|
1. Mammen M, Choi SK, Whitesides G. Polyvalent Interactions in Biological Systems: Implications for Design and Use of Multivalent Ligands and Inhibitors. Angew Chem Int Ed 1998, 37, 2754-2794. 2. Qadri F, Haque A, Faruque SM, Bettelheim KA, Robins-Browne R, Albert MJ. Hemagglutinating properties of enteroaggregative Escherichia coli. J Clin Microbiol 1994, 32, 510–514. 3. Gunther I, Glatthaar B, Doller G, Garten W. A H1 hemagglutinin of a human influenza A virus with a carbohydrate-modulated receptor binding site and an unusual cleavage site. Virus Res 1993, 27,147-160 4. Westerlund B, Korhonen TK, Bacterial proteins binding to the mammalian extracellular matrix. Mol Microbiol 1993, 9, 687 – 694 5.Cecioni S, Imberty A, Vidal S, Glycomimetics versus Multivalent Glycoconjugates for the Design of High Affinity Lectin Ligands. Chem Rev 2015, 115, 525–561 6. Wittmann V, Pieters R. Bridging lectin binding sites by multivalent carbohydrates. J. Chem. Soc. Rev 2013, 42, 4492-4503 7. Schwarzenbach G. Der Chelateffekt. Helv Chim Acta 1952, 35, 2344-2359 8. Bertozzi CR, Kiessling LL. Chemical glycobiology. Science 2001, 291, 2357-64 9. Heldin C-H. Dimerization of cell surface receptors in signal transduction. Cell 1995, 80, 213-23 10. Gestwicki JE, Kiessling LL. Inter-receptor communication through arrays of bacterial chemoreceptors. Nature 2002, 415, 81-84 11. Gestwicki JE, Strong LE, Kiessling L L. Chem. Biol. Tuning chemotactic responses with synthetic multivalent ligands. 2000, 7, 583-91 12. Kiessling L L, Gestwicki J E, Strong LE. Synthetic multivalent ligands as probes of signal transduction. Angew Chem Int Ed 2006, 45, 2348-68 13. Guiard J, Fiege B, Kitov P I, Peters T, Bundle DR. “Double-Click” Protocol for Synthesis of Heterobifunctional Multivalent Ligands: Toward a Focused Library of Specific Norovirus Inhibitors. Chem Eur J 2011, 17, 7438-7441 14. Rademacher C, Guiard J, Kitov P I, Fiege B, Dalton KP, Parra F, Bundle DR, Peters T. Targeting Norovirus Infection—Multivalent Entry Inhibitor Design Based on NMR Experiments. Chem Eur J 2011, 17, 7442-7453 15. Dam T K, Gerken TA, Brewer CF. Thermodynamics of Multivalent Carbohydrate−Lectin Cross-Linking Interactions: Importance of Entropy in the Bind and Jump Mechanism. Biochemistry 2009, 48, 3822-3827 16. Dimmock N J, Multiple mechanisms of neutralization of animal viruses. Trends Biochem Sci. 1987, 12, 70 -75 17. Gimbrone M A, Nagel T, Topper JN, Heparan sulfate proteoglycans of the cardiovascular system. Specific structures emerge but how is synthesis regulated? J. Clin. Invest. 1997, 99, 2062-2070 18. Ribeiro-Viana R, Sánchez-Navarro M, Luczkowiak j, Koeppe JR, Delgado R, Rojo J, Davis B. G. Virus-like glycodendrinanoparticles displaying quasi-equivalent nested polyvalency upon glycoprotein platforms potently block viral infection Nat Commun 2012, 3, 1303-1310 19. Mammen M, Choi SK, Whitesides GM. Polyvalent interactions n biological systems: Implications for design and use of multivalent ligands and inhibitors. Angew Chem Int Ed 1998, 37, 2754-2794 20. Park S, Gildersleeve JC, Blixt O, Shin I, Carbohydrate microarrays. Chem Soc Rev 2013, 42, 4310-4326 21. Hoyle C. E, Bowman, C. N. Thiol–Ene Click Chemistry. Angew Chem Int Ed 2010, 49, 1540-1573 22. Kroll C, Mansi R, Braun F, Dobitz S, Maecke HR, Wennemers H. Hybrid Bombesin analogues: Combining an agonist and an antagonist in defined distances for optimized tumor targeting. J Am Chem Soc 2013, 135, 16793 23. Gary B, Klans B, Nicholas K. Energy Transfer between Quantum Dots and Conjugated Dye Molecules. J. Phys. Chem. C. 2014, 118, 18079-18086 24. Grosse AV, Cady GH. Properties of Fluorocarbons. Ind Eng Chem 1947, 39, 367-374 25. Bunn CW, Howells ER. Structures of Molecules and Crystals of Fluoro-Carbons. Nature 1954, 174, 549-551 26. Robert L. Scott . The Anomalous Behavior of Fluorocarbons . J Phys Chem., 1958, 62, 136–145 27. Galdysz JA, Curran DP, Horvath ITE, Handbook of fluorous chemistry, Wiley-VCH: Weinheim 2004 28. Horvath IT, Rabai J, Facile Catalyst Separation without Water: Fluorous Biphase Hydroformylation of Oledins, Science 1994, 266, 72-75 29. Galdysz JA, Curran DP, Introduction - Fluorous Chemistry: from biphasic catalysis to a parallel chemical universe and beyond, Tetrahedron 2002, 58, 3823-3825 30. Jaipuri FA, Pohl NL, Toward Solutions phase automated iterative synthesis: fluorous-tag assisted solution-phase Synthesis of linear and branched mannose oligomers.Org Biomol Chem 2008, 6, 2686-2691 31. Ko KS, Jaipuri FA, Pohl NL. Fluorous-based carbohydrate microarrays, J Am Chem Soc 2005, 127, 13162-13163 32. Vegas AJ, Bradner JE, Tang W, McPherson OM, Greenberg EF, Koehler AN, Schreiber SL., Fluorous-Based Small-Molecule Microarrays for the Discovery of Histone Deacetylase Inhibitors** Arturo J. Vegas, James E. Bradner, Weiping Tang, Olivia M. McPherson, Edward F. Greenberg, Angela N. Koehler, and Stuart L. Schreiber* Fluorous-Based Small-Molecule Microarrays for the Discovery of Histone Deacetylase Inhibitors. Angew Chem Int Ed Engl. 2007, 46, 7960-7964 33. Chang SH, Han JL, Tseng SY, Lee HY, Lin CW, Lin YC, Jeng WY, Wang HHJ, Wu CY, Wong CH. Glycan array on aluminum oxide-coated glass slides through Phosphonate chemistry. J Am Chem Soc 2010, 132, 13371 34. Bilgicer B, Fichera A, and Kumar K. A coiled coil with a fluorous core. J Am Chem Soc 2001, 123, 4293-4399 35. Bilgicer B., Xing X. C., and Kumar K. Programmed self sorting of coiled coils with leucine and hexafluoroleucine cores. J Am Chem Soc 2001, 123, 11815–11816. 36. Niemz A., and Tirrell D. A. Self-association and membrane binding behavior of melittins containing trifluoroleucine. J Am Chem Soc 2001, 123, 7407–7413. 37. Tang Y, Ghirlanda G, Petka WA, NakajimaT, DeGradoW F, and Tirrell DA. Fluorinated coiled-coil proteins prepared in vivo display enhanced thermal and chemical stability. Angew Chem Int Ed 2001, 40, 1494.-1496 38. Tang Y., Ghirlanda G, Vaidehi N, Kua J, Mainz D. T., Goddard W. A, DeGrado WF, and Tirrell DA. Stabilization of coiled-coil peptide domains by introduction of trifluoroleucine. Biochemistry 2001, 40, 2790–2796 39. Wang P., Tang Y., and Tirrell D. A. Incorporation of trifluoroisoleucine into proteins in vivo. J Am Chem Soc 2003,125, 6900–6906. 40. Bilgicer B, and Kumar K. De novo design of defined helical bundles in membrane environments. Proc Natl Acad Sci U.S.A. 2004, 101, 15324–15329. 41. Lee HY, Lee KH, Al-Hashimi HM, and Marsh E.N. Modulating Protein Structure with Fluorous Amino Acids: Increased Stability and Native-like Structure Conferred on a 4-Helix Bundle Protein by Hexafluoroleucine. J Am Chem Soc 2006. 128, 337-43. 42. Adam TP, Faifan T, Kitae P, Shanrong Z, 19F Magnetic Resonance Imaging Signals from Peptide Amphiphile Nanostructures Are Strongly Affected by Their Shape, ACS Nano 2016, 10, 7376-7384 43. Elbert R, Folda T, Ringsdorf H, Saturated and polymerizable amphiphiles with fluorocarbon chains. Investigation in monolayers and liposomes. J Am Chem Soc 1984, 106, 7687–7692 44. ‘’Liposomes: a practical approach’’ Oxford university press 45. Biochemistry: By R H Garrett and C M Grisham. Saunders College Publishing: Harcourt Brace, Orlando, FL. 1995. 46. D. L. Dan, ‘’Novel applications of liposome’’, TIBTECH, 16, 307, 1998 47. Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, et al. Liposome: classification, preparation, and applications. Nanoscale Res Lett. 2013, 8, 102-108. 48. Pattni BS, Chupin VV, Torchilin VP. New Developments in Liposomal Drug Delivery. Chem Rev. 2015, 115, 10938–10966 49. Walde P. and Ichikawa. S, Enzymes inside lipid vesicles: preparation, reactivity and applications, Biomolecular Engineering, 2001, 18, 143-177 50. “ Aqueous Solutions of Paraffin Chain Salts, A Study in Micelle Formation. ” G S Hartley, Paris: Hermann et Cie. 1936. 51. Schimizu T.; Masuda M.; Minamikawa H. Supramolecular Nanotube Architectures Based on Amphiphilic Molecules. Chem. Rev. 2005, 105, 1401-1444 52. 李潔如, 牟中原 “微胞、微乳液的形成’’, 科學月刊第二十五卷第十期 1994 53. Merrifield., R. B., Solid phase peptide synthesis, Science, 1996, 232, 341-347 54. R. B. Merrifield . "Solid Phase Peptide Synthesis. I. The Synthesis of a Tetrapeptide". J Am Chem Soc 1963, 85, 2149–2154. 55. 張湘戎, 體抑素多肽分子內雙硫建構之研究, 碩士學位論文, 中原大學化學研究所 56. Worrell BT, Malik JA, Fokin VV, Direct Evidence of a Dinuclear Copper Intermediate in Cu(I)-Catalyzed Azide-Alkyne Cycloadditions. Science 2013, 340, 457–460. 57. Brase. S, Gil. C, Knepper. K, Zimmermann, V. Organic azides: an exploding diversity of a unique class of compounds. Angew. Chem. Int. Ed 2005, 44, 5188-240 58. Hinderaker, M. P., and Rains, R.T. An electronic effect on protein structure, Protein Sci 2003, 12, 1188-1194 59. Taylor C. M, Havdré R, and Edwards, P. J. B., The impact of pyrrolidine hydroxylation on the conformation of proline-containing peptides, J. Org. Chem 2005, 70, 1306-1315 60. Berova N, Nakanishi K, and Woody R, Circular dichroism: Principles and applications, Wiley, Hoboken, 2000 61. Dodero VI, Quirolo ZB, Sequeira MA. Biomolecular studies by circular dichroism. Frontiers in Bioscience 2011, 16, 61-73 · 62. Harding, S. E., and Jumel, K. (2001) Light scattering, Current Protocols in protein Science Chapter 7, Unit7.8 63. Yasuyoshi I, Tadashi I, Tsutimu I, Makoto K, Yuji S, Synthesis and Modification of a Novel 1β-Methyl Carbapenem Antibiotic, S-4661. J Antibiot 1996, 49, 478-484 64. Ari M. P. K, Juho H, Esa T. T. K, Jari K, Locked Conformations for Proline Pyrrolidine Ring: Synthesis and Conformational Analysis of cis- and trans-4-tert-Butylprolines. J. Org. Chem 2005, 70, 6447-6453
|