帳號:guest(3.148.103.93)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳思潔
作者(外文):Wu, Szu-Chieh
論文名稱(中文):Highly facet-dependent photocatalytic properties of Cu2O-ZnO heterostructures
論文名稱(外文):氧化亞銅與氧化鋅的異質結構在光催化活性上的晶面效應
指導教授(中文):黃暄益
指導教授(外文):Huang, Hsuan-Yi
口試委員(中文):徐雍鎣
李紫原
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:103023539
出版年(民國):105
畢業學年度:104
語文別:英文
論文頁數:55
中文關鍵詞:氧化亞銅與氧化鋅的異質結構在光催化活性上的晶面效應
外文關鍵詞:Highly facet-dependent photocatalytic properties of Cu2O-ZnO heterostructures
相關次數:
  • 推薦推薦:0
  • 點閱點閱:54
  • 評分評分:*****
  • 下載下載:10
  • 收藏收藏:0
我們利用水相合成法簡易合成出具氧化亞銅與氧化鋅異質結構的材料,並進行甲基橙的光降解研究探討。在先前我們實驗室已發展出多種形貌演變的氧化亞銅奈米粒子,並且藉由染料光降解實驗證明具單一晶面的奈米氧化亞銅立方體、八面體及菱形十二面體其光催化活性順序。而我們所提出的氧化亞銅立方體無光催化活性挑戰了過往普遍對奈米材料的認知,因此我們在此利用氧化鋅修飾上氧化亞銅立方體、八面體及菱形十二面體,進行對甲基橙的光催化降解實驗想再次印證我們的觀點。理論上這種半導體與半導體間的界面能夠幫助光催化過程中產生的電子電洞對良好分離,降低它們的再結合率,進而提升光降解效果,也是我們最初決定試驗本篇研究的想法,但是實驗結果並不完全如預期發展。雖然對於氧化亞銅立方體晶面性質的部分有得到進一步的驗證,但是氧化亞銅八面體的表現卻遠出乎於意料,從原本能在75分鐘左右的時間將甲基橙的濃度消耗至近乎零,變成在經過兩小時的光激發下僅僅減少微量的有機染料濃度。透過HRTEM的鑑定,我們統整出在這裡的氧化鋅材料幾乎以{101}晶面與氧化亞銅的{111}晶面相連接,而對於氧化亞銅的{100}及{110}晶面上則無特定的生長面。此結果讓我們認為除了氧化亞銅的晶面效果,氧化鋅一側的表面也會有很大的晶面效應。人們認為能帶符合電子與電洞分離的半導體異質結構能提升光催化效果,結果顯示在不同的晶面相連接之下,可能造成完全不同的結果。
We have synthesized Cu2O-ZnO heterostructured nanocrystals by using a simple method in aqueous solution, and performed a series of photodegradation experiments. Our lab has previously demonstrated strongly facet-dependent photocatalytic properties of Cu2O cubes, octahedra and rhombic dodecahedra. We found Cu2O cubes have no activity to photodegrade methyl orange (MO) dye molecules. This result violates our general understanding of photocatalysis mechanism, so we want to extend our investigation to semiconductor–semiconductor heterojunctions by growing ZnO on Cu2O crystals. Because formation of semiconductor heterostructures with proper band alignment should improve the photogenerated electron–hole pair separation, we expect the photocatalytic activity of Cu2O cubes should remain inactive or become somewhat active with contribution from the ZnO side, while Cu2O octahedra and rhombic dodecahedra decorated with ZnO should show enhanced photocatalytic activities. Surprisingly, while Cu2O cube-ZnO composite structures remain inactive, ZnO-decorated Cu2O octahedra also become inactive. ZnO-decorated Cu2O rhombic dodecahedra show good but a slightly decreased activity possibly due to Cu2O surface coverage. The Cu2O-ZnO heterostructured nanocrystals have been characterized by various techniques, showing maintenance of their composition before and after photocatalysis, although some CuO has been formed. Through extensive analysis of interfacial HRTEM images, we found that the {101} facets of ZnO preferentially grew epitaxially on the {111} faces of Cu2O, but multiple ZnO lattice planes can grow on Cu2O cubes and rhombic dodecahedra. Assuming the (101) planes develop a large band bending preventing photoexcited electrons from migrating to the ZnO side, this unfavorable situation explains the lack of photocatalytic activity of ZnO-Cu2O octahedra. This finding has profound implication, showing that formation of unfavorable heterojunctions can lead to sharp decline in charge carrier transport ability even when band alignment of the semiconductors forming the heterojunctions predicts catalytic enhancement. This is another dramatic demonstration of semiconductor facet effects.
論文摘要 i
ABSTRACT ii
TABLE OF CONTENTS iv
LIST OF FIGURES viii
LIST OF SCHEMES xiv
LIST OF TABLES xv

1.Introduction 1
1.1 Cuprous oxide and its photocatalytic properties 1
1.2 Band bending in semiconductors 8
1.3 Semiconductor/Semiconductor Heterostructures 11
1.4 Photocatalysis of Cu2O-ZnO Heterostructured Materials 13
2.Motivation 19
3.Experimental 20
3.1 Chemicals 20
3.2 Synthesis of Cu2O Nanocrystals 21
3.3 Synthesis of Cu2O-ZnO hetero-structured nanocrystals 23
3.4 Synthesis of CuO-containing CCZ nanocrystals 24
3.5Photocatalytic experiments 25
4.Instrumentation 26
5.Results and Discussions 27
6.Conclusion 51
7.References 52

1. Ng, C. H. B.; Fan, W. Y., Shape evolution of Cu2O nanostructures via kinetic and thermodynamic controlled growth. The Journal of Physical Chemistry B 2006,110 (42), 20801-20807.
2. Xu, H.; Wang, W.; Zhu, W., Shape evolution and size-controllable synthesis of Cu2O octahedra and their morphology-dependent photocatalytic properties. The Journal of Physical Chemistry B 2006,110 (28), 13829-13834.
3. Zhang, H.; Zhu, Q.; Zhang, Y.; Wang, Y.; Zhao, L.; Yu, B., One‐Pot Synthesis and Hierarchical Assembly of Hollow Cu2O Microspheres with Nanocrystals‐Composed Porous Multishell and Their Gas‐Sensing Properties. Advanced Functional Materials 2007,17 (15), 2766-2771.
4. McShane, C. M.; Siripala, W. P.; Choi, K.-S., Effect of junction morphology on the performance of polycrystalline Cu2O homojunction solar cells. The Journal of Physical Chemistry Letters 2010,1 (18), 2666-2670.
5. Tang, B.-X.; Wang, F.; Li, J.-H.; Xie, Y.-X.; Zhang, M.-B., Reusable Cu2O/PPh3/TBAB system for the cross-couplings of aryl halides and heteroaryl halides with terminal alkynes. The Journal of Organic Chemistry 2007,72 (16), 6294-6297.
6. White, B.; Yin, M.; Hall, A.; Le, D.; Stolbov, S.; Rahman, T.; Turro, N.; O'Brien, S., Complete CO oxidation over Cu2O nanoparticles supported on silica gel. Nano letters 2006,6 (9), 2095-2098.
7. Kondo, J., Cu2O as a photocatalyst for overall water splitting under visible light irradiation. Chemical Communications 1998, (3), 357-358.
8. Kuo, C.-H.; Huang, M. H., Facile synthesis of Cu2O nanocrystals with systematic shape evolution from cubic to octahedral structures. The Journal of Physical Chemistry C 2008,112 (47), 18355-18360.
9. Ho, J.-Y.; Huang, M. H., Synthesis of submicrometer-sized Cu2O crystals with morphological evolution from cubic to hexapod structures and their comparative photocatalytic activity. The Journal of Physical Chemistry C 2009,113 (32), 14159-14164.
10. Huang, W.-C.; Lyu, L.-M.; Yang, Y.-C.; Huang, M. H., Synthesis of Cu2O nanocrystals from cubic to rhombic dodecahedral structures and their comparative photocatalytic activity. Journal of the American Chemical Society 2011,134 (2), 1261-1267.
11. Tsai, Y.-H.; Chanda, K.; Chu, Y.-T.; Chiu, C.-Y.; Huang, M. H., Direct formation of small Cu2O nanocubes, octahedra, and octapods for efficient synthesis of triazoles. Nanoscale 2014,6 (15), 8704-8709.
12. Yuan, G.-Z.;Hsia, C.-F.; Lin, Z.-W.; Chiang, C.; Chiang, Y.-W.; Huang, M. H. Highly facet-dependent photocatalytic properties of Cu2O crystals established through formation of Au-decorated Cu2O heterostructures. Chemistry–A European Journal2016,DOI: 10.1002/chem.201602173.
13. Wang, Z.; Zhao, S.; Zhu, S.; Sun, Y.; Fang, M., Photocatalytic synthesis of M/Cu2O (M= Ag, Au) heterogeneous nanocrystals and their photocatalytic properties. CrystEngComm 2011,13 (7), 2262-2267.
14. Chen, H.; Chen, S.; Quan, X.; Yu, H.; Zhao, H.; Zhang, Y., Fabrication of TiO2−Pt coaxial nanotube array schottky structures for enhanced photocatalytic degradation of phenol in aqueous solution. The Journal of Physical Chemistry C 2008,112 (25), 9285-9290.
15. Cushing, S. K.; Li, J.; Meng, F.; Senty, T. R.; Suri, S.; Zhi, M.; Li, M.; Bristow, A. D.; Wu, N., Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor. Journal of the American Chemical Society 2012,134 (36), 15033-15041.
16. Schaadt, D.; Feng, B.; Yu, E., Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles. Applied Physics Letters 2005,86 (6), 063106.
17. Zhang, Z.; Yates Jr, J. T., Band bending in semiconductors: chemical and physical consequences at surfaces and interfaces. Chemical Reviews 2012,112 (10), 5520-5551.
18. Baiju, K.; Zachariah, A.; Shukla, S.; Biju, S.; Reddy, M.; Warrier, K., Correlating photoluminescence and photocatalytic activity of mixed-phase nanocrystalline titania. Catalysis Letters 2009,130 (1-2), 130-136.
19. Marschall, R., Semiconductor composites: strategies for enhancing charge carrier separation to improve photocatalytic activity. Advanced Functional Materials 2014,24 (17), 2421-2440.
20. Xu, C.; Cao, L.; Su, G.; Liu, W.; Liu, H.; Yu, Y.; Qu, X., Preparation of ZnO/Cu2O compound photocatalyst and application in treating organic dyes. Journal of Hazardous Materials 2010,176 (1), 807-813.
21. Zou, X.; Fan, H.; Tian, Y.; Yan, S., Synthesis of Cu2O/ZnO hetero-nanorod arrays with enhanced visible light-driven photocatalytic activity. CrystEngComm 2014,16 (6), 1149-1156.
22. Wei, X.; Man, B.; Liu, M.; Xue, C.; Zhuang, H.; Yang, C., Blue luminescent centers and microstructural evaluation by XPS and Raman in ZnO thin films annealed in vacuum, N 2 and O 2. Physica B: Condensed Matter 2007,388 (1), 145-152.
23. Chanda, K.; Rej, S.; Huang, M. H., Facet‐dependent catalytic activity of Cu2O nanocrystals in the one‐pot synthesis of 1, 2, 3‐triazoles by multicomponent click reactions. Chemistry–A European Journal 2013,19 (47), 16036-16043.
24. Yang, Y.-C.; Wang, H.-J.; Whang, J.; Huang, J.-S.; Lyu, L.-M.; Lin, P.-H.; Gwo, S.; Huang, M. H., Facet-dependent optical properties of polyhedral Au–Cu 2 O core–shell nanocrystals. Nanoscale 2014,6 (8), 4316-4324.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 以植晶法合成多截面的金奈米粒子及具分支的金奈米晶體
2. 氧化鋅與氧化鎘奈米線的合成
3. 利用中孔洞沸石材料形成氮化鈦奈米金屬線及合成規則性中孔洞有機矽薄膜
4. 垂直式奈米碳管的合成及碳管-金奈米粒子複合物的製備與光譜鑑定
5. 1. Hydrothermal Synthesis of ZnO, Au2S and CuS Nano/Microstructures and the Characterization of Their Properties 2. Growth of Ultralong and Highly Blue Luminescent Gallium Oxide Nanowires and Nanobelts and Direct Horizontal Nanowire Growth on Substrates
6. 氮化鎵奈米柱結構於中孔洞沸石粉末的製備與光譜分析
7. 水溶液加熱還原法合成二維金奈米晶體
8. 高產量高長寬比金奈米棒的製備與多分支金奈米粒子的直接合成
9. 一、奈米金結構之合成、官能基化與組裝 二、水相加熱法合成三角與六角金奈米片狀結構之成長機制研究
10. Growth of ZnO and CdO Nanowires by Vapor Transport. Synthesis of Core-Shell Ga-GaN Nanostructures and GaN Hollow Spheres via Reflux Method
11. 一、水相加熱法合成極小三角金奈米片狀結構 二、以植晶法製備具雙錐狀金奈米結構及其形狀轉換成多分支楊桃狀金奈米粒子
12. 利用中孔洞氧化矽材料形成氮化銦及氧化銦奈米棒的製備與光譜分析
13. 以植晶法製備鈀奈米棒和具分支的鈀奈米晶體與可調控之高徑長比金奈米棒的合成
14. 合成規則性中孔洞有機矽薄膜並在有機矽孔壁存在分子尺寸規則排列
15. 水熱法合成金奈米八面體與不同金屬離子對其形狀的影響
 
* *