帳號:guest(3.147.75.221)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):賴育聰
作者(外文):Lai, Yu Tsung
論文名稱(中文):多價性半乳糖衍生物的合成與其針對凝集素之生醫應用
論文名稱(外文):Synthesis of Multivalent Galactoside Derivatives toward Biomedical Application for Lectins
指導教授(中文):王聖凱
指導教授(外文):Wang, Sheng Kai
口試委員(中文):洪嘉呈
鄭偉杰
口試委員(外文):Horng, Jia Cherng
Cheng, Wei Chieh
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:103023570
出版年(民國):105
畢業學年度:105
語文別:中文
論文頁數:274
中文關鍵詞:生物膜藥物輸送凝集素綠膿桿菌去唾液酸糖蛋白受體
外文關鍵詞:biofilmdrug deliverylectinsPseudomonas aeruginosaAsialoglycoprotein receptor
相關次數:
  • 推薦推薦:0
  • 點閱點閱:51
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
凝集素與醣體間的交互作用力廣泛存在於多種重要生理反應以及生物機制中。但因為單一的凝集素與醣體之間的交互作用往往非常微弱,為凝集素的研究帶來困難。而解決作用力的不足除了藉由多價性效應之外,開發具有更高親和力的醣體也是解決方法之一。
在本研究的第一部分中,我們針對綠膿桿菌生物膜開發出抑制劑。在抗生素廣泛使用的現代,綠膿桿菌對於多數的抗生素產生抗藥性,而生物膜的形成更加局限治療方法。綠膿桿菌感染以及形成生物膜主要藉由其凝集素LecA針對細胞表面半乳糖殘基結合。近年發現帶有芳香環的半乳糖可以提高LecA的結合能力。我們開發出多種不同的芳香性半乳醣苷來做為配基以探討作用力強弱與結構之關係。同時我們開發出脯胺酸多肽作為多價性骨架,藉由其PPII構形來維持有效距離來針對LecA之相鄰之結合位置結合,並以此骨架合成多價醣肽材料做為抑制劑,此多價性材料設計在微陣列掃描中有不錯的效果。
此外,由於肝細胞表面存在大量特有的凝集素去唾液酸糖蛋白受體(ASGPR),藉由此受體與半乳糖殘基結合所產生的胞吞作用可以將藥物載體送入細胞內以達到基因藥物作用之目的。所以我們嘗試將開發出的芳香性半乳醣苷修飾於奈米粒子表面上並乘載螢光siRNA,藉由Hep3B肝癌細胞攝取實驗,我們在共聚焦顯微鏡下發現芳香性半乳醣苷比一般未修飾之奈米載體高出十倍,此結果有助於未來發展相關結構之配基來修飾於肝疾病藥物載體。
Carbohydrate-lectin interaction involved in many biological process and mechanism. However, the weak binding affinity of monovalent carbohydrate ligand and lectin is the difficulty to exploit carbohydrate for lectin research. In addition to exploiting multivalent interaction, developing high affinity monovalent carbohydrate derivatives is also a solution to overcome the difficulty.
In past decades, antibiotics were commonly used and cause P. aeruginosa rapidly develop resistance during the course of treating an infection. In addition to the resistance of P. aeruginosa, biofilm formation is a more severe issue for human health. The ability of infection and biofilm formation of P. aeruginosa were mainly caused by LecA lectin to specifically bind to galactose residue of cell surface. Recent years, it was reported that the aromatic galactoside have higher affinity to LecA than galactose. In this part of thesis, we synthesized kinds of aromatic galactoside as ligand to understand the relationship between the aromatic structure and the affinity. Apart from this, we also develop multivalent scaffold by using polyproline for its PPII structure to maintain the effective distance. We designed and synthesized aromatic galactoside conjugated polyproline material as multivalent ligand binding to neighboring binding site of LecA. After microarray scanning, we found that the multivalent materials were effective for LecA binding test.
Furthermore, asiaglycoprotein receptor (ASGPR) is an endocytotic cell surface lectin expressed by hepatocyte, which recognized galactoside residue of asiaglycoprotein. So we tried to use the aromatic galctoside as ligand and modified on nanoparticle carrier to test the uptake ability. After modification of the surface of nanoparticle carrier, the fluorescent siRNA were used as cargo to test the uptake ability of the human hepatoma Hep3B cell line. In Hep3B cell uptake assay, we found that modified nanoparticle was elevated the ability of uptaken by Hep3B about 10 times higher than unmodified under confocal microscopy. These result may be helpful for designing more valid ligand structure to modified drug carrier.

中文摘要 I
Abstract II
目錄 IV
圖目錄 VI
表目錄 VIII
式目錄 IX
流程目錄 X
縮寫表 XI
第一章、緒論 1
1.1.前言 1
1.2.醣類與凝集素之交互作用 2
1.3.多價性效應 3
1.3.1.多價性效應原理 3
1.3.2.多價性效應對於凝集素的研究 7
1.4.脯胺酸多肽的特性及應用 8
1.4.1.脯胺酸多肽結構與特性 8
1.4.2.脯胺酸多肽在生物研究上的應用 9
1.5.綠膿桿菌凝集素抑制劑 10
1.5.1.綠膿桿菌對於人類健康的危害 10
1.5.2.綠膿桿菌生物膜的形成及抗藥性機制 11
1.5.3.綠膿桿菌可溶性凝集素I(PA-IL)的結構與特性 12
1.5.4.綠膿桿菌凝集素LecA抑制劑作為抗綠膿桿菌材料之研究 14
1.5.5. 多價性綠膿桿菌生物膜抑制劑 16
1.6.醣脂質對藥物載體奈米粒子的選擇性控制研究 20
1.6.1. RNAi藥物以及肝相關疾病研究 20
1.6.2. RNAi藥物輸送奈米粒子載體種類與性質 21
1.6.3.藥物輸送奈米粒子材料對於肝病的研究 24
1.6.4. ASGPR結構以及胞吞機制 26
1.6.5.醣分子配體對於ASGPR親和力研究 28
1.7. 研究動機 29
第二章、結果與討論 32
2.1.單價LecA抑制劑合成 32
2.1.1. β-芳基半乳醣苷之合成 32
2.1.2. Gb3醣體之合成 41
2.1.3. 以微陣列(Microarray)篩檢LecA與抑制劑之結合能力 46
2.1.4.微陣列試驗結果與討論 48
2.2.特定間距之二價醣肽LecA抑制劑合成 50
2.2.1.醣肽材料合成之策略 50
2.2.2.多肽固相合成脯胺酸多肽骨架 51
2.2.3.具疊氮基之芳香性半乳醣苷合成 54
2.2.4.疊氮-炔類的[3+2]環化加成 56
2.2.5.圓二色光譜結構分析 58
2.2.6. 微陣列試驗之結果與討論 61
2.3.半乳糖衍生物修飾奈米藥物載體表面對於肝細胞之研究 65
2.3.1.醣修飾脂質材料合成之策略 65
2.3.2.具丙炔基之半乳糖衍生物之合成 66
2.3.3.半乳糖衍生物接合脂質化合物之合成 69
2.3.4. 肝細胞對於奈米粒子攝入實驗 70
2.3.5. NPs攝入結果與討論 72
第三章、實驗方法與材料 75
3.1. Material and methods 75
3.2. Synthetic procedures and characterization 76
第四章、參考文獻 129
. Jiang, X.; Abgottspon, D.; Kleeb, S.; Rabbani, S.; Scharenberg, M.; Wittwer, M.; Haug, M.; Schwardt, O.; Ernst, B. Antiadhesion therapy for urinary tract infections--a balanced PK/PD profile proved to be key for success. J. Med. Chem. 2012, 55, 4700–4713.
. Zacco, E.; Hütter, J.; Heier, JL.; Mortier, J.; Seeberger, PH.; Lepenies, B.; Koksch, B. Tailored Presentation of Carbohydrates on a Coiled Coil-Based Scaffold for Asialoglycoprotein Receptor Targeting. ACS Chem. Bio. 2015, 10, 2065-2072.
. Cecioni, S.; Imberty, A.; Vidal, S. Glycomimetics versus Multivalent Glycoconjugates for the Design of High Affinity Lectin Ligands. Chem. Rev., 2015, 115, 525–561.
. Barondes, SH. Soluble lectins: a new class of extracellular proteins. Science 1984, 223, 1259-1264.
. Ambrosi, M.; Cameron N. R.; Davis, B. G. Lectins: tools for the molecular understanding of the glycocode. Org. Biomol. Chem. 2005, 3, 1593-1608.
. Lis, H.; Sharon N. Lectins: Carbohydrate-Specific Proteins That Mediate Cellular Recognition. Chem. Rev. 1998, 98, 637–674.
. Mammen, M.; Choi, S.-K.; Whitesides, G. M. Polyvalent Interactions in Biological Systems: Implications for Design and Use of Multivalent Ligands and Inhibitors. Angew. Chem. Int. Ed. 1998, 37, 2754 -2794.
. Cecioni, S.; Imberty, A.; Vidal, S. Glycomimetics versus multivalent glycoconjugates for the design of high affinity lectin ligands. Chem. Rev. 2015, 115, 525−561.
. Dam, TK.; Gerken, TA.; Brewer, CF. Thermodynamics of multivalent carbohydrate-lectin cross-linking interactions: importance of entropy in the bind and jump mechanism. Biochemistry 2009, 48, 3822-3827.
. Lis, H.; Sharon, N. Lectins: Carbohydrate-Specific Proteins That Mediate Cellular Recognition. Chem. Rev. 1998, 98, 637-674.
. Vázquez-Dorbatt, V.; Lee, J.; Lin, EW.; Maynard, HD. Synthesis of glycopolymers by controlled radical polymerization techniques and their applications. Chembiochem 2012, 13, 2478-2487.
. Murray, RA.; Qiu, Y.; Chiodo, F.; Marradi, M.; Penadés, S.; Moya, SE. A quantitative study of the intracellular dynamics of fluorescently labelled glyco-gold nanoparticles via fluorescence correlation spectroscopy. Small 2014, 10, 2602-2610.
. Frigell, J.; García, I.; Gómez-Vallejo, V.; Llop, J.; Penadés, S. 68Ga-labeled gold glyconanoparticles for exploring blood-brain barrier permeability: preparation, biodistribution studies, and improved brain uptake via neuropeptide conjugation. J. Am. Chem. Soc. 2014, 136, 449-457.
. Lin, YA.; Boutureira, O.; Lercher, L.; Bhushan, B.; Paton, RS.; Davis, BG. Rapid cross-metathesis for reversible protein modifications via chemical access to Se-allyl-selenocysteine in proteins. J. Am. Chem. Soc. 2013, 135, 12156-12159.
. Dumas, A.; Spicer, CD.; Gao, Z.; Takehana, T.; Lin, YA.; Yasukohchi, T.; Davis, BG. Self-liganded Suzuki-Miyaura coupling for site-selective protein PEGylation. Angew. Chem. Int. Ed. Engl.2013, 52, 3916-3921.
. Ribeiro-Viana, R.; Sánchez-Navarro, M.; Luczkowiak, J.; Koeppe, JR.; Delgado, R.; Rojo, J.; Davis, BG. Virus-like glycodendrinanoparticles displaying quasi-equivalent nested polyvalency upon glycoprotein platforms potently block viral infection. Nat. Commun. 2012, 3, 1303.
. Kümin, M.; Sonntag, LS.; Wennemers, H. Azidoproline containing helices: stabilization of the polyproline II structure by a functionalizable group. J. Am. Chem. Soc. 2007, 129, 466-467.
. Beane, G.; Boldt, K.; Kirkwood, N.; Mulvaney, P. Energy Transfer between Quantum Dots and Conjugated Dye Molecules. J. Phys. Chem. C 2014, 118, 18079–18086.
. Kroll, C.; Mansi, R.; Braun, F.; Dobitz, S.; Maecke, HR.; Wennemers, H. Hybrid bombesin analogues: combining an agonist and an antagonist in defined distances for optimized tumor targeting. J. Am. Chem. Soc. 2013, 135, 16793−16796.
. Blanchard, B.; Nurisso, A.; Hollville, E.; Tétaud, C.; Wiels, J.; Pokorná, M.; Wimmerová, M.; Varrot, A.; Imberty, A. Structural basis of the preferential binding for globo-series glycosphingolipids displayed by Pseudomonas aeruginosa lectin I. J. Mol. Biol. 2008, 383, 837-853.
. Costerton, JW.; Stewart, PS.; Greenberg, EP. Bacterial biofilms: a common cause of persistent infections. Science 1999, 284, 1318-1322.
. Davies, DG.; Chakrabarty, AM.; Geesey, GG. Exopolysaccharide production in biofilms: substratum activation of alginate gene expression by Pseudomonas aeruginosa. Apply. Environ. Micribiol. 1993, 59, 1181-1186.
. Avichezer, D.; Katcoff, DJ.; Garber, NC.; Gilboa-Garber, N. Analysis of the amino acid sequence of the Pseudomonas aeruginosa galactophilic PA-I lectin. J. Biol. Chem. 1992, 267, 23023-23027.
. Cioci, G1.; Mitchell, EP.; Gautier, C.; Wimmerová, M.; Sudakevitz, D.; Pérez, S.; Gilboa-Garber, N.; Imberty, A. Structural basis of calcium and galactose recognition by the lectin PA-IL of Pseudomonas aeruginosa. FEBS Lett. 2003, 555, 297-301.
. Boukerb, AM.; Rousset, A.; Galanos, N.; Méar, JB.; Thépaut, M.; Grandjean, T.; Gillon, E.; Cecioni, S.; Abderrahmen, C.; Faure, K.; Redelberger, D.; Kipnis, E.; Dessein, R.; Havet, S.; Darblade, B.; Matthews, SE.; de Bentzmann, S.; Guéry, B.; Cournoyer, B.; Imberty, A.; Vidal, S. Antiadhesive properties of glycoclusters against Pseudomonas aeruginosa lung infection. J. Med. Chem. 2014, 57, 10275-10289.
. Lanne, B.; Cîopraga, J.; Bergström, J.; Motas, C.; Karlsson, KA. Binding of the galactose-specific Pseudomonas aeruginosa lectin, PA-I, to glycosphingolipids and other glycoconjugates. Glycoconj. J. 1994, 11, 292-298.
. Eierhoff, T.; Bastian, B.; Thuenauer, R.; Madl, J.; Audfray, A.; Aigal, S.; Juillot, S.; Rydell, GE.; Müller, S.; de Bentzmann, S.; Imberty, A.; Fleck, C.; Römer, W. A lipid zipper triggers bacterial invasion. Proc. Natl. Acad. Sci. USA. 2014, 111, 12895-12900.
. Glasmacher, A.; von Lilienfeld-Toal, M.; Schulte, S.; Hahn, C.; Schmidt-Wolf, IG.; Prentice, A. An evidence-based evaluation of important aspects of empirical antibiotic therapy in febrile neutropenic patients. Clin. Microbiol. Infect. 2005, 11, 17-23.
. Bucior, I.; Abbott, J.; Song ,Y.; Matthay, MA.; Engel, JN. Sugar administration is an effective adjunctive therapy in the treatment of Pseudomonas aeruginosa pneumonia. Am. J. Physiol. Lung Cell Mol. Physiol. 2013, 305, L352-L363.
. Lesman-Movshovich, E.; Lerrer, B.; Gilboa-Garber, N. Blocking of Pseudomonas aeruginosa lectins by human milk glycans. Can. J. Microbiol. 2003, 49, 230-235.
. Kadam, RU.; Garg, D.; Schwartz, J.; Visini, R.; Sattler, M.; Stocker, A.; Darbre, T.; Reymond, JL. CH-π "T-shape" interaction with histidine explains binding of aromatic galactosides to Pseudomonas aeruginosa lectin LecA. ACS Chem. Biol. 2013, 8, 1925-1930.
. Kadam, RU.; Bergmann, M.; Hurley, M.; Garg, D.; Cacciarini, M.; Swiderska, MA.; Nativi, C.; Sattler, M.; Smyth, AR.; Williams, P.; Cámara, M.; Stocker, A.; Darbre, T.; Reymond, JL. A glycopeptide dendrimer inhibitor of the galactose-specific lectin LecA and of Pseudomonas aeruginosa biofilms. Angew. Chem. Int. Ed. Engl. 2011, 50, 10631-10635.
. Gening, ML.; Titov, DV.; Cecioni, S.; Audfray, A.; Gerbst, AG.; Tsvetkov, YE.; Krylov, VB.; Imberty, A.; Nifantiev, NE.; Vidal, S. Synthesis of multivalent carbohydrate-centered glycoclusters as nanomolar ligands of the bacterial lectin LecA from Pseudomonas aeruginosa. Chem. Eur. J. 2013, 19, 9272-9285.
. Casoni, F.; Dupin, L.; Vergoten, G.; Meyer, A.; Ligeour, C.; Géhin, T.; Vidal, O.; Souteyrand, E.; Vasseur, JJ.; Chevolot, Y.; Morvan, F. The influence of the aromatic aglycon of galactoclusters on the binding of LecA: a case study with O-phenyl, S-phenyl, O-benzyl, S-benzyl, O-biphenyl and O-naphthyl aglycons. Org. Biomol. Chem. 2014, 12, 9166-9179.
. Pertici, F.; Pieters, RJ. Potent divalent inhibitors with rigid glucose click spacers for Pseudomonas aeruginosa lectin LecA. Chem. Commun. 2012, 48, 4008-4010.
. Wittmann, V.; Pieters, RJ. Bridging lectin binding sites by multivalent carbohydrates. Chem. Soc. Rev. 2013, 42, 4492-4503.
. Kitov, PI.; Sadowska, JM.; Mulvey, G.; Armstrong, GD.; Ling, H.; Pannu, NS.; Read, RJ.; Bundle, DR. Shiga-like toxins are neutralized by tailored multivalent carbohydrate ligands. Nature 2000, 403, 669-672.
. Pertici, F.; de Mol, NJ.; Kemmink, J.; Pieters, RJ. Optimizing divalent inhibitors of Pseudomonas aeruginosa lectin LecA by using a rigid spacer. Chem. Eur. J. 2013, 19, 16923-16927.
. Novoa, A.; Eierhoff, T.; Topin, J.; Varrot, A.; Barluenga, S.; Imberty, A.; Römer, W.; Winssinger, N. Novel LecA ligand identified from glycan array inhibits host cell invasion by Pseudomonas aeruginosa. Angew. Chem. Int. Ed. 2014, 53, 8885-8889.
. Lee, WM. Hepatitis B virus infection. N. Engl. J. Med. 1997, 337, 1733-1745.
. Poelstra, K.; Prakash, J.; Beljaars, L. Drug targeting to the diseased liver. J. Control Release 2012, 161, 188-197.
. Oh, YK.; Park, TG. siRNA delivery systems for cancer treatment. Adv. Drug Deliv. Rev. 2009, 61, 850-862.
. Song, E.; Lee, SK.; Wang, J.; Ince, N.; Ouyang, N.; Min, J.; Chen, J.; Shankar, P.; Lieberman, J. RNA interference targeting Fas protects mice from fulminant hepatitis. Nat. Med. 2003, 9, 347-351.
Coelho, T.; Adams, D.; Silva, A.; Lozeron, P.; Hawkins, PN.; Mant, T.; Perez, J.; Chiesa, J.; Warrington, S.; Tranter, E.; Munisamy, M.; Falzone, R.; Harrop, J.; Cehelsky, J.; Bettencourt, BR.; Geissler, M.; Butler, JS.; Sehgal, A.; Meyers, RE.; Chen, Q.; Borland, T.; Hutabarat, RM.; Clausen, VA.; Alvarez, R.; Fitzgerald, K.; Gamba-Vitalo, C.; Nochur, SV.; Vaishnaw, AK.; Sah, DW.; Gollob, JA.; Suhr, OB. Safety and efficacy of RNAi therapy for transthyretin amyloidosis. N. Engl. J. Med. 2013, 369, 819-829.
. De Paula, D1.; Bentley, MV.; Mahato, RI. Hydrophobization and bioconjugation for enhanced siRNA delivery and targeting. RNA. 2007, 13, 431-456.
. Chen, Y.; Gao, DY.; Huang, L. In vivo delivery of miRNAs for cancer therapy: challenges and strategies. Adv. Drug Deliv. Rev. 2015, 81, 128-141.
. Vasir, JK.; Labhasetwar, V. Biodegradable nanoparticles for cytosolic delivery of therapeutics. Adv. Drug Deliv. Rev. 2007, 59, 718-728.
. van Vlerken, LE.; Vyas, TK.; Amiji, MM. Poly(ethylene glycol)-modified nanocarriers for tumor-targeted and intracellular delivery. Pharm. Res. 2007, 24, 1405-1414
. Wu, Y.; Crawford, M.; Mao, Y.; Lee, RJ.; Davis, IC.; Elton, TS.; Lee, LJ.; Nana-Sinkam, SP. Therapeutic Delivery of MicroRNA-29b by Cationic Lipoplexes for Lung Cancer. Mol. Ther. Nucleic Acids 2013, 2, e84.
. Pecot, CV.; Calin, GA.; Coleman, RL.; Lopez-Berestein, G.; Sood, AK. RNA interference in the clinic: challenges and future directions. Nat. Rev. Cancer. 2011, 11 59-67.
. Chen, Y.; Zhu, X.; Zhang, X.; Liu, B.; Huang, L. Nanoparticles modified with tumor-targeting scFv deliver siRNA and miRNA for cancer therapy. Molecular Therapy 2010, 18, 1650–1656.
. Li, J.; Yang, Y.; Huang, L. Calcium phosphate nanoparticles with an asymmetric lipid bilayer coating for siRNA delivery to the tumor. J. Control Release 2012, 158, 108-114.
. Poelstra, K.; Prakash, J.; Beljaars, L. Drug targeting to the diseased liver. J. Control Release 2012, 161, 188-197.
. Clark, GF.; Schust, DJ. Manifestations of immune tolerance in the human female reproductive tract. Front Immunol. 2013, 4, 26.
. Lee, RT.; Lee, YC. Preparation of a high-affinity photolabeling reagent for the Gal/GalNAc lectin of mammalian liver: demonstration of galactose-combining sites on each subunit of rabbit hepatic lectin. Biochemistry 1986, 25, 6835-6841.
. Sakashita, M.; Mochizuki, S.; Sakurai, K. Hpatocyte-targeting gene delivery using a lipoplex composed of galactose-modified aromatic lipid synthesized with click chemistry. Bioorg. Med. Chem. 2014, 22, 5212-5219.
. Rozema, DB.; Lewis, DL.; Wakefield, DH.; Wong, SC.; Klein, JJ.; Roesch, PL.; Bertin, SL.; Reppen, TW.; Chu, Q.; Blokhin, AV.; Hagstrom, JE.; Wolff, JA. Dynamic PolyConjugates for targeted in vivo delivery of siRNA to hepatocytes. Proc. Natl. Acad. Sci. USA 2007, 104, 12982-12987.
. Khorev, O.; Stokmaier, D.; Schwardt, O.; Cutting, B.; Ernst, B. Trivalent, Gal/GalNAc-containing ligands designed for the asialoglycoprotein receptor. Bioorg. Med. Chem. 2008, 16, 5216–5231.
. Meier, M.; Bider, MD.; Malashkevich, VN.; Spiess, M.; Burkhard, P. Crystal structure of the carbohydrate recognition domain of the H1 subunit of the asialoglycoprotein receptor. J. Mol. Biol. 2000, 300, 857-865.
. D'Souza, AA.; Devarajan, PV. Asialoglycoprotein receptor mediated hepatocyte targeting - strategies and applications. J. Control Release 2015, 203, 126-139.
. Lee, RT.; Lee, YC. Affinity enhancement by multivalent lectin-carbohydrate interaction. Glycoconj. J. 2000, 17, 543-551.
. Kusema, B. T.; Murzin, D. Y. Catalytic oxidation of rare sugars over gold catalysts. Catal. Sci. Technol. 2013, 3, 297-307
. Connolly, DT.; Townsend, RR.; Kawaguchi, K.; Bell, WR.; Lee, YC. Binding and endocytosis of cluster glycosides by rabbit hepatocytes. Evidence for a short-circuit pathway that does not lead to degradation. J. Biol. Chem. 1982, 257, 939-945.
. Mamidyala, SK.; Dutta, S.; Chrunyk, BA.; Préville, C.; Wang, H.; Withka, JM.; McColl, A.; Subashi, TA.; Hawrylik, SJ.; Griffor, MC.; Kim, S.; Pfefferkorn, JA.; Price, DA.; Menhaji-Klotz, E.; Mascitti, V.; Finn, MG. Glycomimetic ligands for the human asialoglycoprotein receptor. J. Am. Chem. Soc. 2012, 134, 1978-1981.
. Cao, S.; Meunier, S. J.; Andersson, F. O.; Letellier, M.; Roy, R. Mild stereoselective syntheses of thioglycosides under PTC conditions and their use as active and latent glycosyl donors. Tetrahedron:  Asymmetry 1994, 5, 2303−2312.
. Dhanabal, T.; Sangeetha, R.; Mohan, P. S. Heteroatom directed photoannulation: synthesis of indoloquinoline alkaloids: cryptolepine, cryptotackieine, cryptosanguinolentine, and their methyl derivatives Tetrahedron 2006, 62, 6258– 6263.
. Hanessian, S.; Bacquet, C.; LeHong, N. Chemistry of the glycosidic linkage. Exceptionally fast and efficient formation of glycosides by remote activation. Carbohydr. Res. 1980, 80, C17-C22.
. Chao, CS.; Li, CW.; Chen. MC.; Chang, SS.; Mong, KK. Low-concentration 1,2-trans beta-selective glycosylation strategy and its applications in oligosaccharide synthesis. Chem. Eur. J. 2009, 15, 10972 – 10982.
. Ohlin, M.; Johnsson, R.; Ellervik, U. Regioselective reductive openings of 4,6-benzylidene acetals: synthetic and mechanistic aspects. Carbohydr. Res. 2011, 12, 1358–1370
. Ghosh, S.; Andreana, PR. Synthesis of an Aminooxy Derivative of the Trisaccharide Globotriose Gb3. J. carbohyd. Chem. 2014, 33, 381-394
. Nyffeler, PT.; Liang, CH.; Koeller, KM.; Wong, CH. The chemistry of amine-azide interconversion: catalytic diazotransfer and regioselective azide reduction. J. Am. Chem. Soc. 2002, 124, 10773-10778.
. S. Park, J. C. Gildersleeve, O. Blixt, I. Shin, Carbohydrate microarrays. Chem. Soc. Rev. 2013, 42, 4310-4326.
. Lee, DJ.; Yang, SH.; Williams, GM.; Brimble, MA. Synthesis of multivalent neoglyconjugates of MUC1 by the conjugation of carbohydrate-centered, triazole-linked glycoclusters to MUC1 peptides using click chemistry. J. Org. Chem. 2012, 77,7564-7571.
. Díaz, C.; Vargas, E.; Gätjens-Boniche, O. Cytotoxic effect induced by retinoic acid loaded into galactosyl-sphingosine containing liposomes on human hepatoma cell lines. Int. J. Pharm. 2006 325, 108-115.
. Laursen, B.; Denieul, M-P.; Skrydstrup, T. Formal total synthesis of the PKC inhibitor, balanol: preparation of the fully protected benzophenone fragment. Tetrahedron 2002, 58, 2231–2238.
. Kao, HW.; Chen, CL.; Chang, WY.; Chen, JT.; Lin, WJ.; Liu, RS.; Wang, HE. (18)F-FBHGal for asialoglycoprotein receptor imaging in a hepatic fibrosis mouse model. Bioorg. Med. Chem. 2013, 21, 912-921.
. Kumar, V.; Talisman, IJ.; Malhotra,SV. Application of Halide Molten Salts as Novel Reaction Media for O-Glycosidic Bond Formation. European J. Org. Chem. 2010, 18, 3377 – 3381.
. Bergeron-Brlek, M.; Giguère, D.; Shiao, TC.; Saucier, C.; Roy, R. Palladium-Catalyzed Ullmann-Type Reductive Homocoupling of Iodoaryl Glycosides. J. Org. Chem. 2012, 77, 2971–2977.
. Kleine, HP.; Weinberg, DV.; Kaufman, RJ.; Sidhu RS. Phase-transfer-catalyzed synthesis of 2,3,4,6-tetra-O-acetyl-β-d-galactopyranosides. Carbohydr. Res. 1985, 142, 333-337.
. Laurent, N.; Lafont, D.; Dumoulin, F.; Boullanger, P.; Mackenzie, G.; Kouwer, PH.; Goodby, JW. Synthesis of amphiphilic phenylazophenyl glycosides and a study of their liquid crystal properties. J. Am. Chem. Soc. 2003, 125, 15499-15506.
. Mereyala, HB.; Reddy, GV. Stereoselective synthesis of α-linked saccharides by use of per O-benzylated 2-pyridyl 1-thio hexopyranosides as glycosyl donors and methyl iodide as an activator. Tetrahedron 1991, 47, 6435–6448.
. Amaike, M.; Kobayashi, H.; Shinkai, S. New Organogelators Bearing Both Sugar and Cholesterol Units: an Approach toward Molecular Design of Universal Gelators. Bulletin of the Chemical Society of Japan 2000, 73, 2553 – 2558.
. Khodair, AI.; Al-Masoudi, NA.; Gesson, JP. A New Approach to the Synthesis of Benzothiazole, Benzoxazole, and Pyridine Nucleosides as Potential Antitumor Agents. Nucleosides Nucleotides Nucleic Acids 2003, 22, 2061-2076.
. Kleine, HP.; Weinberg, DV.; Kaufman, RJ.; Sidhu RS. Phase-transfer-catalyzed synthesis of 2,3,4,6-tetra-O-acetyl-β-d-galactopyranosides. Carbohydr. Res. 1985, 142, 333-337.
. Oliveri, V.; Viale, M.; Aiello, C.; Vecchio, G3. New 8-hydroxyquinoline galactosides. The role of the sugar in the antiproliferative activity of copper(II) ionophores. J. Inorg. Biochem. 2015, 142, 101-108.
. Yang, B.; Yoshida, K.; Yin, Z.; Dai, H.; Kavunja, H.; El-Dakdouki, MH.; Sungsuwan, S.; Dulaney, SB.; Huang, X. Chemical synthesis of a heparan sulfate glycopeptide: syndecan-1. Angew. Chem. Int. Ed. Engl. 2012, 51, 10185-10189.
. Zhang, Z.; Ollmann, IR.; Ye, XS.; Wischnat, R.; Baasov, T.; Wong, CH. Programmable One-Pot Oligosaccharide Synthesis. J. Am. Chem. Soc. 1999, 121, 734–753.
. Sardzík, R.; Noble. GT.; Weissenborn, MJ.; Martin, A.; Webb, SJ.; Flitsch, SL. Preparation of aminoethyl glycosides for glycoconjugation. Beilstein J. Org. Chem. 2010, 6, 699-703.
. Hennen, WJ.; Sweers, HM.; Wang, YF.; Wong, CH. Enzymes in carbohydrate synthesis. Lipase-catalyzed selective acylation and deacylation of furanose and pyranose derivatives. J. Org. Chem. 1988, 53, 4939–4945.
. Schmid, S.; Mishra, A.; Bäuerle, P. Carbohydrate-functionalized oligothiophenes for concanavalin A recognition. Chem. Commun. 2011, 47, 1324-1326.
. Muthana, S.; Yu, H.; Huang, S.; Chen. X. J. Am. Chem. Soc. 2007, 129, 11918-11919.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *