帳號:guest(3.133.126.164)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳慧儀
作者(外文):Tan, Hui Gee
論文名稱(中文):利用快速熱處理晶圓廢料回收之微米矽 並應用於鋰離子電池負極材料
論文名稱(外文):Processing Silicon Microparticles Recycled from Wafer Waste via Rapid Thermal Process for Lithium-ion Battery Anode Materials
指導教授(中文):杜正恭
指導教授(外文):Duh, Jenq Gong
口試委員(中文):胡龍豪
詹益瑞
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:103031401
出版年(民國):105
畢業學年度:104
語文別:英文
論文頁數:94
中文關鍵詞:鋰離子電池負極晶圓廢料
相關次數:
  • 推薦推薦:0
  • 點閱點閱:35
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在半導體和太陽電池產業裡,矽晶圓切割加工過程造成大量含微米矽之廢棄物的浪費。矽可視為高電容潛力的鋰離子電池負極材料,利用讓廢料中的微米矽可製備鋰離子電池負極的材料來源。將製程的副產品回收再利用,使廢料中的矽微米顆粒轉換成高價值產品,同時具備環境保護和成本效益。在此研究中,快速熱處理(RTP)被引入作為矽晶切割廢料回收再利用的製程,藉由水系粘著劑羧甲基纖維素(CMC)在極片矽粉體之間碳化及矽表面氧化現象,建立出矽/碳複合多孔結構於極片上,使廢料轉變為高價值產品。此製備方式可以建立碳多孔導電網路作為矽體積膨脹之應力釋放緩衝空間。此外,非晶氧化矽和非晶碳披覆於矽表面,以作為保護層阻擋矽與電解液直接接觸,生成穩定的固態電解質相介面(SEI)生成。電化學測試結果顯示此多孔狀結構的負極在電流密度為0.5Ag-1的條件下,第一圈可逆效率可達80%,且在100圈充放電下仍然保有800mAhg-1 的電容量。通過此環境友善及簡單的製備過程,矽晶切割廢料可回收再利用,並具製備高電容量密度的矽/碳複合鋰離子電池負極材料的潛力。
A vast quantity waste sludge is produced from the Silicon (Si) wafers slicing process in semiconductor and photovoltaic industries. Si has been regarded as one of the most potential anodic materials due to its superior theoretical capacity, thus the recycled Si microparticles can be employed as the raw material for lithium-ion battery anode. Turning the waste powder into high-value products is of strategic importance for industrial processes. In this study, Rapid Thermal Process (RTP) is introduced to recycle the waste powder. A prominent anodic material of Si-MP/C porous continuous structure composite is obtained via in-spaced carbonization of water-soluble CMC binder and surface oxidation of Si particles during the direct heat treatment on the electrode. This strategy provides buffer space, which is constructed by carbon porous continuous conductive framework throughout the entire electrode, to resist local stress and intense volume variation. In addition, a sufficiently electrochemically stable SEI layer is accomplished with the coating of SiOx film and amorphous carbon on the surface of Si-MP. Under these circumstances, the enhanced electrodes achieve a first cycle efficiency of approximately 80% and a reversible charge capacity of 800mAhg-1 over 100 cycles at 0.5Ag-1 with good retention. Through a green and simple procedure, a remarkable Si-MP embedded C-matrix porous continuous conductive framework is established to achieve commercially potential high-capacitive Si-MP/C composite anodes and also to resolve the issues of waste disposal.
Abstract 1
Chapter 1 Introduction 2
1.1. Background 2
1.2. Motivations and Objectives in This Study 4
Chapter 2 Literature Review 6
2.1. Introduction of Lithium-ion Battery 6
2.1.1. Evolution of Lithium-ion Battery 6
2.1.2. The Reaction Mechanism of Lithium-ion Battery 11
2.1.3. Evolution of Anode Materials 16
2.2. Si-based Anode Materials 21
2.2.1. Basic Concept of Si-based Anode 21
2.2.2. Particle Size Effects in Si-based Lithium-ion Battery 27
2.2.3. Surface Modification and Architectural Design for Si-based Anode Materials 32
2.3. Silicon Wafer Slicing Waste 39
2.4. Rapid Thermal Process (RTP) 42
Chapter 3 Experimental Details 45
3.1. Material Preparation 45
3.1.1. Source of Active Materials 45
3.1.2. Modification Procedure – Rapid Thermal Process (RTP) 45
3.2. Characterization and Analysis 46
3.2.1. Phase Identification 46
3.2.2. Compositional Evaluation 46
3.2.3. Morphological Observation 46
3.3. Electrochemical Analysis 47
3.3.1. Electrode Fabrication and Battery Assembly 47
3.3.2. Cyclability and Rate Capability Measurement 48
3.3.3. Cyclic Voltammetry (CV) 48
3.3.4. Electrochemical Impedance Spectroscopy (EIS) 48
Chapter 4 Results and Discussions 50
4.1. Structural Characterization 50
4.2. Investigation of Intrinsic Properties 58
4.3. Evaluation of Electrochemical Properties 64
4.4. Speculated Mechanisms of Unique Porous Structure 73
Conclusion 87
References 88


[1] O. Ellabban, H. Abu-Rub, and F. Blaabjerg, "Renewable energy resources: Current status, future prospects and their enabling technology," Renewable & Sustainable Energy Reviews, vol. 39, pp. 748-764, Nov 2014.
[2] F. Rahman, S. Rehman, and M. A. Abdul-Majeed, "Overview of energy storage systems for storing electricity from renewable energy sources in Saudi Arabia," Renewable & Sustainable Energy Reviews, vol. 16, pp. 274-283, Jan 2012.
[3] J. M. Tarascon and M. Armand, "Issues and challenges facing rechargeable lithium batteries," Nature, vol. 414, pp. 359-367, Nov 15 2001.
[4] M. Armand and J. M. Tarascon, "Building better batteries," Nature, vol. 451, pp. 652-657, Feb 7 2008.
[5] J. M. Tarascon, "Key challenges in future Li-battery research," Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, vol. 368, pp. 3227-3241, Jul 28 2010.
[6] D. L. Ma, Z. Y. Cao, and A. M. Hu, "Si-Based Anode Materials for Li-Ion Batteries: A Mini Review," Nano-Micro Letters, vol. 6, pp. 347-358, Oct 2014.
[7] Z. L. Tao, H. B. Wang, and J. Chen, "Si-Based Materials as the Anode of Lithium-Ion Batteries," Progress in Chemistry, vol. 23, pp. 318-327, Mar 2011.
[8] N. Drouiche, P. Cuellar, F. Kerkar, S. Medjahed, N. Boutouchent-Guerfi, and M. O. Hamou, "Recovery of solar grade silicon from kerf loss slurry waste," Renewable & Sustainable Energy Reviews, vol. 32, pp. 936-943, Apr 2014.
[9] H. D. Jang, H. Kim, H. Chang, J. Kim, K. M. Roh, H. Choi, et al., "Aerosol-Assisted Extraction of Silicon Nanoparticles from Wafer Slicing Waste for Lithium Ion Batteries," Scientific Reports, vol. 5, Mar 30 2015.
[10] B. H. Chen, S. I. Chuang, W. R. Liu, and J. G. Duh, "A Revival of Waste: Atmospheric Pressure Nitrogen Plasma Jet Enhanced Jumbo Silicon/Silicon Carbide Composite in Lithium Ion Batteries," Acs Applied Materials & Interfaces, vol. 7, pp. 28166-28176, Dec 30 2015.
[11] Q. Bao, Y. H. Huang, C. K. Lan, B. H. Chen, and J. G. Duh, "Scalable Upcycling Silicon from Waste Slicing Sludge for High-performance Lithium-ion Battery Anodes," Electrochimica Acta, vol. 173, pp. 82-90, Aug 10 2015.
[12] H. Kim, M. Seo, M. H. Park, and J. Cho, "A Critical Size of Silicon Nano-Anodes for Lithium Rechargeable Batteries," Angewandte Chemie-International Edition, vol. 49, pp. 2146-2149, 2010.
[13] X. H. Liu, L. Zhong, S. Huang, S. X. Mao, T. Zhu, and J. Y. Huang, "Size-Dependent Fracture of Silicon Nanoparticles During Lithiation," Acs Nano, vol. 6, pp. 1522-1531, Feb 2012.
[14] J.-B. Koo, B.-Y. Jang, and K.-S. Han, "Si-C composites synthesized by using Si nanoparticles and carboxymethyl cellulose as anode materials for lithium-ion batteries," Journal of the Korean Physical Society, vol. 67, pp. 1831-1837, 2015.
[15] L. Qiu, Z. Q. Shao, M. S. Yang, W. J. Wang, F. J. Wang, L. Xie, et al., "Electrospun carboxymethyl cellulose acetate butyrate (CMCAB) nanofiber for high rate lithium-ion battery," Carbohydrate Polymers, vol. 96, pp. 240-245, Jul 1 2013.
[16] N. S. Hochgatterer, M. R. Schweiger, S. Koller, P. R. Raimann, T. Wohrle, C. Wurm, et al., "Silicon/graphite composite electrodes for high-capacity anodes: Influence of binder chemistry on cycling stability," Electrochemical and Solid State Letters, vol. 11, pp. A76-A80, 2008.
[17] A. Manthiram, A. V. Murugan, A. Sarkar, and T. Muraliganth, "Nanostructured electrode materials for electrochemical energy storage and conversion," Energy & Environmental Science, vol. 1, pp. 621-638, 2008.
[18] G. N. Lewis, "The activity of the ions and the degree of dissociation of strong electrolytes.," Journal of the American Chemical Society, vol. 34, pp. 1631-1644, Dec 1912.
[19] C. A. Vincent, "Lithium batteries: a 50-year perspective, 1959-2009," Solid State Ionics, vol. 134, pp. 159-167, Oct 2000.
[20] J. O. Besenhard, Handbook of battery materials. Weinheim ; Cambridge: Wiley-VCH, 1999.
[21] P. Vashishta, J. N. Mundy, and G. K. Shenoy, Fast ion transport in solids : electrodes, and electrolytes : proceedings of the International Conference on Fast Ion Transport in Solids, Electrodes, and Electrolytes, Lake Geneva, Wisconsin, U.S.A., May 21-25, 1979. New York: North Holland, 1979.
[22] U. Vonsacken, E. Nodwell, A. Sundher, and J. R. Dahn, "Comparative Thermal-Stability of Carbon Intercalation Anodes and Lithium Metal Anodes for Rechargeable Lithium Batteries," Journal of Power Sources, vol. 54, pp. 240-245, Apr 1995.
[23] J. N. Chazalviel, "Electrochemical Aspects of the Generation of Ramified Metallic Electrodeposits," Physical Review A, vol. 42, pp. 7355-7367, Dec 15 1990.
[24] D. W. Murphy, F. J. Disalvo, J. N. Carides, and J. V. Waszczak, "Topochemical Reactions of Rutile Related Structures with Lithium," Materials Research Bulletin, vol. 13, pp. 1395-1402, 1978.
[25] B. Dipietro, M. Patriarca, and B. Scrosati, "On the Use of Rocking Chair Configurations for Cyclable Lithium Organic Electrolyte Batteries," Journal of Power Sources, vol. 8, pp. 289-299, 1982.
[26] M. Lazzari and B. Scrosati, "Cyclable Lithium Organic Electrolyte Cell Based on 2 Intercalation Electrodes," Journal of the Electrochemical Society, vol. 127, pp. 773-774, 1980.
[27] G. Nazri and G. Pistoia. (2009). Lithium batteries : science and technology.
[28] K. Mizushima, P. C. Jones, P. J. Wiseman, and J. B. Goodenough, "Lixcoo2 "(Oless-Thanxless-Than-or-Equal-To1) - a New Cathode Material for Batteries of High-Energy Density," Materials Research Bulletin, vol. 15, pp. 783-789, 1980.
[29] M. Winter, J. O. Besenhard, M. E. Spahr, and P. Novak, "Insertion electrode materials for rechargeable lithium batteries," Advanced Materials, vol. 10, pp. 725-763, Jul 9 1998.
[30] J. B. Goodenough and Y. Kim, "Challenges for Rechargeable Li Batteries," Chemistry of Materials, vol. 22, pp. 587-603, Feb 9 2010.
[31] H. J. Ploehn, P. Ramadass, and R. E. White, "Solvent diffusion model for aging of lithium-ion battery cells," Journal of the Electrochemical Society, vol. 151, pp. A456-A462, Mar 2004.
[32] P. Verma, P. Maire, and P. Novak, "A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries," Electrochimica Acta, vol. 55, pp. 6332-6341, Sep 1 2010.
[33] J. T. Han, Y. H. Huang, and J. B. Goodenough, "New Anode Framework for Rechargeable Lithium Batteries," Chemistry of Materials, vol. 23, pp. 2027-2029, Apr 26 2011.
[34] J. Hassoun, P. Reale, S. Panero, B. Scrosati, M. Wachtler, M. Fleischhammer, et al., "Determination of the safety level of an advanced lithium ion battery having a nanostructured Sn-C anode, a high voltage LiNi0.5Mn1.5O4 cathode, and a polyvinylidene fluoride-based gel electrolyte," Electrochimica Acta, vol. 55, pp. 4194-4200, May 1 2010.
[35] G. W. Jackson and G. E. Blomgren, "Lithium Anode Properties in a Nonaqueous Cell," Journal of the Electrochemical Society, vol. 116, pp. 1483-&, 1969.
[36] J. J. Auborn, K. W. French, Lieberma.Si, V. K. Shah, and A. Heller, "Lithium Anode Cells Operating at Room-Temperature in Inorganic Electrolytic Solutions," Journal of the Electrochemical Society, vol. 120, pp. 1613-1619, 1973.
[37] J. R. Dahn, A. K. Sleigh, H. Shi, J. N. Reimers, Q. Zhong, and B. M. Way, "Dependence of the Electrochemical Intercalation of Lithium in Carbons on the Crystal-Structure of the Carbon," Electrochimica Acta, vol. 38, pp. 1179-1191, Jun 1993.
[38] M. Noel and V. Suryanarayanan, "Role of carbon host lattices in Li-ion intercalation/de-intercalation processes," Journal of Power Sources, vol. 111, pp. 193-209, Sep 23 2002.
[39] D. W. Wang, H. T. Fang, F. Li, Z. G. Chen, Q. S. Zhong, G. Q. Lu, et al., "Aligned Titania Nanotubes as an Intercalation Anode Material for Hybrid Electrochemical Energy Storage," Advanced Functional Materials, vol. 18, pp. 3787-3793, Dec 8 2008.
[40] U. K. Sen, A. Shaligram, and S. Mitra, "Intercalation Anode Material for Lithium Ion Battery Based on Molybdenum Dioxide," Acs Applied Materials & Interfaces, vol. 6, pp. 14311-14319, Aug 27 2014.
[41] D. X. Li, X. W. Zhou, X. J. Guo, B. Yuan, Y. J. Liu, C. M. Ortega, et al., "A novel Fe3O4/buckypaper composite as free-standing anode for lithium-ion battery," Journal of Alloys and Compounds, vol. 657, pp. 109-114, Feb 5 2016.
[42] J. Yang, M. Wachtler, M. Winter, and J. O. Besenhard, "Sub-microcrystalline Sn and Sn-SnSb powders as lithium storage materials for lithium-ion batteries," Electrochemical and Solid State Letters, vol. 2, pp. 161-163, Apr 1999.
[43] Y. Huang, Z. X. Lin, M. B. Zheng, T. H. Wang, J. Z. Yang, F. S. Yuan, et al., "Amorphous Fe2O3 nanoshells coated on carbonized bacterial cellulose nanofibers as a flexible anode for high-performance lithium ion batteries," Journal of Power Sources, vol. 307, pp. 649-656, Mar 1 2016.
[44] J. X. Qiu, C. Lai, E. Gray, S. Li, S. Y. Qiu, E. Strounina, et al., "Blue hydrogenated lithium titanate as a high-rate anode material for lithium-ion batteries," Journal of Materials Chemistry A, vol. 2, pp. 6353-6358, 2014.
[45] C. Julien and Z. Stoynov. (2000). Materials for Lithium-Ion Batteries.
[46] M. S. Whittingham, "Ultimate Limits to Intercalation Reactions for Lithium Batteries," Chemical Reviews, vol. 114, pp. 11414-11443, Dec 10 2014.
[47] Y. X. Tang, Y. Y. Zhang, W. L. Li, B. Ma, and X. D. Chen, "Rational material design for ultrafast rechargeable lithium-ion batteries," Chemical Society Reviews, vol. 44, pp. 5926-5940, 2015.
[48] D. Larcher, S. Beattie, M. Morcrette, K. Edstroem, J. C. Jumas, and J. M. Tarascon, "Recent findings and prospects in the field of pure metals as negative electrodes for Li-ion batteries," Journal of Materials Chemistry, vol. 17, pp. 3759-3772, 2007.
[49] U. Kasavajjula, C. S. Wang, and A. J. Appleby, "Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells," Journal of Power Sources, vol. 163, pp. 1003-1039, Jan 1 2007.
[50] W. J. Zhang, "Lithium insertion/extraction mechanism in alloy anodes for lithium-ion batteries," Journal of Power Sources, vol. 196, pp. 877-885, Feb 1 2011.
[51] W. J. Zhang, "A review of the electrochemical performance of alloy anodes for lithium-ion batteries," Journal of Power Sources, vol. 196, pp. 13-24, Jan 1 2011.
[52] R. Benedek and M. M. Thackeray, "Lithium reactions with intermetallic-compound electrodes," Journal of Power Sources, vol. 110, pp. 406-411, Aug 22 2002.
[53] J. R. Szczech and S. Jin, "Nanostructured silicon for high capacity lithium battery anodes," Energy & Environmental Science, vol. 4, pp. 56-72, Jan 2011.
[54] H. Wu and Y. Cui, "Designing nanostructured Si anodes for high energy lithium ion batteries," Nano Today, vol. 7, pp. 414-429, Oct 2012.
[55] A. R. Kamali and D. J. Fray, "Tin-Based Materials as Advanced Anode Materials for Lithium Ion Batteries: A Review," Reviews on Advanced Materials Science, vol. 27, pp. 14-24, Feb 2011.
[56] M. Winter and J. O. Besenhard, "Electrochemical lithiation of tin and tin-based intermetallics and composites," Electrochimica Acta, vol. 45, pp. 31-50, 1999.
[57] M. Yoshio, T. Tsumura, and N. Dimov, "Electrochemical behaviors of silicon based anode material," Journal of Power Sources, vol. 146, pp. 10-14, Aug 26 2005.
[58] K. Nishikawa, K. Dokko, K. Kinoshita, S. W. Woo, and K. Kanamura, "Three-dimensionally ordered macroporous Ni-Sn anode for lithium batteries," Journal of Power Sources, vol. 189, pp. 726-729, Apr 1 2009.
[59] X. Q. Yang, H. Huang, Z. H. Li, M. L. Zhong, G. Q. Zhang, and D. C. Wu, "Preparation and lithium-storage performance of carbon/silica composite with a unique porous bicontinuous nanostructure," Carbon, vol. 77, pp. 275-280, Oct 2014.
[60] J. Yang, M. Winter, and J. O. Besenhard, "Small particle size multiphase Li-alloy anodes for lithium-ion-batteries," Solid State Ionics, vol. 90, pp. 281-287, Sep 1996.
[61] B. A. Boukamp, G. C. Lesh, and R. A. Huggins, "All-Solid Lithium Electrodes with Mixed-Conductor Matrix," Journal of the Electrochemical Society, vol. 127, pp. C349-C349, 1980.
[62] J. P. Maranchi, A. F. Hepp, and P. N. Kumta, "High capacity, reversible silicon thin-film anodes for lithium-ion batteries," Electrochemical and Solid State Letters, vol. 6, pp. A198-A201, Sep 2003.
[63] J. S. Thorne, J. R. Dahn, M. N. Obrovac, and R. A. Dunlap, "An In Situ Study of the Electrochemical Reaction of Li with Amorphous/Nanostructured Cu6Sn5 + C," Journal of the Electrochemical Society, vol. 158, pp. A1328-A1334, 2011.
[64] Z. H. Chen, V. Chevrier, L. Christensen, and J. R. Dahn, "Design of amorphous alloy electrodes for Li-ion batteries - A big challenge," Electrochemical and Solid State Letters, vol. 7, pp. A310-A314, 2004.
[65] J. Li, R. B. Lewis, and J. R. Dahn, "Sodium carboxymethyl cellulose - A potential binder for Si negative electrodes for Li-ion batteries," Electrochemical and Solid State Letters, vol. 10, pp. A17-A20, 2007.
[66] I. A. Profatilova, N. S. Choi, K. H. Yew, and W. U. Choi, "The effect of ethylene carbonate on the cycling performance of a Si electrode," Solid State Ionics, vol. 179, pp. 2399-2405, Dec 31 2008.
[67] N. S. Choi, K. H. Yew, K. Y. Lee, M. Sung, H. Kim, and S. S. Kim, "Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode," Journal of Power Sources, vol. 161, pp. 1254-1259, Oct 27 2006.
[68] L. B. Chen, X. H. Xie, J. Y. Xie, K. Wang, and J. Yang, "Binder effect on cycling performance of silicon/carbon composite anodes for lithium ion batteries," Journal of Applied Electrochemistry, vol. 36, pp. 1099-1104, Oct 2006.
[69] C. J. Wen and R. A. Huggins, "Chemical Diffusion in Intermediate Phases in the Lithium-Silicon System," Journal of Solid State Chemistry, vol. 37, pp. 271-278, 1981.
[70] V. L. Chevrier and J. R. Dahn, "First Principles Model of Amorphous Silicon Lithiation," Journal of the Electrochemical Society, vol. 156, pp. A454-A458, 2009.
[71] M. N. Obrovac and L. Christensen, "Structural changes in silicon anodes during lithium insertion/extraction," Electrochemical and Solid State Letters, vol. 7, pp. A93-A96, 2004.
[72] J. Li and J. R. Dahn, "An in situ X-ray diffraction study of the reaction of Li with crystalline Si," Journal of the Electrochemical Society, vol. 154, pp. A156-A161, 2007.
[73] P. Limthongkul, Y. I. Jang, N. J. Dudney, and Y. M. Chiang, "Electrochemically-driven solid-state amorphization in lithium-silicon alloys and implications for lithium storage," Acta Materialia, vol. 51, pp. 1103-1113, Feb 25 2003.
[74] T. D. Hatchard and J. R. Dahn, "In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon," Journal of the Electrochemical Society, vol. 151, pp. A838-A842, 2004.
[75] J. H. Ryu, J. W. Kim, Y. E. Sung, and S. M. Oh, "Failure modes of silicon powder negative electrode in lithium secondary batteries," Electrochemical and Solid State Letters, vol. 7, pp. A306-A309, 2004.
[76] X. L. Wu, Y. G. Guo, and L. J. Wan, "Rational design of anode materials based on Group IVA elements (Si, Ge, and Sn) for lithium-ion batteries," Chem Asian J, vol. 8, pp. 1948-58, Sep 2013.
[77] X. Su, Q. L. Wu, J. C. Li, X. C. Xiao, A. Lott, W. Q. Lu, et al., "Silicon-Based Nanomaterials for Lithium-Ion Batteries: A Review," Advanced Energy Materials, vol. 4, p. 23, Jan 2014.
[78] H. Wu, G. Chan, J. W. Choi, I. Ryu, Y. Yao, M. T. McDowell, et al., "Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control," Nat Nanotechnol, vol. 7, pp. 310-5, May 2012.
[79] D. Aurbach, "Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries," Journal of Power Sources, vol. 89, pp. 206-218, Aug 2000.
[80] S. Zhou, X. H. Liu, and D. W. Wang, "Si/TiSi2 Heteronanostructures as High-Capacity Anode Material for Li Ion Batteries," Nano Letters, vol. 10, pp. 860-863, Mar 2010.
[81] L. F. Cui, Y. Yang, C. M. Hsu, and Y. Cui, "Carbon-Silicon Core-Shell Nanowires as High Capacity Electrode for Lithium Ion Batteries," Nano Letters, vol. 9, pp. 3370-3374, Sep 2009.
[82] N. Liu, H. Wu, M. T. McDowell, Y. Yao, C. M. Wang, and Y. Cui, "A Yolk-Shell Design for Stabilized and Scalable Li-Ion Battery Alloy Anodes," Nano Letters, vol. 12, pp. 3315-3321, Jun 2012.
[83] L. Y. Yang, H. Z. Li, J. Liu, Z. Q. Sun, S. S. Tang, and M. Lei, "Dual yolk-shell structure of carbon and silica-coated silicon for high-performance lithium-ion batteries," Scientific Reports, vol. 5, Jun 3 2015.
[84] S. Sonae, M. Ara, and H. Tada, "Hydrothermal Synthesis of Silicon-Based Hollow Nanostructures," Japanese Journal of Applied Physics, vol. 51, Jun 2012.
[85] Y. Son, Y. Son, M. Choi, M. Ko, S. Chae, N. Park, et al., "Hollow Silicon Nanostructures via the Kirkendall Effect," Nano Letters, vol. 15, pp. 6914-6918, Oct 2015.
[86] M. Y. Ge, J. P. Rong, X. Fang, and C. W. Zhou, "Porous Doped Silicon Nanowires for Lithium Ion Battery Anode with Long Cycle Life," Nano Letters, vol. 12, pp. 2318-2323, May 2012.
[87] J. Xiao, W. Xu, D. Y. Wang, D. W. Choi, W. Wang, X. L. Li, et al., "Stabilization of Silicon Anode for Li-Ion Batteries," Journal of the Electrochemical Society, vol. 157, pp. A1047-A1051, 2010.
[88] A. Magasinski, P. Dixon, B. Hertzberg, A. Kvit, J. Ayala, and G. Yushin, "High-performance lithium-ion anodes using a hierarchical bottom-up approach," Nature Materials, vol. 9, pp. 353-358, Apr 2010.
[89] J. G. Ren, Q. H. Wu, G. Hong, W. J. Zhang, H. M. Wu, K. Amine, et al., "Silicon-Graphene Composite Anodes for High-Energy Lithium Batteries," Energy Technology, vol. 1, pp. 77-84, Jan 2013.
[90] C. K. Chan, H. L. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins, et al., "High-performance lithium battery anodes using silicon nanowires," Nature Nanotechnology, vol. 3, pp. 31-35, Jan 2008.
[91] S. Bourderau, T. Brousse, and D. M. Schleich, "Amorphous silicon as a possible anode material for Li-ion batteries," Journal of Power Sources, vol. 81, pp. 233-236, Sep 1999.
[92] H. Li, X. J. Huang, L. Q. Chen, Z. G. Wu, and Y. Liang, "A high capacity nano-Si composite anode material for lithium rechargeable batteries," Electrochemical and Solid State Letters, vol. 2, pp. 547-549, Nov 1999.
[93] J. Graetz, C. C. Ahn, R. Yazami, and B. Fultz, "Highly reversible lithium storage in nanostructured silicon," Electrochemical and Solid State Letters, vol. 6, pp. A194-A197, Sep 2003.
[94] N. Liu, Z. D. Lu, J. Zhao, M. T. McDowell, H. W. Lee, W. T. Zhao, et al., "A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes," Nature Nanotechnology, vol. 9, pp. 187-192, Mar 2014.
[95] S. Li, X. Y. Qin, H. R. Zhang, J. X. Wu, Y. B. He, B. H. Li, et al., "Silicon/carbon composite microspheres with hierarchical core-shell structure as anode for lithium ion batteries," Electrochemistry Communications, vol. 49, pp. 98-102, Dec 2014.
[96] A. Esmanski and G. A. Ozin, "Silicon Inverse-Opal-Based Macroporous Materials as Negative Electrodes for Lithium Ion Batteries," Advanced Functional Materials, vol. 19, pp. 1999-2010, Jun 23 2009.
[97] N. A. Liu, K. F. Huo, M. T. McDowell, J. Zhao, and Y. Cui, "Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes," Scientific Reports, vol. 3, May 29 2013.
[98] F. H. Du, B. Li, W. Fu, Y. J. Xiong, K. X. Wang, and J. S. Chen, "Surface Binding of Polypyrrole on Porous Silicon Hollow Nanospheres for Li-Ion Battery Anodes with High Structure Stability," Advanced Materials, vol. 26, pp. 6145-+, Sep 17 2014.
[99] D. Y. Chen, X. Mei, G. Ji, M. H. Lu, J. P. Xie, J. M. Lu, et al., "Reversible Lithium-Ion Storage in Silver-Treated Nanoscale Hollow Porous Silicon Particles," Angewandte Chemie-International Edition, vol. 51, pp. 2409-2413, 2012.
[100] S. Yoo, J. I. Lee, S. Ko, and S. Park, "Highly dispersive and electrically conductive silver-coated Si anodes synthesized via a simple chemical reduction process," Nano Energy, vol. 2, pp. 1271-1278, Nov 2013.
[101] C. Wang, H. Wu, Z. Chen, M. T. McDowell, Y. Cui, and Z. A. Bao, "Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries," Nature Chemistry, vol. 5, pp. 1042-1048, Dec 2013.
[102] Y. Li, K. Yan, H.-W. Lee, Z. Lu, N. Liu, and Y. Cui, "Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes," Nature Energy, vol. 1, p. 15029, 2016.
[103] D. C. Lin, Z. D. Lu, P. C. Hsu, H. R. Lee, N. Liu, J. Zhao, et al., "A high tap density secondary silicon particle anode fabricated by scalable mechanical pressing for lithium-ion batteries," Energy & Environmental Science, vol. 8, pp. 2371-2376, 2015.
[104] C. L. Zhang, A. G. Song, P. L. Yuan, Q. Wang, P. Wang, S. L. Zhang, et al., "Amorphous carbon shell on Si particles fabricated by carbonizing of polyphosphazene and enhanced performance as lithium ion battery anode," Materials Letters, vol. 171, pp. 63-67, May 15 2016.
[105] X. J. Bai, Y. Y. Yu, H. H. Kung, B. Wang, and J. M. Jiang, "Si@SiOx/graphene hydrogel composite anode for lithium-ion battery," Journal of Power Sources, vol. 306, pp. 42-48, Feb 29 2016.
[106] L. L. Luo, P. Zhao, H. Yang, B. R. Liu, J. G. Zhang, Y. Cui, et al., "Surface Coating Constraint Induced Self-Discharging of Silicon Nanoparticles as Anodes for Lithium Ion Batteries," Nano Letters, vol. 15, pp. 7016-7022, Oct 2015.
[107] H. C. Tao, M. A. Huang, L. Z. Fan, and X. H. Qu, "Interweaved Si@SiOx/C nanoporous spheres as anode materials for Li-ion batteries," Solid State Ionics, vol. 220, pp. 1-6, Jul 20 2012.
[108] A. M. Wilson, G. Zank, K. Eguchi, W. Xing, and J. R. Dahn, "Pyrolysed silicon-containing polymers as high capacity anodes for lithium-ion batteries," Journal of Power Sources, vol. 68, pp. 195-200, Oct 1997.
[109] W. B. Xing, A. M. Wilson, K. Eguchi, G. Zank, and J. R. Dahn, "Pyrolyzed polysiloxanes for use as anode materials in lithium-ion batteries," Journal of the Electrochemical Society, vol. 144, pp. 2410-2416, Jul 1997.
[110] N. Dimov, S. Kugino, and M. Yoshio, "Carbon-coated silicon as anode material for lithium ion batteries: advantages and limitations," Electrochimica Acta, vol. 48, pp. 1579-1587, May 15 2003.
[111] Q. Wu, W. Li, J. Tan, X. Nan, and S. X. Liu, "Hydrothermal synthesis of magnetic mesoporous carbon microspheres from carboxymethylcellulose and nickel acetate," Applied Surface Science, vol. 332, pp. 354-361, Mar 30 2015.
[112] W. Y. Chou, Y. C. Jin, J. G. Duh, C. Z. Lu, and S. C. Liao, "A facile approach to derive binder protective film on high voltage spinel cathode materials against high temperature degradation," Applied Surface Science, vol. 355, pp. 1272-1278, Nov 15 2015.
[113] N. Yabuuchi, K. Shimomura, Y. Shimbe, T. Ozeki, J. Y. Son, H. Oji, et al., "Graphite-Silicon-Polyacrylate Negative Electrodes in Ionic Liquid Electrolyte for Safer Rechargeable Li-Ion Batteries," Advanced Energy Materials, vol. 1, pp. 759-765, Oct 2011.
[114] S. Komaba, K. Shimomura, N. Yabuuchi, T. Ozeki, H. Yui, and K. Konno, "Study on Polymer Binders for High-Capacity SiO Negative Electrode of Li-Ion Batteries," Journal of Physical Chemistry C, vol. 115, pp. 13487-13495, Jul 14 2011.
[115] B. Arkles, "Tailoring Surfaces with Silanes," Chemtech, vol. 7, pp. 766-778, 1977.
[116] Y. M. Lee, J. Y. Lee, H. T. Shim, J. K. Lee, and J. K. Park, "SEI layer formation on amorphous si thin electrode during precycling," Journal of the Electrochemical Society, vol. 154, pp. A515-A519, 2007.
[117] Y. H. Xu, Y. J. Zhu, and C. S. Wang, "Mesoporous carbon/silicon composite anodes with enhanced performance for lithium-ion batteries," Journal of Materials Chemistry A, vol. 2, pp. 9751-9757, Jul 7 2014.
[118] Z. D. Lu, N. Liu, H. W. Lee, J. Zhao, W. Y. Li, Y. Z. Li, et al., "Nonfilling Carbon Coating of Porous Silicon Micrometer-Sized Particles for High-Performance Lithium Battery Anodes," Acs Nano, vol. 9, pp. 2540-2547, Mar 2015.
[119] D. Sarti and R. Einhaus, "Silicon feedstock for the multi-crystalline photovoltaic industry," Solar Energy Materials and Solar Cells, vol. 72, pp. 27-40, Apr 2002.
[120] Y. F. Wu and Y. M. Chen, "Separation of silicon and silicon carbide using an electrical field," Separation and Purification Technology, vol. 68, pp. 70-74, Jun 30 2009.
[121] J. Shibata, N. Murayama, and K. Nagae, "Flotation separation of SiC from wastes in the silicon wafer slicing process," Kagaku Kogaku Ronbunshu, vol. 32, pp. 93-98, Jan 2006.
[122] L. F. Zhang and A. Ciftja, "Recycling of solar cell silicon scraps through filtration, Part I: Experimental investigation," Solar Energy Materials and Solar Cells, vol. 92, pp. 1450-1461, Nov 2008.
[123] T. H. Tsai, Y. P. Shih, and Y. F. Wu, "Recycling silicon wire-saw slurries: Separation of silicon and silicon carbide in a ramp settling tank under an applied electrical field," Journal of the Air & Waste Management Association, vol. 63, pp. 521-527, May 1 2013.
[124] J. W. Cobb, "Carbonisation reactions," Nature, vol. 102, pp. 116-117, Sep-Feb 1919.
[125] H. Fukuda, Rapid thermal processing for future semiconductor devices : proceedings of the 2001 International Conference on Rapid Thermal Processing for Future Semiconductor Devices (RTP 2001), held at Ise-Shima, Mie, Japan, November 14-16, 2001. Amsterdam London: Elsevier, 2003.
[126] F. Radpour, R. Singh, W. L. Krisa, P. Chou, M. Rahmati, C. F. Chen, et al., "Electrical and Structural Characteristics of Thin Epitaxial Dielectric Films Formed by Insitu Rapid Isothermal Processing," Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films, vol. 6, pp. 1363-1366, May-Jun 1988.
[127] M. Morita, T. Ohmi, E. Hasegawa, M. Kawakami, and M. Ohwada, "Growth of Native Oxide on a Silicon Surface," Journal of Applied Physics, vol. 68, pp. 1272-1281, Aug 1 1990.
[128] Y. S. Hu, R. Demir-Cakan, M. M. Titirici, J. O. Muller, R. Schlogl, M. Antonietti, et al., "Superior storage performance of a Si@SiOx/C nanocomposite as anode material for lithium-ion batteries," Angewandte Chemie-International Edition, vol. 47, pp. 1645-1649, 2008.
[129] Y. Xie, "Ultrahigh Purity Graphite Electrode by Core Level and Valence Band XPS," Surface Science Spectra, vol. 1, p. 367, 1992.
[130] B. D. Beamson G, "High Resolution XPS of Organic Polymers – The Scienta ESCA 300 Database.," Surface and Interface Analysis, vol. 20, p. 267, 1992.
[131] C. F. Guo, D. L. Wang, T. F. Liu, J. S. Zhu, and X. S. Lang, "A three dimensional SiOx/C@RGO nanocomposite as a high energy anode material for lithium-ion batteries," Journal of Materials Chemistry A, vol. 2, pp. 3521-3527, 2014.
[132] J. Wang, M. J. Zhou, G. Q. Tan, S. Chen, F. Wu, J. Lu, et al., "Encapsulating micro-nano Si/SiOx into conjugated nitrogen-doped carbon as binder-free monolithic anodes for advanced lithium ion batteries," Nanoscale, vol. 7, pp. 8023-8034, 2015.
[133] D. S. Wang, M. X. Gao, H. G. Pan, J. H. Wang, and Y. F. Liu, "High performance amorphous-Si@SiOx/C composite anode materials for Li-ion batteries derived from ball-milling and in situ carbonization," Journal of Power Sources, vol. 256, pp. 190-199, Jun 15 2014.
[134] X. Xin, X. F. Zhou, F. Wang, X. Y. Yao, X. X. Xu, Y. M. Zhu, et al., "A 3D porous architecture of Si/graphene nanocomposite as high-performance anode materials for Li-ion batteries," Journal of Materials Chemistry, vol. 22, pp. 7724-7730, 2012.
[135] F. M. Hassan, V. Chabot, A. R. Elsayed, X. C. Xiao, and Z. W. Chen, "Engineered Si Electrode Nanoarchitecture: A Scalable Postfabrication Treatment for the Production of Next-Generation Li-Ion Batteries," Nano Letters, vol. 14, pp. 277-283, Jan 2014.
[136] M. N. Obrovac and L. J. Krause, "Reversible cycling of crystalline silicon powder," Journal of the Electrochemical Society, vol. 154, pp. A103-A108, 2007.
[137] L. Gan, H. Guo, Z. Wang, X. Li, W. Peng, J. Wang, et al., "A facile synthesis of graphite/silicon/graphene spherical composite anode for lithium-ion batteries," Electrochimica Acta, vol. 104, pp. 117-123, 2013.
[138] S. Zhang and P. F. Shi, "Electrochemical impedance study of lithium intercalation into MCMB electrode in a gel electrolyte," Electrochimica Acta, vol. 49, pp. 1475-1482, Apr 15 2004.
[139] J. Collins, G. Gourdin, M. Foster, and D. Y. Qu, "Carbon surface functionalities and SEI formation during Li intercalation," Carbon, vol. 92, pp. 193-244, Oct 2015.
[140] Y. H. Huang, C. T. Chang, Q. Bao, J. G. Duh, and Y. L. Chueh, "Heading towards novel superior silicon-based lithium-ion batteries: ultrasmall nanoclusters top-down dispersed over synthetic graphite flakes as binary hybrid anodes," Journal of Materials Chemistry A, vol. 3, pp. 16998-17007, 2015.
[141] H. F. Xiang, K. Zhang, G. Ji, J. Y. Lee, C. J. Zou, X. D. Chen, et al., "Graphene/nanosized silicon composites for lithium battery anodes with improved cycling stability," Carbon, vol. 49, pp. 1787-1796, Apr 2011.
[142] Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Y. Sun, S. De, et al., "High-yield production of graphene by liquid-phase exfoliation of graphite," Nature Nanotechnology, vol. 3, pp. 563-568, Sep 2008.
[143] Y. Y. Li, H. Y. Zhang, Y. M. Chen, Z. C. Shi, X. G. Cao, Z. P. Guo, et al., "Nitrogen-Doped Carbon-Encapsulated SnO2@Sn Nanoparticles Uniformly Grafted on Three-Dimensional Graphene-like Networks as Anode for High-Performance Lithium-Ion Batteries," Acs Applied Materials & Interfaces, vol. 8, pp. 197-207, Jan 13 2016.
[144] T. Jaumann, J. Balach, M. Klose, S. Oswald, U. Langklotz, A. Michaelis, et al., "SEI-component formation on sub 5 nm sized silicon nanoparticles in Li-ion batteries: the role of electrode preparation, FEC addition and binders," Physical Chemistry Chemical Physics, vol. 17, pp. 24956-24967, 2015.
[145] J. Lee, Y. M. Chen, Y. Zhu, and B. D. Vogt, "Tuning SEI formation on nanoporous carbon-titania composite sodium ion batteries anodes and performance with subtle processing changes," Rsc Advances, vol. 5, pp. 99329-99338, 2015.
[146] Y. Ishii, Y. Kanamori, T. Kawashita, I. Mukhopadhyay, and S. Kawasaki, "Mesoporous carbon-titania nanocomposites for high-power Li-ion battery anode material," Journal of Physics and Chemistry of Solids, vol. 71, pp. 511-514, Apr 2010.


 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *