帳號:guest(18.220.197.67)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳定豐
作者(外文):Chen, Ting Feng
論文名稱(中文):具抗菌活性之醣多肽的合成與設計
論文名稱(外文):Design and Synthesis of Glycopeptide with Antibacterial Activity
指導教授(中文):王聖凱
指導教授(外文):Wang, Sheng Kai
口試委員(中文):洪嘉呈
鄭偉杰
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:103023529
出版年(民國):105
畢業學年度:105
語文別:中文英文
論文頁數:122
中文關鍵詞:抗微生物胜肽脯胺酸多肽
外文關鍵詞:antimicrobial peptidespolyproline
相關次數:
  • 推薦推薦:0
  • 點閱點閱:51
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近幾十年來,抗生素濫用問題使得病原細菌產生抗藥性。抗微生物胜肽廣泛存在於動植物體中,屬於先天免疫系統中的一環。其特殊的作用機制有別於一般抗生素,產生抗藥性的機率低,且可快速殺掉細菌,進而成為研究發展的目標。
在本研究中,我們成功合成出三種具有疊氮基的脯胺酸多肽,以及具有末端炔且帶有正電性的四種單醣,並利用CuAAC反應將單醣與胜肽結合。另外也成功利用丙炔胍(N-propargylguanidine)將胍基接上脯胺酸多肽。最後我們以MIC檢測,並得到對大腸桿菌與金黃色葡萄球菌,具有抗菌活性的化合物47效果分別為200 μM和100 μM,與化合物48效果皆為200 μM。
In the last few decades, many pathogenic bacteria have developed drug resistance due to the abuse of antibiotic. Scientists are trying to search for the replacement of antibiotic. The antimicrobial peptides can be found widely in organism, part of the innate immune system. Unlike the normal antibiotic, its special mechanism makes it unlikely to develop drug resistance, and it can also eliminate bacteria rapidly thus becoming the primary goal for lots of scientists.
In this research, we synthesized three Azp containing polyproline peptides, and four cationic glycosides, then ligated glycosides and peptides by CuAAC reaction. we also build guanidinium group on polyproline by using of N-propargylguanidine. Finally, we conducted MIC assay in E. coli and S. aureus and found antibacterial peptides 47, the result was 200 μM and 100 μM respectively, and 48 was 200 μM.
摘要 i
Abstract ii
縮寫對照表 iii
圖目錄 vii
表目錄 viii
流程目錄 ix
一、緒論 1
1.1前言 1
1.2抗微生物胜肽簡介 5
1.3 PP II 結構特性與富含脯胺酸之抗微生物胜肽 11
1.4 研究動機 13
二、實驗結果與討論 14
2.1 實驗設計 14
2.2 單醣構築單元的合成 17
2.2.1化合物5與11的合成 17
2.2.2化合物17、20、21的合成 21
2.3非天然脯胺酸構築單元的合成 23
2.3.1化合物24的合成 23
2.4脯胺酸多肽的合成 25
2.4.1化合物29-32的合成 26
2.5疊氮-炔類環化加成反應 29
2.5.1化合物34至38的合成 29
2.5.2化合物39至37的合成 31
2.5.3化合物44至49的合成 32
2.5.4化合物33與多肽32的CuAAC反應 33
2.5.5圓二色光譜(Circular Dichroism Spectrum,CD Spectrum)儀測量 36
2.6 最小抑菌濃度(MIC)檢測 38
2.7 結論 40
三、實驗部分 41
四、參考文獻 67
五、附錄 72
. Anwar, M. A. ; Choi, S. Gram-Negative Marine Bacteria: Structural Features of Lipopolysaccharides and Their Relevance for Economically Important Diseases. Mar. Drugs 2014, 12, 2485–2514.
. Brown, S.; Santa, Maria, J. P. Jr; Walker, S. Wall teichoic acids of gram-positive bacteria. Annu. Rev. Microbiol 2013, 67, 313–336.
. Niederweis, M. Mycobacterial porins--new channel proteins in unique outer membranes. Mol. Microbiol. 2003, 49, 167–177.
. Aminov, R. I. A brief history of the antibiotic era: lessons learned and challenges for the future. Front. Microbiol. 2010, 1, 134.
. Weisblum, B. Erythromycin resistance by ribosome modification. Antimicrob. Agents Chemother. 1995, 39, 577–585.
. Houang, A. T.; Chu, Y. W.; Lo, W. S.; Chu, K. Y.; Cheng, A.F. Epidemiology of Rifampin ADP-Ribosyltransferase (arr-2) and Metallo-β-Lactamase (blaIMP-4) Gene Cassettes in Class 1 Integrons in Acinetobacter Strains Isolated from Blood Cultures in 1997 to 2000. Antimicrob. Agents Chemother. 2003, 47, 1382–1390.
. Achari, A.; Somers, D. O.; Champness, J. N.; Bryant, P. K.; Rosemond, J.; Stammers, D. K.; Crystal structure of the anti-bacterial sulfonamide drug target dihydropteroate synthase. Nat. Struct. Biol. 1997, 4, 490–497.
. Straus, S. K.; Hancock, R. E. Mode of action of the new antibiotic for Gram-positive pathogens daptomycin: comparison with cationic antimicrobial peptides and lipopeptides. Biochim. Biophys. Acta. 2006, 1758, 1215–1223.
. Khoo, S. H.; Bond, J.; Denning, D. W. Administering amphotericin B–a practical approach. J. Antimicrob. Chemother. 1994, 33, 203–213.
. Cooper, M. A.; Fiorini, M. T.; Abell, C.; Williams, D. H. Binding of vancomycin group antibiotics to D-alanine and D-lactate presenting self-assembled monolayers. Bioorg. Med. Chem. 2000, 8, 2609–2616.
. Cooper, M. A.; Williams, D. H. Binding of glycopeptide antibiotics to a model of a vancomycin-resistant bacterium. Chem. Biol. 1999, 6, 891–899.
. Blair, J. M.; Webber, M. A.; Baylay, A. J.; Ogbolu, D. O.; Piddock, L. J. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 2015, 13, 42–51.
. Clatworthy, A. E.; Pierson, E.; Hung, D. T. Targeting virulence: a new paradigm for antimicrobial therapy. Nat. Chem .Biol. 2007, 3, 541–548.
. Abedon, S. T.; Kuhl, S. J.; Blasdel, B. G.; Kutter, E. M. Phage treatment of human infections. Bacteriophage. 2011, 1, 66–85.
. Ponnappan, N.; Budagavi, D. P.; Yadav, B. K.; Chugh, A. Membrane-active peptides from marine organisms--antimicrobials, cell-penetrating peptides and peptide toxins: applications and prospects. Probiotics Antimicrob. Proteins. 2015, 7, 75–89.
. Zasloff, M. Antimicrobial peptides of multicellular organisms. Nature 2002, 415, 389–395.
. According to the antimicrobial peptide database, there are at least 2700 AMPs as of June 2016:http://aps.unmc.edu/AP/
. Bulet, P.; Stöcklin, R.; Menin, L. Anti-microbial peptides: from invertebrates to vertebrates. Immunol. Rev. 2004, 198, 169–184.
. Tossi, A.; Sandri, L. Molecular diversity in gene-encoded, cationic antimicrobial polypeptides. Curr. Pharm. Des. 2002, 8, 743–761.
. Rashid, R.; Veleba, M.; Kline, K. A. Focal Targeting of the Bacterial Envelope by Antimicrobial Peptides. Front. Cell Dev. Biol. 2016, 4, 55.
. Huang, HW. Action of antimicrobial peptides: two-state model. Biochemistry 2000, 39, 8347–8352.
. Yang, L.; Harroun, T. A.; Weiss, T. M.; Ding, L.; Huang, H. W. Barrel-stave model or toroidal model? A case study on melittin pores. Biophys. J. 2001, 81, 1475–1485.
. Mudhakir, D.; Harashima, H. Learning from the viral journey: how to enter cells and how to overcome intracellular barriers to reach the nucleus. AAPS J. 2009, 11, 65–77.
. Matsuzaki, K.; Murase, O.; Fujii, N.; Miyajima, K. An antimicrobial peptide, magainin 2, induced rapid flip-flop of phospholipids coupled with pore formation and peptide translocation. Biochemistry 1996, 35, 11361–11368.
. Shai, Y. Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim. Biophys. Acta. 1999, 1462, 55–70.
. Ghosh, A.; Kar, R. K.; Jana, J.; Saha, A.; Jana, B.; Krishnamoorthy, J.; Kumar, D.; Ghosh, S.; Chatterjee, S.; Bhunia, A. Indolicidin targets duplex DNA: structural and mechanistic insight through a combination of spectroscopy and microscopy. ChemMedChem. 2014, 9, 2052–2058.
. Mukhopadhyay, J.; Sineva, E.; Knight, J.; Levy, R. M.; Ebright, R. H. Antibacterial peptide microcin J25 inhibits transcription by binding within and obstructing the RNA polymerase secondary channel. Mol. Cell 2004, 14, 739–751.
. Mardirossian, M.; Grzela, R,; Giglione, C.; Meinnel, T.; Gennaro, R.; Mergaert, P.; Scocchi, M. The host antimicrobial peptide Bac71-35 binds to bacterial ribosomal proteins and inhibits protein synthesis. Chem. Biol. 2014, 21, 1639–1647
. Kjos, M.; Oppegård, C.; Diep, D. B.; Nes, I. F.; Veening, J. W.; Nissen-Meyer, J.; Kristensen, T. Sensitivity to the two-peptide bacteriocin lactococcin G is dependent on UppP, an enzyme involved in cell-wall synthesis. Mol. Microbiol. 2014, 92, 1177–1187.
. Wilmes, M.; Stockem, M.; Bierbaum, G.; Schlag, M.; Gotz, F.; Tran, D. Q.; Schaal, J.B.; Ouellette, A.J.; Selsted, M.E.; Sahl, H.G. Killing of staphylococci by theta-defensins involves membrane impairment and activation of autolytic enzymes. Antibiotics (Basel). 2014, 3, 617–631.
. Yeaman, M. R.; Yount, N. Y. Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev. 2003, 55, 27–55.
. Bechinger, B. Membrane association and pore formation by alpha-helical peptides. Adv. Exp. Med. Biol. 2010, 677, 24–30.
. Shai, Y. Mode of action of membrane active antimicrobial peptides. Biopolymers. 2002, 66, 236–248.
. Hansen, A.; Schäfer, I.; Knappe, D.; Seibel, P.; Hoffmann, R. Intracellular toxicity of proline-rich antimicrobial peptides shuttled into mammalian cells by the cell-penetrating peptide penetratin. Antimicrob. Agents Chemother. 2012, 56, 5194–5201.
. Dathe, M.; Nikolenko, H.; Meyer, J.; Beyermann, M.; Bienert, M. Optimization of the antimicrobial activity of magainin peptides by modification of charge. FEBS Lett. 2001, 501, 146–150.
. Sadler, K.; Eom, K. D.; Yang, J. L.; Dimitrova, Y.; Tam, J. P. Translocating proline-rich peptides from the antimicrobial peptide bactenecin 7. Biochemistry 2002, 41, 14150-14157.
. Peschel, A.; Otto, M.; Jack, R. W.; Kalbacher, H.; Jung, G.; Götz, F. Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to defensins, protegrins, and other antimicrobial peptides. J. Biol. Chem. 1999, 274, 8405–8410.
. Matamouros, S.; Miller, S. I. S. Typhimurium strategies to resist killing by cationic antimicrobial peptides. Biochim. Biophys. Acta. 2015, 1848, 3021–3025.
. Marr, A. K.; Gooderham, W. J.; Hancock, R. E. Antibacterial peptides for therapeutic use: obstacles and realistic outlook. Curr. Opin. Pharmacol. 2006, 6, 468–472.
. Li, W.; Tailhades, J.; O'Brien-Simpson, N. M.; Separovic, F.; Otvos, L. Jr.; Hossain, M. A.; Wade, J. D. Proline-rich antimicrobial peptides: potential therapeutics against antibiotic-resistant bacteria. Amino Acids. 2014, 46, 2287–2294.
. Scocchi, M.; Tossi, A.; Gennaro, R. Proline-rich antimicrobial peptides: converging to a non-lytic mechanism of action. Cell Mol. Life Sci. 2011, 68, 2317–2330.
. Boman, H. G.; Agerberth, B.; Boman, A. Mechanisms of action on Escherichia coli of cecropin P1 and PR-39, two antibacterial peptides from pig intestine. Infect. Immun. 1993, 61, 2978–2984.
. Adzhubei, A. A.; Sternberg, M. J.; Makarov, A. A. Polyproline-II helix in proteins: structure and function. J. Mol. Biol. 2013, 425, 2100–2132.
.Kümin, M.; Sonntag, L. S.; Wennemers, H. Azidoproline containing helices: stabilization of the polyproline II structure by a functionalizable group. J. Am. Chem. Soc. 2007, 129, 466–467.
. Fillon, Y. A.; Anderson, J. P.; Chmielewski, J. Cell penetrating agents based on a polyproline helix scaffold. J. Am. Chem. Soc. 2005, 127, 11798–11803.
. Kuriakose, J.; Hernandez-Gordillo, V.; Nepal, M.; Brezden, A.; Pozzi, V.; Seleem, M. N.; Chmielewski, J. Targeting intracellular pathogenic bacteria with unnatural proline-rich peptides: coupling antibacterial activity with macrophage penetration. Angew. Chem. Int. Ed. Engl. 2013, 52, 9664–9667.
. Michihata, N.; Kaneko, Y,; Kasai, Y.; Tanigawa, K.; Hirokane, T.; Higasa, S.; Yamada, H. High-yield total synthesis of (-)-strictinin through intramolecular coupling of gallates. J. Org. Chem. 2013, 78, 4319–4328.
. De Nisco, M., Pedatella, S.; Bektaş, S.; Nucci, A.; Caputo, R. D-Glucosamine in a chimeric prolinamide organocatalyst for direct asymmetric aldol addition. Carbohydr. Res. 2012, 356, 273–277.
.Dullenkopf, W.; Castro-Palomino, J. C.; Manzoni, L.; Schmidt, R. R. N-trichloroethoxycarbonyl-glucosamine derivatives as glycosyl donors. Carbohydr. Res. 1996, 296, 135–147.
. Walczewska, A.; Grzywacz, D.; Bednarczyk, D.; Dawgul, M.; Nowacki, A.; Kamysz, W.; Liberek, B.; Myszka, H. N-Alkyl derivatives of diosgenyl 2-amino-2-deoxy-β-D-glucopyranoside; synthesis and antimicrobial activity. Beilstein J. Org. Chem. 2015, 11, 869–874.
. Rowan, A. S.; Nicely, N. I.; Cochrane, N.; Wlassoff, W. A.; Claiborne, A.; Hamilton, C. J. Nucleoside triphosphate mimicry: a sugar triazolyl nucleoside as an ATP-competitive inhibitor of B. anthracis pantothenate kinase. Org. Biomol. Chem. 2009, 7, 4029–4036.
. Ikeda, K.; Morimoto, T.; Kakiuchi, K. Utilization of Aldoses as a Carbonyl Source in Cyclocarbonylation of Enynes. J. Org. Chem. 2010, 75, 6279–6282.
. Tyagi, M.; Khurana, D.; Kartha, K. P. Solvent-free mechanochemical glycosylation in ball mill. Carbohydr. Res. 2013, 379, 55–59.
. Lua, W. Y.; Sunb, X. W.; Zhua, C.; Xuc, J. H.; Lina, G. Q. Expanding the application scope of glycosidases using click chemistry. Tetrahedron 2010, 66, 750–757.
.Pietrzik, N.; Schmollinger, D.; Ziegler, T. Dimerization of propargyl and homopropargyl 6-azido-6-deoxy-glycosides upon 1,3-dipolar cycloaddition. Beilstein J. Org. Chem. 2008, 4, 30.
. He, C.; Ren, X.; Feng, Y.; Chai, Y.; Zhang, S.; Chen, W. Diphenylprolinol silyl ether-derived thioureas as highly efficient catalysts for the asymmetric Michael addition of aldehydes to nitroalkenes. Tetrahedron Lett. 2015, 56, 4036–4038.
. Le Quement, S. T.; Ishoey, M.; Petersen, M. T.; Thastrup, J.; Hagel, G.; Nielsen, T. Solid-Phase Synthesis of Smac Peptidomimetics Incorporating Triazoloprolines and Biarylalanines. ACS Comb. Sci. 2011, 13, 667–675.
. Fast, W.; Huff, M. E.; Silverman, R. B. Time-dependent inhibition of neuronal nitric oxide synthase by N-propargylguanidine. Bioorg. Med Chem. Lett. 1997, 7, 1449–1454.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *