|
1 W. L. Chan & E. Chason, Making waves: Kinetic processes controlling surface evolution during low energy ion sputtering. Journal of Applied Physics 101 121301 (2007). 2 M. Engler,F.Frost, S. Muller, S.Macko, M.Will, R.Feder, D.Spemann, R.Hubner, S.Facsko, T.Michely, Silicide induced ion beam patterning of Si(001). Nanotechnology 25 5303 (2014). 3 G. Ozaydin, A. S. Özcan, Y. Wang, K.F. Ludwig, H. Zhou, R. L. Headrick,.D. P. Siddons, Real-time x-ray studies of Mo-seeded Si nanodot formation during ion bombardment. Applied Physics Letters 87 163104 (2005). 4 S. Macko, F. Frost,M. Engler, D. Hirsch, T. Höche,J. Grenzer, and T. Michely, Phenomenology of iron-assisted ion beam pattern formation on Si(001). New Journal of Physics 13 073017 (2011). 5 J. Muñoz-García, L. Vazquez, M. Cuerno, R. Gago, A. Redondo-Cubero, A. Moreno-Barado, and R. Cuerno , Self-organized nanopatterning of silicon surfaces by ion beam sputtering. Materials Science and Engineering: R: Reports 86 1 (2014). 6 J. R. Arthur, Molecular beam epitaxy. Surface Science 500 189-217 (2002). 7 P.A.Bennett, H von Ka ̈nel, Scanning tunnelling microscopy studies of silicides. Journal of Physics D: Applied Physics 32 R71 (1999). 8 P. Shukrynau, P. Mutombo, M. Švec, M. Hietschold & V. Cháb, Tantalum induced butterfly-like clusters on Si (111)-7×7 surface: STM/STS study at low coverage. Surface Science 606 356 (2012). 9 http://www.matscieng.sunysb.edu/leed/trunc.html. 10 Harrison, A.Walter, Surface reconstruction on semiconductors. Surface Science 55 1 (1976). 11 G.Binnig, H. Rohrer, Ch. Gerber, E.Weibel, 7×7 Reconstruction on Si(111) Resolved in Real Space. Physical Review Letters 50 120 (1983). 12 K. Takayanag, Y. Tanishiro, S. Takahashi and M. Takahashi, Structure analysis of Si(l11)7×7 Reconstructed surface by transmission electron diffraction. Surface Science 164 367 (1985). 13 http://eng.thesaurus.rusnano.com/wiki/article14156. 14 H. Huang, S.Y. Tong, W.E. Packard and M.B. Webb. Atomic geometry of Si(111) 7×7 by dynamical Low-energy electron diffraction. Physics Letters A 130 166 (1988). 15 S. Y. Tong, H. Huang, C.M .Wei, W. E Packard, F. K.Men, G. Glander, and M. B. Webb, Low-energy electron diffraction analysis of the Si(111)7×7 structure. Journal of Vacuum Science & Technology A 6 615 (1988). 16 A.Ichimiya,. RHEED intensity analysis of Si(111) 7×7 at one-beam condition. Surface Science 192 L893 (1987). 17 Y. Horio, A. Ichimiya, Kinematical analysis of RHEED intensities from the Si(111)7×7 structure. Surface Science 219 128 (1989). 18 I. K. Robinson, The role of strain in Si(111)7×7 and related reconstructed surfaces. Journal of Vacuum Science & Technology A 6 1966 (1988). 19 P. Shukrynau, V. Dudr, M. Švec, M. Vondráček, P. Mutombo, T. Skála, F. Šutara, V.Matolín, K.C. Prince, V. Cháb, Core level photoemission and STM characterization of Ta/Si(111)-7×7 interfaces. Surface Science 603 469 (2009). 20 T. Laurila, K. Zeng, J. K.Kivilahti, J. Molarius & I. Suni, Failure mechanism of Ta diffusion barrier between Cu and Si. Journal of Applied Physics 88 3377 (2000). 21 F. Stavale, C. A.Achete & H. Niehus, Vanadium nanoclusters on Si(111) 7×7 surface studied by scanning tunneling microscopy. Surface Science 601 4881 (2007). 22 J .G. Clabes, G. W. Rubloff & T. Y. Tan, Chemical reaction and Schottky-barrier formation at V/Si interfaces. Physical Review B 29 1540 (1984). 23 T. Jikimoto, M. Kisaka, T. Shibasaki, K. Yoshimoto, M. Hirai, M. Kusaka,& M. Iwami, Photoemission study of vanadium deposition on Si(100)2×1. Surface Science 113/114 384 (1997). 24 羅榮立老師提供之 SolidWorks 設計圖. National Tsing Hua University. 25 “Ion Source Power Supply IQE 11-A”, Manual 1.0, 13 Nov, 2000, SPECS GmbH. 26 “Ion Source IQE 11/35 and IQE 10/35”, User’s Mannual 1.1 19 Jan, 2000, SPECS GmbH. 27 “The Extractor Ion Source IQE 11/35 & 10/35”, SPECS GmbH. 28 S. Macko, F. Frost, B. Ziberi, D. F. Forster & T. Michely, Is keV ion-induced pattern formation on Si(001) caused by metal impurities? Nanotechnology 21 85301 (2010). 29 A.E. Meschter, P. J. Meschter, Energetics of C11b, C40, C54, and C49 structures in transition-metal disilicides. Journal of Materials Research 6 1512(1991). 30 F. Chu, M. Lei, S. A. Maloy, J. J Petrovic & T. E. Mitchell, Elactic properties of C40 transition metal disilicide. Acta Materialia 44 3035 (1996). 31 H. Sakamoto, A. Fujii, K. Tanaka & H. Inui,. Enantiomorph identification of transition-metal disilicides with the C40 structure (the space group of P6222 and P6422) by new convergent-beam electron diffraction method. Acta Materialia 53 41 (2005). 32 SGTE alloy database(revised 2004). 33 D. Wang & Z. Q. Zou, Formation of manganese silicide nanowires on Si(111) surfaces by the reactive epitaxy method. Nanotechnology 20 275607 (2009).
|