帳號:guest(3.144.97.97)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳庭瑋
作者(外文):Wu, Ting Wei
論文名稱(中文):消除血漿中非特異性螢光訊號的探針設計
論文名稱(外文):Fluorogenic Probe Strategies to Eliminate Nonspecific Fluorescence in Blood Plasma
指導教授(中文):陳貴通
指導教授(外文):Tan, Kui Thong
口試委員(中文):洪嘉呈
許馨云
口試委員(外文):Horng, Jia Cherng
Hsu, Hsin Yun
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:103023562
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:103
中文關鍵詞:螢光探針蛋白質非專一性訊號
外文關鍵詞:fluorescenceproteinnonspecific signal
相關次數:
  • 推薦推薦:0
  • 點閱點閱:894
  • 評分評分:*****
  • 下載下載:9
  • 收藏收藏:0
  近年來醫療的發達,科學家積極探索生理機制,而螢光探針便是不可或缺的存在。螢光探針具有方便、快速、專一性結合以及免於複雜前處理步驟等優點,隨著螢光探針的蓬勃發展,勢必面臨一些不可避免的缺點。像是在生物樣品中(如血漿)因為含有大量的蛋白質,而這些蛋白質會與螢光探針產生結合造成非專一性的訊號,導致螢光數據上的誤判而高估待測物質含量。而目前,螢光探針在生物樣品檢測中普遍擁有非專一性訊號的干擾,只能透過繁複的前處理作業才能達到偵測準確性,但對於生物研究上不夠方便快速。
  在本研究中,我們開發一種新穎的螢光增益型探針可利用蛋白質作為盾牌,排除複雜環境中的蛋白質干擾,能以簡單快速且免於複雜前處理步驟的方式來偵測。本論文以分子轉子CCVJ和CCA為螢光基底,修飾上SNAP-tag假性受質O6-BG,也利用Biotin Avidin System來設計探針。當與蛋白質結合後,由於蛋白質巨大結構之立體障礙影響,使分子轉子單鍵旋轉的自由度下降,再利用硫化氫和硝基還原酶將辨識端移除,造成大幅度的螢光增益,也藉此達到偵測的效果。我們所設計的螢光探針具有合成容易、與目標蛋白質結合速率快且不需複雜樣品前處理等優勢。我們相信此種利用蛋白質保護螢光探針的設計可延伸運用於結合其他專一性蛋白與基團,或用於偵測不同的活性物質,並能在不受複雜蛋白質的影響下成功地運用在生物樣品中。
In recent years, small molecule fluorescent turn-on probes are getting much attention as they allow for sensitive, simple and specific detection with high signal-to-background ratios. Currently most of the small-molecule fluorescent turn-on probes are designed for monitoring proteins and reactive small molecules. Although most fluorescent probes show excellent performance in aqueous buffers, their application in protein rich human blood remain challenging as the real signal is usually obscured by nonspecific fluorescence.
Herein, we introduce a novel protein-shield concept to eliminate nonspecific fluorescence in protein rich blood samples. Based on this concept, we reveal that modified fluorescent probes conjugated to target protein can generate very specific fluorescence signals in blood serum by blocking out nonspecific binding of the dyes with other nonspecific blood proteins. By this protein-shield concept, we’ve successfully designed probe BTCCVJ- N3, BGCCA- N3 and BTCCVJ-NO2 to detect Nitroreductase (NTRase) and Hydrogen Sulfide (H2S) with fluorescence signal amplification and removal of nonspecific fluorescence signals.
摘要 i
Abstract ii
謝誌 iii
著作列表 iv
目錄 v
第一章 緒論 1
1-1 酶蛋白與非酶蛋白 1
1-2 環境敏感螢光分子 2
1-2-1 極性敏感分子 2
1-2-2 黏性敏感分子 4
第二章 文獻回顧 7
2-1 近代選擇性螢光探針方法 7
2-1-1 偵測蛋白質之螢光探針 7
2-1.1.1 小分子型酶活性螢光探針(Small-molecule-based Enzyme Activity Fluorescent Probes) 8
2-1.1.2 自組裝式螢光碳針(self-assembling fluorescent probes) 11
2-1.1.3 信標式螢光探針(beacon-based fluorescent probes) 12
2-1-2 偵測活性小分子之螢光探針 13
2-1.2.1 偵測活性氧物質之螢光探針 13
2-1.2.2 偵測活性氮物質之螢光探針 14
2-1.2.3 偵測活性硫物質之螢光探針 16
2-1-3 偵測金屬離子之螢光探針 18
2-2 非專一性訊號 21
第三章 螢光探針設計構想 23
3-1 螢光探針的選擇 23
3-2 蛋白質結合 24
3-2-1 SNAP-tag蛋白質 24
3-2-2 Biotin-Avidin System生物素-卵白素系統 25
3-2 螢光探針設計 26
第四章 結果與討論 28
4-1 偵測硫化氫的螢光探針 28
4-1-1 以SNAP-tag蛋白質作保護的螢光探針 28
4-1-2 以Avidin蛋白質作保護的螢光探針 31
4-2 偵測硝基還原酶的螢光探針 38
第五章 結論 43
第六章 實驗部分 44
6-1 實驗藥品及器材 44
6-2 螢光實驗測試 46
6-3 有機合成與光譜資料 48
參考文獻 65
附錄 71

(1) Bairoch, A. Nucleic Acids Res. 2000, 28, 304.
(2) Yang, Z. G.; Cao, J. F.; He, Y. X.; Yang, J. H.; Kim, T. Y.; Peng, X. J.; Kim, J. S.
Chem. Soc. Rev. 2014, 43, 4563.
(3) Uchiyama, S.; Takehira, K.; Yoshihara, T.; Tobita, S.; Ohwade, T. Org. Lett. 2006, 8, 5869.
(4) Uchiyama, S.; Santa, T.; Okiyama, N.; Fukushima, T.; Imai, K. Biomed. Chromatogr. 2001, 15, 295.
(5) Lee, M. H.; Kim, H. J.; Yoon, S.; Park, N.; Kim, J. S. Org. Lett. 2008, 10, 213.
(6) Sainlos, M.; Iskenderian, W. S.; Imperiali, B. J. Am. Chem. Soc. 2009, 131,
6680.
(7) Cohen, B. E.; Pralle, A.; Yao, X.; Swaminath, G.; Gandhi, C. S.; Jan, Y. N.;
Jan, L. Y. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 965.
(8) Cohen, B. E.; McAnaney, T. B.; Park, E. S.; Jan, Y. N.; Boxer, S. G.; Jan, L.
Science 2002, 296, 1700.
(9) Haidekker, M. A.; Theodorakis, E. A. J. Biol. Eng. 2010, 4, 1.
(10) Rumble, C.; Rich, K.; He, G.; Maroncelli, M. C. J. Phys. Chem. A 2012, 116,
10786.
(11) Benniston, A. C.; Copley, G. Phys. Chem. Chem. Phys. 2009, 11, 4124.
(12) Szent-Gyorgyi, C.; Schmidt, B. F.; Creeger, Y.; Fisher, G. W.; Zakel, K. L.; Adler, S.; Waggoner, A. Nat. Biotechnol. 2008, 26, 235.
(13) Manivannan, R.; Satheshkumar, A.; Elango, K. P. Tetrahedron Lett. 2014, 55, 6281.
(14) Deliconstantinos, G.; Villiotou, V.; Stavrides, J. C. Biochem. Pharmacol. 1995,
49, 1589.
(15) Shinitzky, M. In: Physiology of membrane fluidity; Shinitzky, M., Ed.; CRC Press: Boca Raton, FL, 1984; pp 1−51.
(16) (a)Nadiv, O.; Shinitzky, M.; Manu, H.; Hecht, D.; Roberts, C. T.; Leroith, D.;
Zick, Y. Biochem. J. 1994, 298, 443.
(b) Osterode, W.; Holler, C.; Ulberth, F. Diabetic.Med. 1996, 13, 1044.
(17) (a)Rye, H. S.; Quesada, M. A.; Peck, K.; Mathies, R. A.; GIazer, A. N. Nucleic
Acids Res. 1991, 19, 327.
(b) Narayanaswamy, N.; Kumar, M.; Das, S.; Sharma, R.; Samanta, P. K.; Pati, S.K.; Govindaraju, T. Sci Rep. 2014, 4, 1.
(18) López-Duarte, I.; Vu, T. T.; Izquierdo, M. A.; Bull, J. A.; Kuimova, M. K. Chem. Commun., 2014, 50, 5282.
(19) Goh, W. L.; Lee, M. Y.; Joseph, T. L.; Quah, S. T.; Brown, C. J.; Verma, C.; Teo, Y. N. J. Am. Chem. Soc. 2014, 136, 6159.
(20) Adams, J. A. Chem. Rev. 2001, 101, 2271.
(21) Urano, Y.; Sakabe, M.; Kosaka, N.; Ogawa, M.; Mitsunaga, M.; Asanuma, D.; Kamiya, M.; Young, M. R.; Nagano, T.; Choyke, P. L.; Kobayashi, H. Sci. Transl. Med. 2011, 3, 110.
(22) Li, Z.; He, X.; Wang, Z.; Yang, R.; Shi, W.; Ma, H. Biosens. Bioelectron. 2015, 63, 112.
(23) Cui, L.; Zhong, Y.; Zhu, W. P.; Xu, Y. F.; Du, Q. S.; Wang, X.; Qian, X. H.; Xiao, Y. Org. Lett. 2011, 13, 928.
(24) Li, Y.; Sun, Y.; Li, J.; Su, Q.; Yuan, W.; Dai, Y.; Han, C.; Wang, Q.; Feng, W.; Li, F. J. Am. Chem. Soc. 2015, 137, 6407.
(25) Xu, K.; Wang, F.; Pan, X.; Liu, R.; Ma, J.; Kong, F.; Tang, B. Chem. Commun. 2013, 49, 2554.
(26) Mizusawa, K.; Ishida, Y.; Takaoka, Y.; Miyagawa, M.; Tsukiji, S.; Hamachi, I. J. Am. Chem. Soc. 2010, 132, 7291.
(27) Thurley, S.; Röglin, L.; Seitz, O. J. Am. Chem. Soc. 2007, 129, 12693.
(28) Lushchak, V. I. J. Amino Acids 2012, 736837.
(29) Lushchak,V.I. Aquat. Toxicol. 2011, 101, 13.
(30) Singh, N.; Dhalla, A.K.; Seneviratne, C.; Singal, P.K. Mol Cell Biochem. 1995, 147, 77.
(31) Halliwell, B. Biochem. J. 2007, 401, 1.
(32) Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M. T. D.; Mazur, M.; Telser, J. Int. J. Biochem. Cell Biol. 2007, 39, 44.
(33) Turrens, J. F. J Physiol. 2003, 552, 335.
(34) Simon, H. U.; Haj-Yehia, A.; Levi-Schaffer, F. Apoptosis 2000, 5, 415.
(35) Zhang, R.; Zhao, J.; Han, G.; Liu, Z.; Liu, C.; Zhang, C.; Liu, B.; Jiang, C.; Liu, R.; Zhao, T.; Han, M. Y.; Zhang, Z. J. Am. Chem. Soc. 2016, 138, 3769.
(36) Patel, R. P.; McAndrew, J.; Sellak, H.; White, C. R.; Jo, H.; Freeman, B. A.; Darley-Usmar, V. M. Biochimicaet Biophysica Acta. 1999, 1411, 385.
(37) Alayash, A.I.; Ryan, B.A.; Cashon, R.E. Arch. Biochem. Biophys. 1998, 349, 65.
(38) Yang, D.; Wang, H. L.; Sun, Z. N.; Chung, N. W.; Shen, J. G. J. Am. Chem. Soc. 2006, 128, 6004.
(39) Kimura, H. Antioxid. Redox Signal. 2014, 20, 783.
(40) Mani, S.; Cao, W.; Wu, L.; Wang, R. Nitric Oxide. 2014, 41, 62.
(41) Linden, D. R. Antioxid. Redox Signal. 2014, 20, 818.
(42) Fiorucci, S.; Distrutti, E.; Cirino, G.; Wallace, J. L. Gastroenterology 2006, 131, 259.
(43) Ali, M. Y.; Whiteman, M.; Low, C. M.; Moore, P. K. J. Endocrinol. 2007, 195, 105.
(44) Abe, K.; Kimura, H. J. Neurosci. 1996, 16, 1066.
(45) Lin, V. S.; Chen, W.; Xian, M.; Chang, C. J. Chem. Soc. Rev. 2015, 44, 4596.
(46) Montoya, L. A.; Pluth, M. D. Chem. Commun. 2012, 48, 4767.
(47) Bolognin, S.; Messori, L.; Zatta, P. NeuroMol. Med. 2009, 11, 223.
(48) Williams, D. R. Chem. Rev. 1972, 72, 203.
(49) Chen, Y. W.; Yang, C. Y.; Huang, C. F.; Hung, D. Z.; Leung, Y. M.; Liu, S. H. Islets. 2009, 1, 169.
(50) Gupte, A.; Mumper, R. J. Cancer Treat. Rev. 2009, 35, 32.
(51) Hogstrand, C.; Kille, P.; Nicholson, R. I.; Taylor, K. M. Trends Mol. Med. 2009, 15, 101.
(52) Jones, B. Nat. Rev. Endocrinol. 2014, 10, 251.
(53) Gray, H. B. Proc. Natl. Acad. Sci. U. S. A. 2003, 100, 3563.
(54) Newman, R. H.; Fosbrink, M. D.; Zhang, J. Chem. Rev. 2011, 111, 3614.
(55) Jiang, P.; Guo, Z. Coord. Chem. Rev. 2004, 248, 205.
(56) Berg, J. M.; Shi, Y. Science 1996, 271, 1081.
(57) Fukada, T.; Yamasaki, S.; Nishida, K.; Murakami, M.; Hirano, T. J. Biol. Inorg. Chem. 2011, 16, 1123.
(58) Kolenko, V.; Teper, E.; Kutikov, A.; Uzzo, R. Nat. Rev. Urol. 2013, 10, 219.
(59) Chyan, W.; Zhang, D. Y.; Lippard, S. J.; Radford, R. J. Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 143.
(60) Masanta, G.; Lim, C. S.; Kim, H. J.; Han, J. H.; Kim, H. M.; Cho, B. R. J. Am. Chem. Soc. 2011, 133, 5698.
(61) Dickinson, B. C.; Chang, C. J. J. Am. Chem. Soc. 2008, 130, 9638.
(62) Murphy, M. P.; Smith, R. A. Adv. Drug Delivery Rev. 2000, 41, 235.
(63) Meggers, E.; Holland, P. L.; Tolman, W. B.; Romesberg, F. E.; Schultz, P. G. J. Am. Chem. Soc. 2000, 122, 10714.
(64) Li, M.; Ge, H.; Arrowsmith, R. L.; Mirabello, V.; Botchway, S. W.; Zhu, W.; Pascu, S. I.; James, T. D. Chem. Commun. 2014, 50, 11806.
(65) Desai, V.; Kaler, S. G. Am. J. Clin. Nutr. 2008, 88, 855S.
(66) Bull, P. C.; Thomas, G. R.; Rommens, J. M.; Forbes, J. R.; Cox, D. W. Nat. Genet. 1993, 5, 327.
(67) Zhang, X.; Shiraishi, Y.; Hirai, T. Org. Lett. 2007, 9, 5039.
(68) Wu, Y. Y.; Yu, W. T.; Hou, T. C.; Liu, T. K.; Huang, C. L.; Chen, I. C.; Tan, K. T. Chem. Commun. 2014, 50, 11507.
(69) Mishra, A.; Behera, R. K.; Behera, P. K.; Mishra, B. K.; Behera, G. B. Chem. Rev. 2000, 100, 1973.
(70) Fanali, G.; di Masi, A.; Trezza, V.; Marino, M.; Fasano, M.; Ascenzi, P. Mol. Aspects. Med. 2012, 33, 209.
(71) Lee, D.; Khaja, S.; Velasquez-Castano, J. C.; Dasari, M.; Sun, C.; Petros, J.; Taylor, W. R.; Murthy, N. Nat. Mater. 2007, 6, 765.
(72) Reisch, A.; Klymchenko, A. S. Small 2016, 12, 1968.
(73) Søndergaard, R. V.; Christensen, N. M.; Henriksen, J. R.; Kumar, E. K. P.; Almdal, K.; Andresen, T. L. Chem. Rev. 2015, 115, 8344.
(74) Rumble, C.; Rich, K.; He, G.; Maroncelli, M. J. Phys. Chem. A 2012, 116, 10786.
(75) Keppler, A.; Gendreizig, S.; Gronemeyer, T.; Pick, H.; Vogel, H.; Johnsson, K. Nat. Biotechnol. 2003, 21, 86.
(76) Gautier, A.; Nakata, E.; Lukinavicius, G.; Tan, K. T.; Johnsson, K. J. Am. Chem. Soc. 2009, 131, 17954.
(77) Chidley, C.; Haruki, H.; Pedersen, M. G.; Muller, E.; Johnsson, K. Nat. Chem. Biol. 2011, 7, 375.
(78) Lukinavičius, G.; Umezawa, K.; Olivier, N.; Honigmann, A.; Yang, G.; Plass, T.; Mueller, V.; Reymond, L.; Corrêa Jr, I. R.; Luo, Z.-G. Nat. Chem. 2013, 5, 132.
(79) Shih, P. M.; Liu, T. K.; Tan, K. T. Chem. Commun. 2013, 49, 6212.
(80) Brun, M. A.; Tan, K. T.; Nakata, E.; Hinner, M. J.; Johnsson, K. J. Am. Chem. Soc. 2009, 131, 5873.
(81) Mei, G.; Pugliese, L.; Rosato, N.; Toma, L.; Bolognesi, M.; Finazzi-Agrò, A. J. Mol. Biol. Chem. 1994, 242, 559.
(82) Marttila, A. T.; Laitinen, O. H.; Airenne, K. J.; Kulik, T.; Bayer, E. A.; Wilchek, M.; Kulomaa, M. S. FEBS Lett. 2000, 467, 31.
(83) Wilchek, M.; Bayer, E. A. Methods Enzymol. 1990, 184, 5.
(84) Hama, Y.; Urano, Y.; Koyama, Y.; Kamiya, M.; Bernardo, M.; Paik, R. S.; Shin, I. S.; Paik, C. H.; Choyke, P. L.; Kobayashi, H. Cancer Res. 2007, 67, 2791.
(85) Bhuniya, S.; Maiti, S.; Kim, E.-J.; Lee, H.; Sessler, J. L.; Hong, K. S.; Kim, J. S. Angew. Chem. Int. Ed. 2014, 53, 4469.
(86) Chen, Y.; Hong, P.; Xu, B.; He, Z.; Zhou, B. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2014, 122, 441.
(87) Chen, S.; Zhao, X.; Chen, J.; Chen, J.; Kuznetsova, L.; Wong, S. S.; Ojima, I. Bioconjugate Chem. 2010, 21, 979.
(88) Collot, M.; Sendid, B.; Fievez, A.; Savaux, C.; Standaert-Vitse, A.; Tabouret, M.; Drucbert, A. S.; Danze, P. M.; Poulain, D.; Mallet, J. M. J. Med. Chem. 2008, 51, 6201.
(89) Zhuang, Y. D.; Chiang, P. Y.; Wang, C. W.; Tan, K. T. Angew. Chem., Int. Ed. 2013, 52, 8124.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *