes……………………………………………………………………30
3-1-1 Growth Mechanism of Silver Nanowires…………………………30
3-1-2 Record of Ultra-long Silver Nanowires’ Growth…32
3-1-3 SEM Analysis…………………………………………………………………………………………33
3-1-4 TEM Analysis…………………………………………………………………………………………33
3-1-5 LV-like Network of Silver Nanowires……………………………35
3-1-6 Advantages of Ultra-long Silver Nanowires……………37
3-1-7 Transparency Related to Densities of Nanowires…………………………………………………………………………………………………………………38
3-1-8 Electro-optical Performances of Silver Nanowires Network………………………………………………………………………………………………………………………39
3-2 Triboelectric Nanogenerator………………………………………………………44
3-3 Smart E-skin………………………………………………………………………………………………45
3-3-1 Illustration of E-skin………………………………………………………………45
3-3-2 Analysis of E-skin…………………………………………………………………………46
Chapter 4 Summary and Conclusions…………………………………………………50
Chapter 5 Future Prospects……………………………………………………………………54
5-1 Combine 3D Graphene with Silver Nanowires…………………54
5-2 Utilization of Leaf…………………………………………………………………56
5-3 Combination with LB Techniques……………………………………57
5-4 W18O49 for ECDs……………………………………………………………………………58
References………………………………………………………………………………………………………………61
1 D. S. Hecht, L. Hu, G. Irvin, “Emerging Transparent Electrodes Based on Thin Films of Carbon Nanotubes, Graphene, and Metallic Nanostructures,” Adv. Mater. 2011, 23, 1482-1513.
2 S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, “Roll-to-Roll Production of 30-inch Graphene Films for Transparent Electrodes,” Nat. Nanotechnol. 2010, 5, 574-578.
3 X. Wang, L. Zhi, K. Müllen, “Transparent, Conductive Graphene Electrodes for Dye-Sensitized Solar Cells,” Nano Lett. 2008, 8, 323-327.
4 Gomez De Arco, L. et al. “Continuous, Highly Flexible, and Transparent Graphene Films by Chemical Vapor Deposition for Organic Photovoltaics,” ACS Nano, 2010, 4, 2865–2873.
5 J. Cui, A. Wang, N. R. Armstrong, T. J. Marks, “Indium Tin Oxide Alternatives-High Work Function Transparent Conducting Oxides as Anodes for Organic Light-Emitting Diodes,” Adv. Mater. 2001, 13, 1476–1480.
6 S. Coskun, E. S. Ates, H. E. Unalan, “Optimization of Silver Nanowire Networks for Polymer Light Emitting Diode Electrodes,” Nanotechnology, 2013, 24, 125202-125210.
7 F. Xu, Y. Zhu, “Highly Conductive and Stretchable Silver Nanowire Conductors,” Adv. Mater. 2012, 24, 5117–5122.
8 Darren J. Lipomi, Courtney H. Fox and Zhe-nan Bao, “Skin-like Pressure and Strain Sensors Based on Transparent Elastic Films of Carbon Nanotubes,” Nat. Nanotechnol. 2011, 6, 784-787.
9 Po-Kang Yang, Long Lin, Yue Zhang, and Zhong Lin Wang, “A Flexible, Stretchable and Shape-Adaptive Approach for Versatile Energy Conversion and Self-Powered Biomedical Monitoring,” Adv. Mater. 2015, 27, 3817–3824.
10 S. L. Hellstrom, H. W. Lee, Z. Bao, “Polymer-Assisted Direct Deposition of Uniform Carbon Nanotube Bundle Networks for High Performance Transparent Electrodes,” ACS Nano, 2009, 3, 1423-1430.
11 Tung V. C, Allen M. J, Yang. Y, Kaner R. B, “High-throughput Solution Processing of Large-scale Graphene,” Nat. Nanotechnol. 2009, 4, 25–29.
12 H. Wu, D. Kong, S. Wang, Z. Yu , Y. Cui, “A Transparent Electrode Based on a Metal Nanotrough Network,” Nat. Nanotechnol. 2013, 8, 421-425.
13 J. van de Groep, P. Spinelli, A. Polman, “Transparent Conducting Silver Nanowire Networks,” Nano Lett. 2012, 12, 3138-3144.
14 Takehiro Tokuno, Masaya Nogi, Jinting Jiu, Tohru Sugahara, and Katsuaki Suganuma, “Transparent Electrodes Fabricated via the Self-Assembly of Silver Nanowires Using a Bubble Template,” Langmuir, 2012, 28, 9298−9302.
15 Bo-Ru, Yang. et al. “Microchannel Wetting for Controllable Patterning and Alignment of Silver Nanowire with High Resolution,” ACS Appl. Mater. Interfaces, 2015, 7, 21433−21441.
16 Jian-Wei Liu, Jin-Long Wang, Zhi-Hua Wang, Wei-Ran Huang, and Shu-Hong Yu, “Manipulating Nanowire Assembly for Flexible Transparent Electrodes,” Ange Chem. Int. Ed. 2014, 53, 13477 –13482.
17 K. C, Chen. et al, “Observation of Atomic Diffusion at Twin-Modified Grain Boundaries in Copper,” Science, 2008, 321, 1066-1069.
18 K. C, Chen. et al, “Stability of Nanoscale Twins in Copper under Electric Current Stressing,” Appl. Phys. 2010, 108, 066103-066109.
19 K. C, Chen. et al, “Direct Observation of Electromigration-induced Surface Atomic Steps in Cu Lines by in Situ Transmission Electron Microscopy,” Appl. Phys. Lett. 2007, 90, 203101-203104.
20 K. Badeker, “Concerning the Electricity Conductibility and the Thermoelectric Energy of Several Heavy Metal Bonds,” Ann. Phys. 1907,22, 4, 749.
21 A.W, Metz. et al, “Transparent Conducting Oxides: Texture and Microstructure Effects on Charge Carrier Mobility in MOCVD-derived CdO Thin Films Grown with a Thermally Stable, Low-melting Precursor,” J. Am. Chem. Soc. 2004, 126, 8477–8492.
22 L. Holland, G. Siddall, “The Properties of Some Reactively Sputtered Metal Oxide Films,” Vacuum, 1953, 3, 375–391.
23 C. K. Choi, C. H. Margraves, S. I. Jun, A. E. English, P. D. Rack and K. D. Kihm, “Opto-Electric Cellular Biosensor Using Optically Transparent Indium Tin Oxide (ITO) Electrodes,” Sensors, 2008, 8, 3257-3270.
24 H. V. Rizo, I. M. Gullon and M. Terrones, “Hybrid Films with Graphene Oxide and Metal Nanoparticles Could Now Replace Indium Tin Oxide,” ACS Nano, 2012, 6, 4565–4572.
25 A. B. Kuzmenko, E. van Heumen, F. Carbone and D. van der Marel, “Universal Optical Conductance of Graphite,” Phys. Rev. Lett. 2008, 100, 117401–117409.
26 R. R. Nair. et al, “Fine Structure Constant Defines Visual Transparency of Graphene,” Science, 2008, 320, 1308-1310.
27 Du, X.; Skachko, I.; Barker, A.; Andrei, E. Y. Andrei, “Approaching Ballistic Transport in Suspended Graphene,” Nat. Nanotechnol. 2008, 3, 491−495.
28 Huang, P. Y. et al, “Grains and Grain Boundaries in Single-layer Graphene Atomic Patchwork Quilts,” Nature, 2011, 469,389−393.
29 Yazyev, O. V, Louie, S. G, “Electronic Transport in Polycrystalline Graphene,” Nat. Mater. 2010, 9, 806−809.
30 Ni. G. X, “Quasi-Periodic Nanoripples in Graphene Grown by Chemical Vapor Deposition and Its Impact on Charge Transport,” ACS Nano, 2012, 6, 1158−1164.
31 Chen. J. H, Jang. C, Xiao. S. D, Ishigami. M, Fuhrer. M. S, “Intrinsic and Extrinsic Performance Limits of Graphene Devices on SiO2,” Nat. Nanotechnol. 2008, 3, 206−209.
32 Kholmanov, I. N. et al, “Healing of Structural Defects in the Topmost Layer of Graphite by Chemical Vapor Deposition,” Adv. Mater. 2011, 23, 1675−1678.
33 Karoui. S, Amara. H, Bichara. C, Ducastelle. F, “Nickel-Assisted Healing of Defective Graphene,” ACS Nano, 2010, 4, 6114−6120.
34 S. Iijima, T. Ichihashi, “Single-shell Carbon Nanotubes of 1-nm Diameter,” Nature, 1993, 363, 603-605.
35 J.W. G. Wildoer, L. C. Venema, A. G. Rinzler, R. E. Smalley, C. Dekker, “Electronic Structure of Atomically Resolved Carbon Nanotubes,” Nature, 1998, 391, 59-62.
36 T. Durkop, S. A. Getty, E. Cobas, M. S. Fuhrer, “Extraordinary Mobility in Semiconducting Carbon Nanotubes,” Nano Lett. 2004, 4, 35-39.
37 A. Javey, et al, “High-kappa Dielectrics for Advanced Carbon-nanotube Transistors and Logic Gates,” Nat. Mater. 2002, 1, 241-246.
38 D. S. Ghosh, L. Martinez, S. Giurgola, P. Vergani, V. Pruneri, “Widely Transparent Electrodes Based on Ultrathin Metals,” Optics Lett. 2009, 34, 325-327.
39 R. B. Pode, C. J. Lee, D. G. Moon, J. I. Han, “Transparent Conducting Metal Electrode for Top Emission Organic Light-emitting Devices: Ca–Ag Double Layer,” Appl. Phys. Lett. 2004, 84, 4614-4616.
40 M. G. Kang , M. S. Kim, J. S. Kim, L. J. Guo, “Organic Solar Cells Using Nanoimprinted Transparent Metal Electrodes,” Adv. Mater. 2008, 20, 4408-4413.
41 M. G. Kang, L. J. Guo, “Nanoimprinted Semitransparent Metal Electrodes and Their Application in Organic Light-Emitting Diodes”, Adv. Mater. 2007, 19, 1391-1396.
42 M. G. Kang, L. J. Guo, “Semitransparent Cu Electrode on A Flexible Substrate and its Application in Organic Light Emitting Diodes,” J. Vacuum Sci. Technol. B, 2007, 25, 2637-2641.
43 D. Azulai, T. Belenkova, H. Gilon, Z. Barkay, G. Markovich, “Transparent Metal Nanowire Thin Films Prepared in Mesostructured Templates,” Nano Lett. 2009, 9, 4246-4269.
44 J. Y. Lee, S. T. Connor, Y. Cui, P. Peumans, “Solution-Processed Metal Nanowire Mesh Transparent Electrodes,” Nano Lett. 2008, 8, 689-692.
45 Y, Q, Keorder. et al. “Magnetic and Structural Phase Transitions in Fe1+ySexTe1−x,” Phys. Rev. B, 2009, 79, 054503-054510.
46 S, De. et al. “Silver Nanowire Networks as Flexible, Transparent, Conducting Films: Extremely High DC to Optical Conductivity Ratios,” ACS Nano. 2009, 3, 1767–1774.
47 D. Azulai, T. Belenkova, H. Gilon, Z. Barkay, G. Markovich, “Transparent Metal Nanowire Thin Films Prepared in Mesostructured Templates,” Nano Lett. 2009, 9, 4246-4249.
48 Mao-xiang Jing, Min Li, Cui-yu Chen, Zhou Wang and Xiang-qian Shen, “Highly Bendable, Transparent, and Conductive AgNWs-PET Films Fabricated via Transfer-printing and Second Pressing Technique,” Journal of Materials Science, 2015, 50, 6437–6443.
49 Shengrong Ye, Aaron R. Rathmell, Zuofeng Chen, Ian E. Stewart, and Benjamin J, “Metal Nanowire Networks: The Next Generation of Transparent Conductors,” Adv. Mater. 2014, 26, 6670– 6687.
50 Jinhwan Lee. et al. “Very long Ag Nanowire Synthesis and its Application in A Highly Transparent, Conductive and Flexible Metal Electrode Touch Panel,” Nanoscale, 2012, 4, 6408-6414.
51 K. Lu, L. Lu, S. Suresh, “Strengthening Materials by Engineering Coherent Internal Boundaries at the Nanoscale,” Science, 2009, 324, 349-352.
52 L. Lu, Y. F. Shen, X.H. Chen, L. H. Qian, K. Lu, “Ultrahigh Strength and High Electrical Conductivity in Copper,” Science, 2004, 304, 422-426.
53 L. Lu, M. L. Sui, K. Lu, “Superplastic Extensibility of Nanocrystalline Copper at Room Temperature,” Science, 2000, 287, 1463-1466.
54 S. Zhong et al.“Nanoscale Twinned Copper Nanowire Formation by Direct Electrodeposition,” Small, 2009, 5, 2265-2270.
55 B. Wang et al. “Controlled Growth and Phase Transition of Silver Nanowires with Dense Lengthwise Twins and Stacking Faults,” Crystal Growth & Design. 2008, 8, 3073-3076.
56 Kim, S, Kim, S. Y, Kim, J, Kim, J. H. “Highly Reliable AgNW/PEDOT:PSS Hybrid Films: Efficient Methods for Enhancing Transparency and Lowering Resistance and Haziness,” J. Mater. Chem. C, 2014, 2, 5636−5643.
57 Park, J. D, Lim, S, Kim, H. “Patterned Silver Nanowires using the Gravure Printing Process for Flexible Applications,” Thin Solid Films, 2015, 586, 70−75.
58 Finn D. J, Lotya M, Coleman. J. N, “Inkjet Printing of Silver Nanowire Networks,” ACS Appl. Mater. Interfaces, 2015, 7, 9254−9261.
59 Minemawari, H. et al. “Inkjet Printing of Single-Crystal Films,” Nature, 2011, 475, 364−367.
60 G. S. Liou, H. Y. Lin, “Electrochemical and Electrochromic Properties of Novel Aromatic Poly(amine–amide)s Derived from N,N0 -bis(4-carboxyphenyl)-N,N0-diphenyl-1,4-phenylenediamine,” Eur Polym. J. 2006, 42, 1051–1058.
61 V.D. Neff, “Electrochemical Oxidation and Reduction of Thin Films of Prussian Blue,” J. Electrochem. Soc.1978, 125, 886-887.
62 D.H. Kim et al. “Epidermal Electronics,” Science, 2011, 333, 838-843.
63 B. Han et al. “Bio-inspired Networks for Optoelectronic Applications,” Nat. Commun, 2014. 5, 5674-5681.
64 Cui-yu Chen, Mao-xiang Jing, Zhi-chao Pi, Sheng-wen Zhu, Xiang-qian shen, “Preparation and Properties of Double-Sided AgNWs/PVC/AgNWs Flexible Transparent Conductive Film by Dip-Coating Process,” Nanoscale Research Lett. 2015, 10, 315-321.
65 H. Shiozaki et al. “Electromechanical Properties of Nd-doped Bi4 Ti3O12 Films: A Candidate for Lead-free Thin-film Piezoelectrics,” J. Appl. Phys. 2003, 82, 1760-1762.
66 Argun. A A, Cripan. A, & Reynolds. J R, “The First Truly All-polymer Electrochromic Devices,” Adv. Mater. 2003, 15, 1338–1341.
67 Tzu Chieh. Liao, Wei Han. Chen, Hung Yun. Liao, Lin Chi. Chen, “Multicolor Electrochromic Thin Films and Devices Based on the Prussian Blue Family Nanoparticles,” Solar Energy Materials & Solar Cells, 2016, 145, 26–34.
68 C. Y. Wang, M. Y. Lu, H. C. Chen, L. J. Chen, “Single-crystalline Pb Nanowires Grown by Galvanic Displacement Reactions of Pb Ions on Zinc Foils and Their Superconducting Properties,” J. Phys. Chem. C, 2007, 111, 6215-6219.
69 Anuj R. Madaria, et al, “Uniform, Highly Conductive, and Patterned Transparent Films of a Percolating Silver Nanowire Network on Rigid and Flexible Substrates Using a Dry Transfer Technique,” Nano Res. 2010, 3, 564–573.
70 B. Han et al. “Uniform Self-Forming Metallic Network as a High-Performance Transparent Conductive Electrode,” Adv. Mater. 2014, 26, 873–877.
71 Saewon, Kang. et al. “Capillary Printing of Highly Aligned Silver Nanowire Transparent Electrodes for High-Performance Optoelectronic Devices,” Nano Lett. 2015, 15, 7933–7942.
72 C.C. Hsun et al. “Spray-Deposited Large-Area Copper Nanowire Transparent Conductive Electrodes and Their Uses for Touch Screen Applications,” ACS Appl. Mater. Interfaces, 2016, 8, 13009–13017.
73 Y. Yang et al. “Human Skin Based Triboelectric Nanogenerators for Harvesting Biomechanical Energy and as Self-Powered Active Tactile Sensor System,” ACS NANO, 2013, 10, 9213–9222.
74 Hua Yang Li, Li Su, Shuang Yang Kuang, Cao Feng Pan, Guang Zhu, Zhong Lin Wang, “Significant Enhancement of Triboelectric Charge Density by Fluorinated Surface Modification in Nanoscale for Converting Mechanical Energy,” Adv. Funct. Mater. 2015, 25, 5691–5697.
75 Min Hsin Yeh, Long Lin, Po Kang Yang, and Zhong Lin Wang, “Motion-Driven Electrochromic Reactions for Self-Powered Smart Window System,” ACS NANO, 2015, 5, 4757-4765.
76 H.Y. Xiao, “A Self-powered Electrochromic Device Driven by a Nanogenerator,” The Royal Society of Chemistry, 2012, 10, 1039-1044.
77 Po, Chun Hsu. et al. “Performance Enhancement of Metal Nanowire Transparent Conducting Electrodes by Mesoscale Metal Wires”, NATURE COMMUN. 2013, 4, 2522-2529.
78 H.P. Sang et al. “Spray-Assisted Deep-Frying Process for the In Situ Spherical Assembly of Graphene for Energy-Storage Devices,” Chem. Mater. 2015, 27, 457−465.
79 Z.H. Tang, J. Zhuang, and X. Wang, “Exfoliation of Graphene from Graphite and Their Self-Assembly at the Oil-Water Interface,” Langmuir, 2010, 26, 9045-9049.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *