帳號:guest(3.22.240.209)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃君逸
作者(外文):Huang, Chun Yi
論文名稱(中文):含氟聚脯胺酸多肽的合成與性質研究
論文名稱(外文):The Synthesis of Fluorous Polyproline Peptides
指導教授(中文):王聖凱
指導教授(外文):Wang, Sheng-Kai
口試委員(中文):洪嘉呈
賴品光
口試委員(外文):Horng, Jia-Cheng
Lai, Pin-Kuang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:103023552
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:153
中文關鍵詞:全氟烷基聚脯胺酸多肽微脂體
外文關鍵詞:FluorousPeptidePolyprolineliposome
相關次數:
  • 推薦推薦:0
  • 點閱點閱:65
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
醣類與蛋白質間作用力相對於蛋白質與蛋白質間作用力較弱,因此以多價交互作用啟動生理反應。若以合成的分子骨架連接醣類配體,可對於其多價交互作用力與選擇性進一步研究。本論文中,由於脯胺酸多肽螺旋在水溶液中構形穩定且有規律性,較具有剛性,會維持polyproline helix II(PPII helix)的結構,可用於調控配基間的距離。因此將脯胺酸多肽分子骨架修飾全氟烷基,用於與氟表面之作用,並且利用多肽上丙炔氧基以銅(I)催化疊氮炔類環化加成反應(Cu(I)catalyzed Azide alkyne Huisgen cycloaddition, CuAAC),測試醣類配體連接到此多肽的效果。
全氟烷基數量是多肽與氟表面間作用力的關鍵。固相多肽合成(Solid phase peptide synthesis)不同含氟碳鏈數量的多肽,發現全氟烷基數量越多的多肽與氟表面間的結合力越好。同時,脯胺酸多肽上炔基利用CuAAC反應與醣結合,合成醣肽。由於醣類是最後才用環化加成與多肽結合,因此未來可直接改變不同的醣,得到不同的醣肽,便可與不同的蛋白質測試。
在論文中並研究全氟烷基多肽的特性,透過動態光散射(DLS)、粒徑篩析高效液相層析儀(size exclusion HPLC)、掃描式電子顯微鏡(SEM)、穿透式電子顯微鏡(TEM)、圓二色光譜儀(CD)、共軛焦顯微鏡 (confocal microscope) 觀察多肽構形、平均粒徑變化與多肽全氟烷基數量之關聯性,發現全氟烷基數量越多,能穩定聚脯胺酸多肽polyproline helix II結構,並造成較大聚集程度。藉由全氟烷基多肽研究,我們了解此類化合物的合成與性質,有助未來關於此類化合物之應用。
The interaction between carbohydrate and protein is generally weaker than protein protein interaction. To compensate that, nature uses polyvalent interaction to initiate physiological functions. To study these interactions, a molecular scaffold will be a useful tool to support carbohydrate ligands. Since polyproline forms stable polyproline helix II structure in aqueous solution, this peptide can be used to control the distance between carbohydrate ligands due to its rigidity. In this thesis, we study the synthesis and properties of fluorous polyproline peptides because fluorous interaction allows connection of fluorous peptides to fluorous surface. In addition, alkyne groups are also introduced to allow ligand conjugation on peptide through Azide-alkyne Huisgen cycloaddition addition(CuAAC)
The number of fluorous tag is the key to interact with fluorous slide. Solid phase peptide synthesis was applied to synthesize peptides having different numbers of fluorous tags. We found that the peptide with more fluorous tag better stabilize the polyproline helix II struture. In addition, we demonstrate sugar can be conjugated to fluorous polyproline peptides bearing alkyne groups through Azide alkyne Huisgen cycloaddition reaction. This design would allow easily change of glycan ligands to interact with different proteins.
In the study of fluorous peptide aggregation, dynamic light scattering, size exclusion HPLC, electron microscopy (SEM, TEM), confocal microscopy, and circular dichroism are used to observe the connection between the change of particle size and the design of fluorous polyproline peptide. The number the fluoro-tag has, affects degree of aggregation to these peptides. This study in synthesis and property of fluorous polyproline peptides would help us to understand these unique peptides and may benefit in future applications.
中文摘要 ii
Abstract iv
目錄 viii
圖目錄 xi
流程目錄 xiv
式目錄 xv
表目錄 xv
第一章 緒論 1
1-1. 醣類與蛋白質交互作用¹ 1
1-2. 多價交互作用 3
1-3. 微陣列分析 7
1-4. 脯胺酸多肽的特性與應用 9
1-5. 氟烷化物 10
1-5-1. 氟烷化物分類與分離方式 12
1-5-2. 氟標記在生物分子上應用 12
1-5-3. 全氟烷基多肽自我聚集 14
1-6 微脂體形成與特性44 15
1-7 逆微胞(reverse micelle) 17
介面活性劑(surfactant)是一種同時具有親水端及疏水端的兩性分子,依照其親水性帶電性的不同,分為四大類: 陰離子性,陽離子性,非離子性,兩性。 17
1-8. 固相多肽合成53 19
1-9. 疊氮和炔類的[3+2]環化加成 22
1-10 立體電子效應 23
1-11. 圓二色光譜儀60 24
1-12. 動態光散射 (Dynamic Light Scattering, DLS)62 26
1-13. 電子顯微鏡 27
1-14 研究動機與實驗設計 28
第二章 結果與討論 31
2-1. 化學合成實驗 32
2-1-1 合成脯胺酸-氟標記化合物 32
2-1-2 合成脯胺酸-氟標記多肽 34
2-1-3 多肽與螢光分子耦合 39
2-1-4 疊氮炔環化加成 40
2-2 微陣列晶片測試 41
2-3 多肽性質實驗 44
2-3-1. Far UV CD 光譜 44
2-3-2 動態光散射實驗 54
2-3-3 共軛焦顯微鏡(Confocal Microscope) 59
2-3-4 粒徑篩析高效液相層析(Size exclusion HPLC) 68
2-3-5 掃描式電子顯微鏡(Scanning Electron Microscope, SEM ) 71
2-3-6 穿透式電子顯微鏡(Transmission Electron Microscope, TEM) 77
第三章 結論 82
第四章 實驗部分 85
4-1. 實驗儀器 85
4-2. 化學合成實驗 87
4-2-1. 合成脯胺酸-氟標記化合物 87
4-2-2. 合成脯胺酸-氟標記多肽(SPPS) 97
4-2-3. Cy3 coupling 99
4-2-4. Copper Catalyzed Azide-Alkyne Cycloaddition 99
4-3. 氟多肽性質實驗材料與方法 100
4-3-1. 圓二色光譜儀量測 100
4-3-2. 掃描式電子顯微鏡(scanning electron microscope, SEM) 101
4-3-3. 穿透式電子顯微鏡(transmission electron microscopy, TEM ) 101
4-4. 參考文獻 102
附圖目錄 1
HPLC圖譜 3
附錄、NMR光譜 5
1. Mammen M, Choi SK, Whitesides G. Polyvalent Interactions in Biological Systems: Implications for Design and Use of Multivalent Ligands and Inhibitors. Angew Chem Int Ed 1998, 37, 2754-2794.
2. Qadri F, Haque A, Faruque SM, Bettelheim KA, Robins-Browne R, Albert MJ. Hemagglutinating properties of enteroaggregative Escherichia coli. J Clin Microbiol 1994, 32, 510–514.
3. Gunther I, Glatthaar B, Doller G, Garten W. A H1 hemagglutinin of a human influenza A virus with a carbohydrate-modulated receptor binding site and an unusual cleavage site. Virus Res 1993, 27,147-160
4. Westerlund B, Korhonen TK, Bacterial proteins binding to the mammalian extracellular matrix. Mol Microbiol 1993, 9, 687 – 694
5.Cecioni S, Imberty A, Vidal S, Glycomimetics versus Multivalent Glycoconjugates for the Design of High Affinity Lectin Ligands. Chem Rev 2015, 115, 525–561
6. Wittmann V, Pieters R. Bridging lectin binding sites by multivalent carbohydrates.
J. Chem. Soc. Rev 2013, 42, 4492-4503
7. Schwarzenbach G. Der Chelateffekt. Helv Chim Acta 1952, 35, 2344-2359
8. Bertozzi CR, Kiessling LL. Chemical glycobiology. Science 2001, 291, 2357-64
9. Heldin C-H. Dimerization of cell surface receptors in signal transduction. Cell 1995, 80, 213-23
10. Gestwicki JE, Kiessling LL. Inter-receptor communication through arrays of bacterial chemoreceptors. Nature 2002, 415, 81-84
11. Gestwicki JE, Strong LE, Kiessling L L. Chem. Biol. Tuning chemotactic responses with synthetic multivalent ligands. 2000, 7, 583-91
12. Kiessling L L, Gestwicki J E, Strong LE. Synthetic multivalent ligands as probes of signal transduction. Angew Chem Int Ed 2006, 45, 2348-68
13. Guiard J, Fiege B, Kitov P I, Peters T, Bundle DR. “Double-Click” Protocol for Synthesis of Heterobifunctional Multivalent Ligands: Toward a Focused Library of Specific Norovirus Inhibitors. Chem Eur J 2011, 17, 7438-7441
14. Rademacher C, Guiard J, Kitov P I, Fiege B, Dalton KP, Parra F, Bundle DR, Peters T. Targeting Norovirus Infection—Multivalent Entry Inhibitor Design Based on NMR Experiments. Chem Eur J 2011, 17, 7442-7453
15. Dam T K, Gerken TA, Brewer CF. Thermodynamics of Multivalent Carbohydrate−Lectin Cross-Linking Interactions: Importance of Entropy in the Bind and Jump Mechanism. Biochemistry 2009, 48, 3822-3827
16. Dimmock N J, Multiple mechanisms of neutralization of animal viruses. Trends Biochem Sci. 1987, 12, 70 -75
17. Gimbrone M A, Nagel T, Topper JN, Heparan sulfate proteoglycans of the cardiovascular system. Specific structures emerge but how is synthesis regulated? J. Clin. Invest. 1997, 99, 2062-2070
18. Ribeiro-Viana R, Sánchez-Navarro M, Luczkowiak j, Koeppe JR, Delgado R, Rojo J, Davis B. G. Virus-like glycodendrinanoparticles displaying quasi-equivalent nested polyvalency upon glycoprotein platforms potently block viral infection
Nat Commun 2012, 3, 1303-1310
19. Mammen M, Choi SK, Whitesides GM. Polyvalent interactions n biological systems: Implications for design and use of multivalent ligands and inhibitors. Angew Chem Int Ed 1998, 37, 2754-2794
20. Park S, Gildersleeve JC, Blixt O, Shin I, Carbohydrate microarrays. Chem Soc Rev 2013, 42, 4310-4326
21. Hoyle C. E, Bowman, C. N. Thiol–Ene Click Chemistry. Angew Chem Int Ed 2010, 49, 1540-1573
22. Kroll C, Mansi R, Braun F, Dobitz S, Maecke HR, Wennemers H. Hybrid Bombesin analogues: Combining an agonist and an antagonist in defined distances for optimized tumor targeting. J Am Chem Soc 2013, 135, 16793
23. Gary B, Klans B, Nicholas K. Energy Transfer between Quantum Dots and Conjugated Dye Molecules. J. Phys. Chem. C. 2014, 118, 18079-18086
24. Grosse AV, Cady GH. Properties of Fluorocarbons. Ind Eng Chem 1947, 39, 367-374
25. Bunn CW, Howells ER. Structures of Molecules and Crystals of Fluoro-Carbons. Nature 1954, 174, 549-551
26. Robert L. Scott . The Anomalous Behavior of Fluorocarbons . J Phys Chem., 1958, 62, 136–145
27. Galdysz JA, Curran DP, Horvath ITE, Handbook of fluorous chemistry, Wiley-VCH: Weinheim 2004
28. Horvath IT, Rabai J, Facile Catalyst Separation without Water: Fluorous Biphase Hydroformylation of Oledins, Science 1994, 266, 72-75
29. Galdysz JA, Curran DP, Introduction - Fluorous Chemistry: from biphasic catalysis to a parallel chemical universe and beyond, Tetrahedron 2002, 58, 3823-3825
30. Jaipuri FA, Pohl NL, Toward Solutions phase automated iterative synthesis: fluorous-tag assisted solution-phase Synthesis of linear and branched mannose oligomers.Org Biomol Chem 2008, 6, 2686-2691
31. Ko KS, Jaipuri FA, Pohl NL. Fluorous-based carbohydrate microarrays, J Am Chem Soc 2005, 127, 13162-13163
32. Vegas AJ, Bradner JE, Tang W, McPherson OM, Greenberg EF, Koehler AN, Schreiber SL., Fluorous-Based Small-Molecule Microarrays for the Discovery of
Histone Deacetylase Inhibitors**
Arturo J. Vegas, James E. Bradner, Weiping Tang, Olivia M. McPherson, Edward F. Greenberg,
Angela N. Koehler, and Stuart L. Schreiber*
Fluorous-Based Small-Molecule Microarrays for the Discovery of Histone Deacetylase Inhibitors. Angew Chem Int Ed Engl. 2007, 46, 7960-7964
33. Chang SH, Han JL, Tseng SY, Lee HY, Lin CW, Lin YC, Jeng WY, Wang HHJ, Wu CY, Wong CH. Glycan array on aluminum oxide-coated glass slides through Phosphonate chemistry. J Am Chem Soc 2010, 132, 13371
34. Bilgicer B, Fichera A, and Kumar K. A coiled coil with a fluorous core. J Am Chem Soc 2001, 123, 4293-4399
35. Bilgicer B., Xing X. C., and Kumar K. Programmed self sorting of coiled coils with leucine and hexafluoroleucine cores. J Am Chem Soc 2001, 123, 11815–11816.
36. Niemz A., and Tirrell D. A. Self-association and membrane binding behavior of melittins containing trifluoroleucine. J Am Chem Soc 2001, 123, 7407–7413.
37. Tang Y, Ghirlanda G, Petka WA, NakajimaT, DeGradoW F, and Tirrell DA. Fluorinated coiled-coil proteins prepared in vivo display enhanced thermal and chemical stability. Angew Chem Int Ed 2001, 40, 1494.-1496
38. Tang Y., Ghirlanda G, Vaidehi N, Kua J, Mainz D. T., Goddard W. A, DeGrado WF, and Tirrell DA. Stabilization of coiled-coil peptide domains by introduction of trifluoroleucine. Biochemistry 2001, 40, 2790–2796
39. Wang P., Tang Y., and Tirrell D. A. Incorporation of trifluoroisoleucine into proteins in vivo. J Am Chem Soc 2003,125, 6900–6906.
40. Bilgicer B, and Kumar K. De novo design of defined helical bundles in membrane environments. Proc Natl Acad Sci U.S.A. 2004, 101, 15324–15329.
41. Lee HY, Lee KH, Al-Hashimi HM, and Marsh E.N. Modulating Protein Structure with Fluorous Amino Acids: Increased Stability and Native-like Structure Conferred on a 4-Helix Bundle Protein by Hexafluoroleucine. J Am Chem Soc 2006. 128, 337-43.
42. Adam TP, Faifan T, Kitae P, Shanrong Z, 19F Magnetic Resonance Imaging Signals from Peptide Amphiphile Nanostructures Are Strongly Affected by Their Shape, ACS Nano 2016, 10, 7376-7384
43. Elbert R, Folda T, Ringsdorf H, Saturated and polymerizable amphiphiles with fluorocarbon chains. Investigation in monolayers and liposomes. J Am Chem Soc 1984, 106, 7687–7692
44. ‘’Liposomes: a practical approach’’ Oxford university press
45. Biochemistry: By R H Garrett and C M Grisham. Saunders College Publishing: Harcourt Brace, Orlando, FL. 1995.
46. D. L. Dan, ‘’Novel applications of liposome’’, TIBTECH, 16, 307, 1998
47. Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, et al. Liposome: classification, preparation, and applications. Nanoscale Res Lett. 2013, 8, 102-108.
48. Pattni BS, Chupin VV, Torchilin VP. New Developments in Liposomal Drug Delivery. Chem Rev. 2015, 115, 10938–10966
49. Walde P. and Ichikawa. S, Enzymes inside lipid vesicles: preparation, reactivity and applications, Biomolecular Engineering, 2001, 18, 143-177
50. “ Aqueous Solutions of Paraffin Chain Salts, A Study in Micelle Formation. ”
G S Hartley, Paris: Hermann et Cie. 1936.
51. Schimizu T.; Masuda M.; Minamikawa H. Supramolecular Nanotube Architectures Based on Amphiphilic Molecules. Chem. Rev. 2005, 105, 1401-1444
52. 李潔如, 牟中原 “微胞、微乳液的形成’’, 科學月刊第二十五卷第十期 1994
53. Merrifield., R. B., Solid phase peptide synthesis, Science, 1996, 232, 341-347
54. R. B. Merrifield . "Solid Phase Peptide Synthesis. I. The Synthesis of a Tetrapeptide". J Am Chem Soc 1963, 85, 2149–2154.
55. 張湘戎, 體抑素多肽分子內雙硫建構之研究, 碩士學位論文, 中原大學化學研究所
56. Worrell BT, Malik JA, Fokin VV, Direct Evidence of a Dinuclear Copper Intermediate in Cu(I)-Catalyzed Azide-Alkyne Cycloadditions. Science 2013, 340, 457–460.
57. Brase. S, Gil. C, Knepper. K, Zimmermann, V. Organic azides: an exploding diversity of a unique class of compounds. Angew. Chem. Int. Ed 2005, 44, 5188-240
58. Hinderaker, M. P., and Rains, R.T. An electronic effect on protein structure, Protein Sci 2003, 12, 1188-1194
59. Taylor C. M, Havdré R, and Edwards, P. J. B., The impact of pyrrolidine hydroxylation on the conformation of proline-containing peptides, J. Org. Chem 2005, 70, 1306-1315
60. Berova N, Nakanishi K, and Woody R, Circular dichroism: Principles and applications, Wiley, Hoboken, 2000
61. Dodero VI, Quirolo ZB, Sequeira MA. Biomolecular studies by circular dichroism. Frontiers in Bioscience 2011, 16, 61-73 ·
62. Harding, S. E., and Jumel, K. (2001) Light scattering, Current Protocols in protein Science Chapter 7, Unit7.8
63. Yasuyoshi I, Tadashi I, Tsutimu I, Makoto K, Yuji S, Synthesis and Modification of a Novel 1β-Methyl Carbapenem Antibiotic, S-4661. J Antibiot 1996, 49, 478-484
64. Ari M. P. K, Juho H, Esa T. T. K, Jari K, Locked Conformations for Proline Pyrrolidine Ring:  Synthesis and Conformational Analysis of cis- and trans-4-tert-Butylprolines. J. Org. Chem 2005, 70, 6447-6453
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *