帳號:guest(18.116.62.172)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):劉佰亨
作者(外文):Liu, Pai Heng
論文名稱(中文):烷基氧配位之雙亞硝基錯合物與雙鐵核四亞硝基錯合物的合成及性質研究
論文名稱(外文):Alkyl Chain-Containing O-Bound DNICs and di-Reduced RREs: Insight into Reactivity, Chemical and Physical Property
指導教授(中文):廖文峯
指導教授(外文):Liaw, Wen Feng
口試委員(中文):洪政雄
邱秀貞
口試委員(外文):Hung, Chen Hsiung
Chiou, Show Jen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:103023535
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:65
中文關鍵詞:雙亞硝基鐵錯合物
外文關鍵詞:Dinitrosyl Iron Complexes
相關次數:
  • 推薦推薦:0
  • 點閱點閱:39
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
成功地合成一些新的 alkyl chain-containing O-bound {Fe(NO)2}9 DNICs 以及 RREs,藉由測量 X-ray absorption spectroscopy 所得到的 Fe K-edge 之 pre-edge,發現 [18-crown-6-ether-K][(OMe)2Fe(NO)2] (2) 吸收位於 7114.2 eV,與過去的 {Fe(NO)2}9 DNICs 相比起來 (7113.4~7113.8 eV) 都還要來的高,從 CV 圖中也觀察到,complex 2 的氧化還原電位 (E1/2 = -1.3 V vs Fc/Fc+) 也比過去結構相類似的 thiolate-bound DNIC 都還要來的正電位,另外從反應性來來看,將 complex2 與一當量的 KC8 反應,還原一個電子後,其產物是 direduced form RRE,此外發現 complex 2 可以與 CO2 發生insertion 的反應,由以上的實驗結果,我們推測由於 methoxide是屬於比較 hard 的配位基,會極化{Fe(NO)2}9 的鐵中心,使Fe 的價數偏向正三價,當 CO2 靠近時,三價的鐵中心便會極化CO2,發生 CO2 insertion。
Anionic alkyl chain-containing O-bound {Fe(NO)2}9 DNIC [18-crown-6-ether-K][(OMe)2Fe(NO)2] (2) and dianionic OMe-bridged {Fe(NO)2}10-{Fe(NO)2}10 RRE [18-crown-6-ether-K][Fe(-OMe)(NO)2]2 (4) were synthesized and characterized by CV, FT-IR, UV-Vis, XAS, EPR spectroscopy and single crystal X-ray diffraction. On the base of electrochemistry, the {Fe(NO)2}9/ {Fe(NO)2}10 redox couple of complex 2 is E1/2= -1.3 V (vs Fc/Fc+), more positive potential than that (E1/2= -1.6 V (vs Fc/Fc+)) of the reported four coordinate S-bound {Fe(NO)2}9 DNICs. In comparison with the Fe K-edge energy of the published {Fe(NO)2}9 DNICs, Fe K-edge pre-edge energy 7114.2 eV of complex 2, implicate that the contribution of {FeⅢ(NO-)2}9 electronic structure is dominant. For complex 2, it is presumed that the hard ligand [OMe]- may polarize Fe center of {Fe(NO)2}9 motif to enhance {FeⅢ(NO-)2}9 contribution. Since {FeⅢ(NO-)2}9 contribution predominates in complex 2, the ferric center of complex 2 may polarize the incoming CO2 molecule and trigger CO2 1,2-insertion to yield the proposed methylcarbonate-bound {FeⅢ(NO-)2}9 DNIC at -50oC, demonstrated by FT-IR spectroscopy.

Figure
Figure 1-1 一氧化氮分子軌域圖 2
Figure 1-2金屬與 NO 的鍵結關係 3
Figure 1-3 金屬與一氧化氮的 dπ-π* 鍵結分子軌域形式 4
Figure 1-4 一氧化氮合成酶催化示意圖 5
Figure 1-5 Nitrate 和 nitrite 以及一氧化氮的生成路徑 6
Figure 1-6細胞產生 ATP 的過程與受 NO 干擾導致細胞凋亡的機制 7
Figure 1-7 guanylate cyclase 與一氧化氮間的反應及訊號傳遞 8
Figure 1-8 (a) Cys-NO、GS-NO的結構. (b) RSNO 的生成機制 9
Figure 1-9 RSNO 產生一氧化氮的反應機制 10
Figure 1-10 GST P1-1 protein-bond DNIC 合成過程與晶體結構 12
Figure 1-11 Classical LMW DNIC之分類與結構 15
Figure 1-12 non-classical DNICs 與 Se-containing DNICs 之結構 16
Figure 1-14 Heat shock 致使 heat shock protein 製造途徑 18
Figure 1-15 Glutathione reductase 亞硝基化去活化機制 18
Figure 1-16 RRE 結構與 EPR 訊號 20
Figure 1-17 常見的亞硝基鐵錯合物 20
Figure 3-1 [18-crown-6-ether-K][(OMe)2Fe(NO)2] (2) 之IR光譜 (THF) 34
Figure 3-2 [18-crown-6-ether-K][(OMe)2Fe(NO)2] (2) 之IR光譜 (KBr) 35
Figure 3-3 [18-crown-6-ether-K][(OtBu)2Fe(NO)2] (3) 之IR光譜 (THF) 35
Figure 3-4 ORTEP drawing and labeling scheme of [18-crown-6-ether-K][(OMe)2Fe(NO)2] 36
Figure 3-5 complex 2 之 UV-Vis 吸收光譜 39
Figure 3-6室溫 EPR 光譜 (a) complex 2 (THF), aNO = 2.44 G; (b) complex 3 (Ether), aNO = 2.46 G 40
Figure 3-7 complex 2 之 4K EPR 光譜 (THF) 41
Figure 3-8 complex 2 與過去所合成DNIC 之 Fe K-edge比較 42
Figure 3-9 complex 2 之 CV 圖 44
Figure 3-10 [18-crown-6-ether-K]2[Fe(μ-OMe)(NO)2]2 (4) 之IR光譜 (KBr) 45
Figure 3-11 [18-crown-6-ether-K]2[Fe(μ-OMe)(NO)2]2 (4) 之IR光譜 (MeCN) 46
Figure 3-12 [18-crown-6-ether-K]2[Fe(μ-OtBu)(NO)2]2 (5) 之IR光譜 (KBr) 47
Figure 3-13 ORTEP drawing and labeling scheme of [18-crown-6-ether-K]2[Fe(μ-OMe)(NO)2]2 (4) 48
Figure 3-14 OMe-bound DNIC (black line) 與 SEt-bound DNIC (red line) 之IR 比較圖 52
Figure 3-15 OMe-bound DNIC (black line) 與 OPh-bound DNIC (red line) 之IR 比較圖 53
Figure 3-16 complex 2 與 CO2 反應 IR 光譜 55
Figure 3-17 Complex 2 與 CO2 反應後之 IR 光譜 (THF) 56
(black line) room temperature (red line) -50oC 56
Figure 3-18 Complex 2 與 CO2 在 -50oC 下反應後之 EPR 圖譜(77K) in THF 56
Figure 3-19 {Fe(NO)2}9/{Fe(NO)2}10 DNICs 氧化還原半電位之比較 59





Table
Table 1-1 不同氧化態之一氧化氮性質整理 3
Table 1-2 不同類型 NOS 之性質與功能 8
Table 1-3 protein-bound DNICs 與其 EPR 訊號 12
Table 3-1 含硫或含氧配位基 {Fe(NO)2}9 DNIC 之鍵長鍵角比較 38
Table 3-2 Fe K-edge之pre-edge吸收峰位置整理 42
Table 3-3 DNIC 之氧化還原半電位比較 44
Table 3-4 alkoxide-bound DNIC與RRE之IR光譜吸收峰整理 48
Table 3-5 含硫或含氧配位基 di-reduced Roussin’s red esters 之鍵長比較 49













Scheme
Scheme 3-1. [18-crown-6-ether-K][(OMe)2Fe(NO)2] (2)的合成步驟……………...32
Scheme 3-2 [18-crown-6-ether-K][(OtBu)2Fe(NO)2] (3)的合成步驟.......................33
Scheme 3-3 [18-crown-6-ether-K]2[Fe(μ-OMe)(NO)2]2 (4) 的合成步驟…….....44
Scheme 3-4 [18-crown-6-ether-K]2[Fe(μ-OtBu)(NO)2]2 (5)的合成步驟…………46
Scheme 3-5 complex 2 與 KC8 反應示意圖............................................................50
Scheme 3-6 complex 2 與 KSEt 反應示意圖……………………………………..51
Scheme 3-7 complex 2 與 KOPh 反應示意圖…………………………………….53
Scheme 3-8 complex 2 與CO2 反應示意圖.............................................................55
References
1. Furchgott, R.F.; Zawadzki, J.V. Nature 1980, 288, 373.
2. (a) Ignarro, L. J.; Adams, J. B.; Horwitz, P. M.; Wood, K. S. J. Bioinorg. Chem. 1986, 261, 4997. (b) Ignarro, L. J.; Buga, G. M.; Wood, K. S.; Byrns, R. E.; Chaudhuri, G. Proc. Natl. Acad. Sci. 1987, 84, 9265.
3. (a) Stamler, J. S. Cell 1994, 78, 931. (b) Stamler J. S.; Singel, D. J.; Loscalzo, J. Science 1992, 258, 1898. (c) Ueno, T.; Suzuki, Y.; Fujii, S.; Vanin, A. F.; Yoshimura, Y. Biochem. Pharmacol. 2002, 63, 485. (d) Lee, J.; Chen, L; West, A. H.; Richter-Addo, G. B. Chem. Rev. 2002, 102, 1019. (e) Wang, P. G.; Xian, M.; Tang, X.; Wu, X.; Wen, Z.; Cai, T.; Janczuk, A. J. Chem. Rev. 2002, 102, 1091.
4. Koshland, D. E. Science 1992, 258, 1861.
5. Gary, L. M.; Donald, A. T.: Prentice Hall International, Inc. Inorganic Chemistry 2nd, 44.
6. Franz, K. J.; Lippard, S. J. J. Am. Chem. Soc. 1999, 121, 10504.
7. Enemark, J. H.; Feltham, T. D. Coord. Chem. Rev. 1974, 13, 339.
8. Marletta, M. A. Cell 1994, 78, 927.
9. (a) Lundberg, J. O.; Weitzberg, E.; Gladwin, M. T. Nat. Rev. 2008, 7, 156. (b) Lundberg, J. O.; Weitzberg, E.; Cole, J. A.; Benjamin, N. Nat. Rev. 2004, 2, 593.
10. Bogdan, C. Trends Cell Biol. 2001, 11, 66
11. Mungrue, I. N.; Bredt, D. S. Journal of Cell Science. 117, 2627.
12. (a) Alderton, W. K.; Cooper, C. E.; Knowles, R. G. Biolchem. J. 2001, 357, 593.
(b) Nussler, A. K.; Billiar, T. R. J. Leukoc. Biol. 1993, 54, 171. (c) Wlodek, D.; Gonzales, M. J. Theor. Biol. 2003, 225, 33.
13. Denninger, J. W.; Marletta, M. A. Biochimca et Biophysica Acta. 1999, 1411, 344.
14. (a) Butler, A. R.; Megson. I. L. Chem. Rev. 2002, 102, 1155. (b) Ueno, T.; Susuki, T.; Fujii, S.; Vanin, A. F.; Yoshimura, T. Biochem. Pharmacol. 2002, 63,485. (c) Frederik, A. C.; Wiegant, I. T.; Malyshev, I. Y.; Kleschyov, A. L.; van Faassen, E.; ,anin, A. F. FEBS Lett. 1999, 455, 179. (d) McCleverty, J. A. Chem Rev. 2004, 104, 403. (e) Hayton, T. W.; Legzdins, P.; Sharp, W. B. Chem. Rev. 2002, 102, 935.
15. (a) Kharitonov, V. G.; Sundquist, A. R.; Sharma, V. S. J. Biol. Chem. 1995, 270, 2815. (b) Goldstein, S.; Czapski, G. J. Am. Chem. Soc. 1996, 118, 3419. (c) Sun, Junhui.; Steenbergen, C.; Murphy, E. Antioxid Redox Signal. 2006, 8, 1693.
16. (a) Szacilowski, K.; Chmura, A.; Stasicka, Z. Coord. Chem. Rev. 2005, 249, 2408. (b) Boese, M.; Keese, M. A.; Becker, K.; Busse, R.; Mulsch, A. J. Biol Chem. 1997, 272, 21767. (c) Lee, M.; Arosio, P .; Cozzi, A.; Chasteen, M. D. Biochemistry. 1994, 33, 3679.
17. Tasi, M. L.; Hsieh, C. H.; Liaw, W. F. Inorg. Chem. 2007, 46, 5110
18. Cesareo, E.; Parker, L. J.; Pedersen, J. Z.; Nuccetelli, M.; Mazzetti, A. P.; Pastore, A.; Federici, G.; Caccuri, A. M.; Ricci, G.; Adams, J. J.; Parker, M. W.; Bello, M. L. J. Biol. Chem. 2005, 280, 42172.
19. (a) Harrop, T. C.; Song, D.; Lippard, S. J. J. Am. Chem. Soc. 2006, 128, 3528. (b) Harrop, T. C.; Tonzetich, Z. J.; Reisner, E.; Lippard, S. J. J. Am. Chem. Soc. 2008, 130, 15602.
20. Gwost, D.; Caulton, K. G. Inorg. Chem. 1973, 12, 2095.
21. (a) Baltusis, L. M.; Karlin, K. D.; Rabinowitz, H. N.; Dewan, J. C.; Lippard, S. J. Inorg. Chem. 1980, 19, 2627. (b) Strasdeit, H.; Krebs, B.; Henkel, G. Z. Naturforsch. 1986, 41b, 1357. (c) Bryar, T. R.; Eaton, D. R. Can. J. Chem. 1992, 70, 1917. (d) Osterloh, F.; Saak, W.; Haase, D.; Pohl, S. Chem. Commun. 1997, 979. (e) Liaw, W.-F.; Chiang, C.-Y.; Lee, G..-H.; Peng, S.-M.; Lai, C.-H. Inorg. Chem. 2000, 39, 480. (f) Davies, S. C.; Evans, D. J.; Hughes, D. L.; Konkol, M.; Richards, R. L.; Sanders, J. R.; Sobota, P. J. Chem. Soc., Dalton Trans. 2002, 2473. (g) Chiang, C. Y.; Miller, M. L.; Reibenspies, J. H.; Darensbourg, M. Y. J. Am. Chem. Soc. 2004, 126, 10867. (h) Tsai, M.-L.; Chen, C.-C.; Hsu, I.-J.; Ke, S.-C.; Hsieh, C.-H.; Chiang, K.-A.; Lee, G.-H.; Wang, Y.; Liaw, W.-F. Inorg. Chem. 2004, 43, 5159. (i) Tsai, F.-T.; Chiou, S.-J.; Tsai, M.-C.; Tsai, M.-L.; Huang, H.-W.; Chiang, M.-H.; Liaw, W.-F. Inorg. Chem. 2005, 44, 5872. (j) Lu, T.-T.; Chiou, S.-J.; Chen, C.-Y.; Liaw, W.-F. Inorg. Chem. 2006, 45, 8799. (k) Tsai, M.-L.; Hsieh, C.-H.; Liaw, W.-F. Inorg. Chem. 2007, 46, 5110. (l) Huang, H.-W.; Tsou, C.-C.; Kuo, T.-S.; Liaw, W.-F. Inorg. Chem. 2008, 47, 2196. (m) Tsai, M.-C.; Tsai, F.-T.; Lu, T.-T.; Tsai, M.-L.; Wei, Y.-C.; Hsu, I.-J.; Lee, J.-F.; Liaw, W.-F. Inorg. Chem. 2009, 48, 9579. (l) Tsai, F.-T.; Chen, P.-L. ; Liaw, W.-F. J. Am. Chem. Soc. 2010, 132, 5290.
22. (a) Hess, J. L.; Hsieh, C.-H.; Reibenspies, J. H.; Darensbourg, M. Y. Inorg. Chem. 2011, 50, 8541. (b) Tsai, F.-T.; Kuo, T.-S.; Liaw, W.-F. J. Am. Chem. Soc. 2009, 131, 3426. (c) Tsai, M.-L.; Liaw, W.-F. Inorg. Chem. 2006, 45, 6583.
23. (a) Albano, V. G.; Areneo, A.; Bellon, P. L.; Ciani, G.; Manassero, M. J. Organomet. Chem. 1974, 67, 413. (b) Chau, C. N.; Wojcicki, A.; Calligaris, M.; Nardin, G. Inorg. Chim. Acta. 1990, 168, 105. (c) Reginato, N.; McCrory, C. T. C.; Pervitsky, D.; Li, L. J. Am. Chem. Soc. 1999, 121, 10217. (d) Hung, M.-C.; Tsai, M.-C.; Lee, G.-H.; Liaw, W.-F. Inorg. Chem. 2006, 45, 6041.
24. Shih, W.-C.; Lu, T.-T.; Yang, L,-B.; Tsai, F.-T.; Chiang, M.-H.; Lee, J.-F.; Chiang, Y.-W.; Liaw, W.-F. J. Inorg. Biochem. 2012, 113, 83.
25. Ding, H.; Demple, B. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 5146.
Hidalgo, E.; Ding, H.; Demple, B.; Trends. Biochem. Sci. 1997, 22, 207.
26. (a)Malyshev, I. Y.; Manukhina, E. B.; Mikoyan, V. D.; Kubrina, L. N.; Vanin, A. F. FEBS Lett. 1995, 370, 159. (b) Kleschyov, I. Y.; Malugin, A. V.; Golubeva, L. Y.; Zenina, T. A.; Manukhina, E. B.; Mikoyan, V. D.; Vanin, A. F. FEBS Lett. 1996, 391, 21.
27. Boese, M.; Keese, M. A.; Becker, K.; Busse, R.; Mulsch, A. J. Biol. Chem. 1997, 272, 21767.
28. Tsou, C. C.; Lu, T. T.; Liaw, W. F. J. Am. Chem. Soc. 2007, 129, 12626.
29. Lu, T. T.; Tsou, C. C.; Haung, H. W.; Hsu, I. Jui.; Chen, Jin. Ming.; Kuo, T. S.; Wang, Y.; Liaw, W. F. Inorg. Chem. 2008, 47, 6040.
30. Yeh, S. W.; Lin, C. W.; Li, Y. W.; Chen, C. H.; Jang, L. Y.; Lee, J. F.; Liaw, W. F. Inorg. Chem. 2012, 51, 4076.
31. Tonzetich, Z. J.; McQuade, L. E.; Lippard, S. J. Inorg. Chem. 2010, 49, 6388.
32. Nakamoto, K. Infrared and Raman spectra of inorganic and coordination compounds, 5th ed.; Wiley: New York, 1997.
33. Smiglak, M.; Hines, C. C.; Rogers, R. D. Green. Chem. 2010, 12, 491.

(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *