帳號:guest(3.145.174.51)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳佳勳
作者(外文):Wu, Chia Hsun
論文名稱(中文):伽瑪射線波段之潛在性變化型波霎 PSR J0248+6021
論文名稱(外文):Potential Variable Gamma-ray Pulsar PSR J0248+6021
指導教授(中文):江國興
指導教授(外文):Albert K.H. Kong
口試委員(中文):張翔光
周翊
學位類別:碩士
校院名稱:國立清華大學
系所名稱:天文研究所
學號:103025502
出版年(民國):105
畢業學年度:104
語文別:英文
論文頁數:62
中文關鍵詞:伽瑪射線波霎
外文關鍵詞:Gamma-ray pulsar
相關次數:
  • 推薦推薦:0
  • 點閱點閱:106
  • 評分評分:*****
  • 下載下載:13
  • 收藏收藏:0
在伽瑪射線(Gamma-ray)波段的天空中,脈衝星一直被認為是一個穩定的源。然 而,唯一且第一個變動性伽瑪射線脈衝星 PSR J2021+4026 的發現,卻有可能挑戰 我們對於脈衝星的認知。在本研究中,我們發表利用七年的 Fermi 伽瑪射線望遠鏡 的資料,進而分析有可能是下一個變動性伽瑪射線脈衝星 PSR J0248+6021。

脈衝星 PSR J0248+6021 是一個由自身轉動能量發出射線的脈衝星,它處在 密度較高分子雲的環境,且在我們的觀測中,PSR J0248+6021 有發生兩次的瞬間頻 率變動 (glitch)。 在分段光譜以及脈衝圖的分析中,我們發現兩者在 glitch 前後 發生變化。為了進一步分析光譜的變化之原因,進行了脈衝解析的光譜分析,此分 析的結果顯示原先光譜變動的結果是因為在第一段時間 (P1) 內的非來自派衝星射 線太弱的關係,並非由 glitch 引起。我們總結 PSR J0248+6021 沒有顯著的變動和 gltich 有關。

關於非來自脈衝星的射線,之前的研究根據光學波段發現 PSR J0248+6021 附近有延伸結構,顯示該射線可能來自於脈衝星風驅動星雲 (PWN),因此我們利用 Fermi 的資料進行空間分析以及利用 Chandra 望遠鏡觀測 X-ray 波段。PSR J0248+6021 在 X-ray 波段下,被認定是極暗的 X-ray 脈衝星。且非來自脈衝星射 線有著低能量型態的伽瑪射線波段光譜。這兩件事實弱化脈衝星風驅動星雲 (PWN) 存在之可能性。

在無線電波 (radio) 以及 X-ray 波段中,許多脈衝星變動的事件和光譜、 光度變化有著密切關係,然而在伽瑪射線波段中,唯有 PSR J2021+4026 被發現類 似的變動特性。 我們對於 PSR J2021+4026 的變動性尚未了解,持續搜尋類似的伽 瑪射線脈衝星,有助於了解對伽瑪射線脈衝星所發出射線的機制。
Pulsars are usually known as steady sources in gamma-ray sky. However, the discovery of the first variable gamma-ray pulsar PSR J2021+4026 challenges our understanding to pulsar astronomy. We here present the results of a detailed analysis of ∼ 7 years of Fermi-LAT data of the variable gamma-ray pulsar candidate, PSR J0248+6021, a rotation-powered pulsar located in a dense gas cloud region with two glitches after the Fermi satellite being launched. We found spectral variation before and after the first glitch and a marginal change in its rotational light curve (pulse profile). To inspect the origin of the spectral change, phase-resolved spectral analysis have been performed while the results show the origin might be due to a weak detection of off- pulse emission during the period before the first glitch (P1). We conclude that no significant variation of pulsar properties of PSR J0248+6021 has been observed to be associated with glitches. For the unpulsed emission, in previous works, a potential pulsar wind nebula (PWN) has been proposed on the basis of extended feature in op- tical wavelengths, and hence we performed spatial analysis with Fermi-LAT data and revisited the X-ray observation from Chandra. PSR J0248+6021 is an underluminous X-ray pulsar with a soft powerlaw spectrum obtained in gamma-ray regime seemingly weaken the possibility PWN. Spectral changes and flux variability associated with pulsar irregularities have been found in radio and X-ray energy bands, while to date, only PSR J2021+4026 is claimed as a variable gamma-ray pulsar showing different modes before and after a significant flux jump. The intrinsic origin of the flux jump occurred in PSR J2021+4026 is still unclear, searching for more pulsar behaving in this way would help us understand the gamma-ray pulsar emission mechanism.
Chapter 1 Introduction .......................... 1
1.1 Irregularities in Pulsars.......................... 1
1.1.1 Glitch.................................................. 2
1.2 PSR J2021+4026.................................. 4

Chapter 2 Instrumentation......................... 9
2.1 Fermi-LAT............................................. 9
2.1.1 Performance...................................... 10

Chapter 3 Data Analysis and Results........ 14
3.1 Gamma-ray Observations.................... 15
3.2 Spectral Analysis................................. 17
3.3 Timing Analysis................................... 19
3.4 Analysis for Different Periods Divided by Glitches.......................... 22
3.4.1 Long-term Light Curve...................... 22
3.4.2 Pulse Profiles in Different Periods.... 29
3.4.3 Spectra in Different Periods............. 35
3.4.4 TS Evolution..................................... 41
3.5 Analysis the Off-pulse Emission.......... 43
3.5.1 Spatial Analysis................................. 43
3.5.2 Flux Variability and Spectral Analysis. 49

Chapter 4 Discussion and Conclusion....... 52
4.1 Glitch.................................................... 52
4.2 The Origin of the Off-pulse Emission... 53

Chapter 5 Future Work .............................. 56

Appendix ................................................... 61
A Overvies of Likelihood Analysis .............. 61
[1] Abdo, A. A., Ackermann, M., Ajello, M., et al. 2010, ApJS, 187, 460
[2] Abdo, A. A., Ajello, M., Allafort, A., et al. 2013, ApJS, 208, 17
[3] Acero, F., Ackermann, M., Ajello, M., et al. 2015, ApJS, 218, 23
[4] Ackermann, M., Ajello, M., Baldini, L., et al. 2011, ApJ, 726, 35
[5] Ackermann, M., Ajello, M., Albert, A., et al. 2012, ApJS, 203, 4
[6] Allafort, A., Baldini, L., Ballet, J., et al. 2013, ApJL, 777, L2
[7] Alpar, M. A., Cheng, A. F., Ruderman, M. A., & Shaham, J. 1982, Nature, 300, 728
[8] Anderson, P. W., & Itoh, N. 1975, Nature, 256, 25
[9] Andersson, N., Glampedakis, K., Ho, W. C. G., & Espinoza, C. M. 2012, Physical Review Letters, 109, 241103
[10] Atwood, W. B., Abdo, A. A., Ackermann, M., et al. 2009, ApJ, 697, 1071 Atwood, W., Albert, A., Baldini, L., et al. 2013, arXiv:1303.3514
[11] Baym, G., Pethick, C., Pines, D., & Ruderman, M. 1969, Nature, 224, 872
[12] Becker, W., & Truemper, J. 1997, A&A, 326, 682
[13] de Jager, O. C., Raubenheimer, B. C., & Swanepoel, J. W. H. 1989, A&A, 221, 180 de Jager, O. C., Bu ̈sching, I. 2010, A&A, 517, L9
[14] Dib, R., Kaspi, V. M., & Gavriil, F. P. 2008, ApJ, 673, 1044-1061
[15] Dickey, J. M., & Lockman, F. J. 1990, ARA&A, 28, 215
[16] Edwards, R. T., Hobbs, G. B., & Manchester, R. N. 2006, MNRAS, 372, 1549
[17] Espinoza, C. M., Lyne, A. G., Stappers, B. W., & Kramer, M. 2011, MNRAS, 414, 1679
[18] Foster, R. S., Ray, P. S., Cadwell, B. J., et al. 1997, Bulletin of the American Astro- nomical Society, 29, #111.10
[19] Hermsen, W., Hessels, J. W. T., Kuiper, L., et al. 2013, Science, 339, 436
[20] Hobbs, G. B., Edwards, R. T., & Manchester, R. N. 2006, MNRAS, 369, 655
[21] Hobbs, G., Lyne, A. G., & Kramer, M. 2010, MNRAS, 402, 1027
[22] Israel, G. L., Campana, S., Dall’Osso, S., et al. 2007, ApJ, 664, 448
[23] Kargaltsev, O., & Pavlov, G. G. 2008, 40 Years of Pulsars: Millisecond Pulsars, Magnetars and More, 983, 171
[24] Kramer, M., Lyne, A. G., O’Brien, J. T., Jordan, C. A., & Lorimer, D. R. 2006, Science, 312, 549
[25] Kerr, M. 2011, ApJ, 732, 38
[26] Lyne, A., Hobbs, G., Kramer, M., Stairs, I., & Stappers, B. 2010, Science, 329, 408
[27] Mattox, J. R., Bertsch, D. L., Chiang, J., et al. 1996, ApJ, 461, 396
[28] Michelson, P. F., Atwood, W. B., & Ritz, S. 2010, Reports on Progress in Physics, 73, 074901
[29] Nolan, P. L., Abdo, A. A., Ackermann, M., et al. 2012, ApJS, 199, 31
[30] Ng, C. W., Takata, J., & Cheng, K. S. 2016, arXiv:1605.08968
[31] Possenti, A., Cerutti, R., Colpi, M., & Mereghetti, S. 2002, A&A, 387, 993
[32] Ray, P. S., Kerr, M., Parent, D., et al. 2011, ApJS, 194, 17
[33] Shabanova, T. V., & Urama, J. O. 2000, A&A, 354, 960
[34] Theureau, G., Parent, D., Cognard, I., et al. 2011, A&A, 525, A94
[35] Woods, P. M., Kaspi, V. M., Thompson, C., et al. 2004, ApJ, 605, 378
[36] Weltevrede, P., Abdo, A. A., Ackermann, M., et al. 2010, ApJ, 708, 1426
[37] Zou, W. Z., Wang, N., Wang, H. X., et al. 2004, MNRAS, 354, 811
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *