帳號:guest(3.12.148.187)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):許稜侑
作者(外文):Syu, Leng You
論文名稱(中文):鈷鋯共摻雜二氧化鈦奈米粒子對提高可見光吸收之研究
論文名稱(外文):Enhanced visible light absorption in cobalt and zirconium co-doped titanium dioxide nanoparticles
指導教授(中文):蘇雲良
指導教授(外文):Soo, Yun Liang
口試委員(中文):張石麟
黃玉山
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理系
學號:103022544
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:42
中文關鍵詞:X光吸收光譜二氧化鈦溶膠凝膠法
外文關鍵詞:XAFSTitanium dioxideSol-Gel
相關次數:
  • 推薦推薦:0
  • 點閱點閱:52
  • 評分評分:*****
  • 下載下載:14
  • 收藏收藏:0
二氧化鈦在光觸媒的應用上相當重要,本研究探討雜質與鍛燒溫度對二氧化鈦在可見光吸收率的影響。使用溶膠凝膠法製備鈷摻雜、鋯摻雜以及鈷鋯共摻雜的二氧化鈦奈米粒子,並經過攝氏500度和攝氏800度鍛燒。從X光粉末繞射以及拉曼光譜確認樣品的結構,X光吸收精細結構的結果顯示摻雜的原子是取代二氧化鈦中鈦原子的位置,之後利用紫外光至可見光光譜儀測量材料的吸收率與能隙大小。我們發現鈷鋯共摻雜二氧化鈦在攝氏500度鍛燒條件下存在較多的缺陷,加上摻雜鈷所形成的雜質能帶,使樣品在可見光波段的吸收率增加。
Titanium dioxide(TiO2) is an important materials for photocatalytic applications.In this thesis,we have investigated the effects of impurity doping and thermal annealing on visible-light absorption of TiO2.
Nanoparticles of Cobalt- and Zirconium-doped titanium dioxide, as well as (Co, Zr) co-doped TiO2, were synthesized by sol-gel method followed by thermal annealing at 500 degrees Celsius and 800 degrees Celsius. The crystal structures of the samples were probed by X-ray diffraction and then reconfirmed by Raman spectroscopy. Extended x-ray absorption fine structure analysis shows that the dopant atoms substitute for titanium sites in TiO2. Visible-light absorption properties and band gaps for all samples were determined by using an ultraviolet-visible spectrometer. We observed enhanced visible-light absorption in 500 degrees Celsius-annealed (Co,Zr) co-doped TiO2 due to defects and impurities.
摘要..................................................i
Abstract..............................................ii
誌謝..................................................iii
目錄..................................................iv
圖目錄................................................vi
表目錄................................................viii
第一章 序論...........................................1
1.1 研究動機........................................1
1.2 論文簡介........................................1
第二章 文獻回顧.......................................2
2.1 二氧化鈦簡介....................................2
2.2 光觸媒反應機制..................................4
2.3 密度泛函理論....................................5
2.3.1 Hohenberg-Kohn theorem......................5
2.3.2 Kohn-Sham equation..........................6
第三章 計算電子的狀態密度.............................8
3.1 計算方法........................................8
3.2 計算結果........................................8
第四章 實驗方法.......................................14
4.1 X光吸收精細結構.................................14
4.1.1 XANES.......................................15
4.1.2 EXAFS.......................................15
4.1.3 EXAFS 方程式簡介............................16
4.2 X光繞射.........................................20
4.3 紫外光至可見光光譜..............................21
4.4 拉曼光譜........................................22
第五章 樣品製備.......................................23
5.1 溶膠凝膠法......................................23
5.2 使用藥劑........................................23
5.3 製備流程........................................24
5.4 樣品代號........................................24
第六章 實驗結果與數據分析.............................26
6.1 X光繞射.........................................26
6.2 拉曼光譜........................................28
6.3 X光吸收精細結構.................................31
6.3.1 XANES.......................................31
6.3.2 EXAFS.......................................32
6.4 紫外光至可見光光譜分析..........................36
第七章 結論...........................................39

參考文獻..............................................40

[1] Mingi Choi and Kijung Yong. A facile strategy to fabricate high-quality single crystalline brookite TiO2 nanoarrays and their photoelectrochemical properties. Nanoscale, 6(22):13900.13909, 2014.
[2] David O. Scanlon, Charles W. Dunnill, John Buckeridge, Stephen A. Shevlin, Andrew J. Logsdail, Scott M. Woodley, C. Richard A. Catlow, Michael. J. Powell, Robert G. Palgrave, Ivan P. Parkin, Graeme W. Watson, Thomas W. Keal, Paul Sherwood, Aron Walsh, and Alexey A. Sokol. Band alignment of
rutile and anatase TiO2. Nat Mater, 12(9):798.801, September 2013.
[3] Akira Fujishima. Electrochemical photolysis of water at a semiconductor electrode. nature, 238:37–38, 1972.
[4] Ryoji Asahi, Takeshi Morikawa, Ohwaki. T, K Aoki, and Y Taga. Visiblelight photocatalysis in nitrogen-doped titanium oxides. science, 293(5528): 269–271, 2001.
[5] Huarong Zhang, Keqi Tan, Haiwu Zheng, Yuzong Gu, and W.F. Zhang. Preparation, characterization and photocatalytic activity of TiO2 codoped with yttrium and nitrogen. Materials Chemistry and Physics, 125(1):156–160, 2011.
[6] Adriana Zaleska. Doped-TiO2: a review. Recent Patents on Engineering,2(3):157.164, 2008.
[7] Xiaobo Chen, Lei Liu, Y Yu Peter, and Samuel S Mao. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science, 331(6018):746–750, 2011.
[8] Walter Kohn and Lu Jeu Sham. Self-consistent equations including exchange and correlation effects. Physical review, 140(4A):A1133, 1965.
[9] Walter Kohn. Nobel lecture: Electronic structure of matter..wave functions and density functionals. Reviews of Modern Physics, 71(5):1253, 1999.
[10] Klaus Capelle. A bird’s-eye view of density-functional theory. Brazilian Journal of Physics, 36(4A):1318–1343, 2006.
[11] Anna Iwaszuk and Michael Nolan. Electronic structure and reactivity of Ce and Zr-doped TiO2: Assessing the reliability of density functional theory approaches. The Journal of Physical Chemistry C, 115(26):12995–13007, 2011.
[12] Sa Li and Puru Jena. Origin of the anatase to rutile conversion of metal-doped TiO2. Physical Review B, 79(20):201204, 2009.
[13] Jim J. Napolitano J. J. Sakurai. Modern Quantum Mechanics(2nd Edition). Pearson, 2007.
[14] B.D.Cullity and S.R.Stock. Elements of X-Ray Diffraction (3rd Edition). Upper Saddle River NJ: Pearson, 2001.
[15] Paul Kubelka and Franz Munk. An article on optics of paint layers. Z. Tech. Phys, 12(593-601), 1931.
[16] Paul Kubelka. New contributions to the optics of intensely light-scattering materials. part i. JOSA, 38(5):448.448, 1948.
[17] Yoshitake Masuda and Kazumi Kato. Synthesis and phase transformation of TiO2 nano-crystals in aqueous solutions. Journal of the Ceramic Society of Japan, 117(1363):373.376, 2009.
[18] Bifen Gao, Tuti Mariana Lim, Dewi Puspitaningrum Subagio, and Teik-Thye Lim. Zr-doped TiO2 for enhanced photocatalytic degradation of bisphenol a. Applied Catalysis A: General, 375(1):107–115, 2010.
[19] Maasoumeh Jafarpour, Elham Rezapour, Mahboobe Ghahramaninezhad, and Abdolreza Rezaeifard. A novel protocol for selective synthesis of monoclinic zirconia nanoparticles as a heterogeneous catalyst for condensation of 1, 2-
diamines with 1, 2-dicarbonyl compounds. New Journal of Chemistry, 38(2):676.682, 2014.
[20] Poty R de Lucena, Edson Roberto Leite, Fenelon M Pontes, Elson Longo, Paulo S Pizani, and Jose Arana Varela. Photoluminescence: A probe for short, medium and long-range self-organization order in zrtio4 oxide. Journal of Solid State Chemistry, 179(12):3997.4002, 2006.
[21] Congkang Xu, Yingkai Liu, Guoding Xu, and Guanghou Wang. Fabrication of CoO nanorods via thermal decomposition of CoC2O4 precursor. Chemical physics letters, 366(5):567–571, 2002.
[22] Varghese Swamy, Alexei Kuznetsov, Leonid S Dubrovinsky, Rachel A Caruso, Dmitry G Shchukin, and Barry C Muddle. Finite-size and pressure effects on the raman spectrum of nanocrystalline anatase TiO2. Physical Review B, 71(18):184302, 2005.
[23] Christian Lejon and Lars Österlund. Influence of phonon confinement, surface stress, and zirconium doping on the raman vibrational properties of anatase tio2 nanoparticles. Journal of Raman Spectroscopy, 42(11):2026–2035, 2011.
[24] Hyun Chul Choi, Young Mee Jung, and Seung Bin Kim. Size effects in the raman spectra of TiO2 nanoparticles. Vibrational Spectroscopy, 37(1):33–38, 2005.
[25] A Li Bassi, D Cattaneo, V Russo, CE Bottani, E Barborini, T Mazza, P Piseri, P Milani, FO Ernst, K Wegner, et al. Raman spectroscopy characterization of titania nanoparticles produced by flame pyrolysis: the influence of size and stoichiometry. Journal of applied physics, 98(7):074305, 2005.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *