帳號:guest(18.225.55.210)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳慶紘
作者(外文):Chen,Cing-Hong
論文名稱(中文):矽(111)面上的鉭矽化物
論文名稱(外文):Tantalum silicides on the Si(111) surface
指導教授(中文):林登松
指導教授(外文):Lin,Deng-Sung
口試委員(中文):羅榮立
簡紋濱
口試委員(外文):Lo,Rong-Li
Jian,Wen-Bin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理系
學號:103022542
出版年(民國):105
畢業學年度:105
語文別:中文
論文頁數:104
中文關鍵詞:鉭矽化物
外文關鍵詞:Tantalum silicides
相關次數:
  • 推薦推薦:0
  • 點閱點閱:568
  • 評分評分:*****
  • 下載下載:6
  • 收藏收藏:0
過去IBS(Ion Beam Sputtering)的研究放在入射角度、離子束能量與離子通量對於圖案的影響,對於濺鍍過程中可能出現的金屬雜質的影響不是很重視。最近幾年,由於同步沉積,濺鍍的金屬在基板上奈米圖案的形成被評估為關鍵作用,因而引起了許多研究者的興趣。IBS的優點是可以將以往蒸鍍無法達成的高熔點金屬濺鍍在基板上進行研究。而將鉭以IBS方式濺鍍在矽(111)表面就是這次研究的主題。
本實驗的IBS條件為:用 2 keV的氬離子以30∘角入射緊鄰在矽(111)基板表面且與其垂直的鉭片,矽(111)基板溫度為室溫和1000 K。我們選擇在矽 (111)表面上距離鉭片0.9 mm、1.2 mm、1.5 mm、1.8 mm、2.1 mm的位置上以STM觀察測表面情形,以探討矽(111)表面在濺鍍並加熱後的變化,主要目的是統計2D islands與3D island的高度與面積大小的分布。在加熱到1293 K時,我們探測2D islands至少有兩種屬於金屬性質的結構,有domian的為√3×√3,另一為無domain的蜂巢狀結構,其原子間距為0.31 nm,目前是未知結構。在矽基板為1000 K的實驗中,發現一種半導體性質的2D island,經由STM影像計算原子間距,推斷其為√7×√7結構,而3D island 有不可逆性,會隨著加熱而聚集。根據矽跟鉭的相圖,3D island應為TaSi2結構。
本實驗統計了鉭在矽(111)形成之表面結構與鉭片距離、基板溫度的關係,發現了2D island 有3種結構,而3D island推論為TaSi2結構,若能有理論方面的結果,相信更能判斷出2D island鉭矽化物的結構。
In the past, the research of ion beam sputtering (IBS) emphasized on how the incidence angle, ion energy and the flux of ion beam change the patterns formed on the sputtered substrates. The influence of metal impurities produced in the IBS process was usually ignored. In recent years, due to the metal co-deposition, the metal impurities has been evaluated as a key role in the formation of nano-patterns on the substrate surfaces. Therefore, it attracted the interest of many researchers. IBS has the advantage to carry out the deposition of metals of high-melting points which cannot be achieved easily by thermal evaporation in the past. In this research co-deposition of tantalum by IBS on the Si(111) surface to form tantalum silicides is our subject.
The IBS conditions in our experiments are: a 2-keV Ar+ ion beam strikes the Si(111) surface at an incidence angle 30o to the surface normal. A tantalum sheet is positioned perpendicularly to the Si(111) substrate. When ISB is performed, both Ta sheet and Si(111) substrate are sputtered. The temperature of Si(111) substrate is kept at room temperature and 1000 K when IBS is carrying out. We observe the sputtered surface with STM at the distances of 0.9 mm, 1.2 mm, 1.5 mm, 1.8 mm and 2.1 mm from Ta sheet after sputtering followed by a post-annealing. Our goal is to investigate the structures and distributions of all possible surface features formed in the sputtering-annealing process. After post-annealing at 1293 K, we found two structures for 2D islands, both have metallic ehavior under STM imaging.The first one is √3×√3 structure with domains distributed on island surface.The second one is a honeycomb structure with interatomic separation 0.31 nm and covers the entire island surface without domain. So far we do not know its structure.In the experiment of IBS on hot Si(111) substrate at 1000 K, we found a semiconductor-like 2D island which has a √7×√7 structure.The 3D islands grow bigger irreversibly upon annealing. According to Si-Ta phase diagrams, the structure of 3D islands should be TaSi2.
In our experiment, we try to find out the changes of 2D and 3D islands formed after the co-deposition of Ta on the Si(111) surface at different positions and Si substrate temperatures. We found three structures for 2D island and we conclude that the structure of 3D island is TaSi2. However, our conclusions of the structures for 2D islands are short of the reconfirmation of theoretical work. With the theoretical results, the structures of 2D islands can be determined correctly.
第一章 導論 14
1.1研究動機 14
1.2 矽晶體 15
1.3相關文獻 18
1.3.1 在矽(111)面上的鉭矽化物的殼層光電子能譜和在STM上的表面特徵 18
1.3.2 以STM研究在矽(111)7×7的釩的nanocluster 21
第二章 儀器工作原理 22
2.1 真空系統與實驗儀器 22
2.1.1真空系統 22
2.1.2真空幫浦及氣壓測量儀介紹 23
2.1.2抽真空概略程序 26
2.2 掃描穿隧顯微鏡 28
2.2.1 量子穿隧效應 28
第三章 儀器介紹與實驗步驟與過程 30
3.1 實驗環境 31
3.2 儀器介紹 34
3.2.1 Omicron VT-STM 34
3.2.2 Specs ion gun 35
3.3 樣品處理 37
3.4 STM探針製作 38
3.5 實驗步驟與過程 39
第四章 結果與討論 41
4.1 2 keV的能量以30∘Sputtering鉭在矽(111)的表面結構 41
4.1.1位置一:距離Ta板0.9 mm 41
4.1.2 位置二:距離Ta板1.2 mm 45
4.1.3 位置三:距離Ta板1.5 mm 46
4.1.4位置四:距離Ta板1.8 mm 47
4.1.5 位置五:距離Ta板2.1 mm 50
4.1.6 第一次加熱 圖案形成與Ta板距離間的關係討論 53
4.2 加熱後表面圖案的變化 57
4.2.1第二次加熱 以1083 K的溫度退火5分鐘 57
4.2.2第三次加熱 以1153 K溫度退火5分鐘 60
4.2.3第四次加熱 以1183 K溫度退火5分鐘 63
4.2.4第五次加熱 以1243 K溫度退火5分鐘 67
4.2.5第六次加熱 以1243 K溫度退火10分鐘 70
4.2.6第七次加熱 以1293 K溫度退火5分鐘 75
4.2.7 2D islands在加熱下的變化與其上面的結構 81
4.3 第二次濺鍍 84
4.3.1 動機 84
4.3.2 位置一:距離 Ta板0.9 mm 85
4.3.3位置二:距離Ta板1.2 mm 88
4.3.4位置三:距離Ta板 1.5mm 89
4.3.5 位置四:距離Ta板1.8 mm 91
4.3.6位置五:距離 Ta板2.1 mm 95
4.3.7 兩次濺鍍後的圖案差異探討 97
第五章 結論 101
六 參考文獻 102

1 W. L. Chan & E. Chason, Making waves: Kinetic processes controlling surface evolution during low energy ion sputtering. Journal of Applied Physics 101 121301 (2007).
2 M. Engler,F.Frost, S. Muller, S.Macko, M.Will, R.Feder, D.Spemann, R.Hubner, S.Facsko, T.Michely, Silicide induced ion beam patterning of Si(001). Nanotechnology 25 5303 (2014).
3 G. Ozaydin, A. S. Özcan, Y. Wang, K.F. Ludwig, H. Zhou, R. L. Headrick,.D. P. Siddons, Real-time x-ray studies of Mo-seeded Si nanodot formation during ion bombardment. Applied Physics Letters 87 163104 (2005).
4 S. Macko, F. Frost,M. Engler, D. Hirsch, T. Höche,J. Grenzer, and T. Michely, Phenomenology of iron-assisted ion beam pattern formation on Si(001). New Journal of Physics 13 073017 (2011).
5 J. Muñoz-García, L. Vazquez, M. Cuerno, R. Gago, A. Redondo-Cubero, A. Moreno-Barado, and R. Cuerno , Self-organized nanopatterning of silicon surfaces by ion beam sputtering. Materials Science and Engineering: R: Reports 86 1 (2014).
6 J. R. Arthur, Molecular beam epitaxy. Surface Science 500 189-217 (2002).
7 P.A.Bennett, H von Ka ̈nel, Scanning tunnelling microscopy studies of silicides. Journal of Physics D: Applied Physics 32 R71 (1999).
8 P. Shukrynau, P. Mutombo, M. Švec, M. Hietschold & V. Cháb, Tantalum induced butterfly-like clusters on Si (111)-7×7 surface: STM/STS study at low coverage. Surface Science 606 356 (2012).
9 http://www.matscieng.sunysb.edu/leed/trunc.html.
10 Harrison, A.Walter, Surface reconstruction on semiconductors. Surface Science 55 1 (1976).
11 G.Binnig, H. Rohrer, Ch. Gerber, E.Weibel, 7×7 Reconstruction on Si(111) Resolved in Real Space. Physical Review Letters 50 120 (1983).
12 K. Takayanag, Y. Tanishiro, S. Takahashi and M. Takahashi, Structure analysis of Si(l11)7×7 Reconstructed surface by transmission electron diffraction. Surface Science 164 367 (1985).
13 http://eng.thesaurus.rusnano.com/wiki/article14156.
14 H. Huang, S.Y. Tong, W.E. Packard and M.B. Webb. Atomic geometry of Si(111) 7×7 by dynamical Low-energy electron diffraction. Physics Letters A 130 166 (1988).
15 S. Y. Tong, H. Huang, C.M .Wei, W. E Packard, F. K.Men, G. Glander, and M. B. Webb, Low-energy electron diffraction analysis of the Si(111)7×7 structure. Journal of Vacuum Science & Technology A 6 615 (1988).
16 A.Ichimiya,. RHEED intensity analysis of Si(111) 7×7 at one-beam condition. Surface Science 192 L893 (1987).
17 Y. Horio, A. Ichimiya, Kinematical analysis of RHEED intensities from the Si(111)7×7 structure. Surface Science 219 128 (1989).
18 I. K. Robinson, The role of strain in Si(111)7×7 and related reconstructed surfaces. Journal of Vacuum Science & Technology A 6 1966 (1988).
19 P. Shukrynau, V. Dudr, M. Švec, M. Vondráček, P. Mutombo, T. Skála, F. Šutara, V.Matolín, K.C. Prince, V. Cháb, Core level photoemission and STM characterization of Ta/Si(111)-7×7 interfaces. Surface Science 603 469 (2009).
20 T. Laurila, K. Zeng, J. K.Kivilahti, J. Molarius & I. Suni, Failure mechanism of Ta diffusion barrier between Cu and Si. Journal of Applied Physics 88 3377 (2000).
21 F. Stavale, C. A.Achete & H. Niehus, Vanadium nanoclusters on Si(111) 7×7 surface studied by scanning tunneling microscopy. Surface Science 601 4881 (2007).
22 J .G. Clabes, G. W. Rubloff & T. Y. Tan, Chemical reaction and Schottky-barrier formation at V/Si interfaces. Physical Review B 29 1540 (1984).
23 T. Jikimoto, M. Kisaka, T. Shibasaki, K. Yoshimoto, M. Hirai, M. Kusaka,& M. Iwami, Photoemission study of vanadium deposition on Si(100)2×1. Surface Science 113/114 384 (1997).
24 羅榮立老師提供之 SolidWorks 設計圖. National Tsing Hua University.
25 “Ion Source Power Supply IQE 11-A”, Manual 1.0, 13 Nov, 2000, SPECS GmbH.
26 “Ion Source IQE 11/35 and IQE 10/35”, User’s Mannual 1.1 19 Jan, 2000, SPECS GmbH.
27 “The Extractor Ion Source IQE 11/35 & 10/35”, SPECS GmbH.
28 S. Macko, F. Frost, B. Ziberi, D. F. Forster & T. Michely, Is keV ion-induced pattern formation on Si(001) caused by metal impurities? Nanotechnology 21 85301 (2010).
29 A.E. Meschter, P. J. Meschter, Energetics of C11b, C40, C54, and C49 structures in transition-metal disilicides. Journal of Materials Research 6 1512(1991).
30 F. Chu, M. Lei, S. A. Maloy, J. J Petrovic & T. E. Mitchell, Elactic properties of C40 transition metal disilicide. Acta Materialia 44 3035 (1996).
31 H. Sakamoto, A. Fujii, K. Tanaka & H. Inui,. Enantiomorph identification of transition-metal disilicides with the C40 structure (the space group of P6222 and P6422) by new convergent-beam electron diffraction method. Acta Materialia 53 41 (2005).
32 SGTE alloy database(revised 2004).
33 D. Wang & Z. Q. Zou, Formation of manganese silicide nanowires on Si(111) surfaces by the reactive epitaxy method. Nanotechnology 20 275607 (2009).

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *