帳號:guest(3.17.186.188)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):董彥均
作者(外文):Yen-Chun Tung
論文名稱(中文):騎乘腳踏車機器人之重心適應控制
論文名稱(外文):Center of Gravity Adaptation of a Bicycle-riding Robot
指導教授(中文):葉廷仁
指導教授(外文):Ting-Jen Yeh
口試委員(中文):顏炳郎
洪健中
口試委員(外文):Ping-Lang Yen
Chien-Chong Hong
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:103022541
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:39
中文關鍵詞:腳踏車動態平衡控制重心估測
外文關鍵詞:dynamics of the bicyclebalance controlcenter of gravity estimation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:563
  • 評分評分:*****
  • 下載下載:11
  • 收藏收藏:0
本研究藉由腳踏車的動態分析,進而實現使機器人騎乘腳踏車能夠保持平衡不受重心的偏移而影響騎乘方向。在腳踏車的動態分析中,可以得到其二階側向動態方程式,其中描述了側傾角加速度受到側傾角、龍頭轉角及龍頭角速度影響的關係。透過動態方程式可設計以龍頭轉角作為輸入的腳踏車平衡控制器,考慮實際系統的重心側傾角與慣性感測器測量的車身側傾角會有些微的偏差,若僅回授車身側傾角及其角速度進行控制便會因重心有所偏差而無法筆直向前騎乘,故研究中設計一估測器以計算偏差的重心側傾角,使腳踏車能自動平衡重心筆直前進。研究目前也包含騎乘方向的控制,以及嘗試讓機器人能夠自行起步與避障。
This thesis develops an adaptive controller for a bicycle-riding robot that can provide consistent balancing and steering performance under uncertain center of gravity. The adaptive controller contains two parts: the adaptation part and the PD control part. While the adaptation part estimates the roll angle associated with the uncertain center of gravity, the PD control part uses the estimated roll angle and the measured roll rate to stabilize the bicycle laterally. The design of the adaptive controller is based on a linearized third-order model which contains the roll angle, the roll rate and the steering angle as the states. The input of the model is a fictitious quantity that once it is determined by the controller, the actual steering angle input to the bicycle is obtained by low-pass filtering the fictitious input. Simulations and experiments verify that the adaptive control can automatically steer the bicycle in a straight line even if mass imbalance exists.
摘要-I
Abstract-II
致謝-III
圖目錄-VII
表目錄-VIII
符號一覽表-IX
第一章、緒論-1
1.1研究動機與目的-1
1.2文獻回顧-2
第二章、系統動態模型-5
2.1座標軸與變數定義-5
2.2動態方程式-6
2.2.1側傾動態方程式-6
2.2.2方程式線性化-8
第三章、系統分析與控制器設計-9
3.1 系統分析-9
3.2 PD平衡控制器設計-10
3.3 適應性重心估測控制器-11
3.4 模擬結果-13
3.4.1 未加入重心估測的PD控制器-13
3.4.2 重心估測控制器-16
第四章、平衡控制實作-20
4.1硬體介紹-20
4.1.1機器人-20
4.1.2 腳踏車-22
4.1.3 慣性感測器-23
4.1.4 控制及驅動板-23
4.2機器人運動控制-24
4.2.1手臂關節角度-26
4.2.2腿部關節角度-26
4.3實驗結果-27
4.3.1系統架構-27
4.3.2平衡控制28
4.3.3轉彎控制-30
第五章、結論與未來工作-36
5.1 結論-36
5.2 未來工作-36
參考文獻-38
附錄A、腳踏車車速-39
[1] D. J. N. Limebeer and R. S. Sharp. “Bicycles, motorcycles, and models”. In:
IEEE Control Systems 26.5 (Oct. 2006), pp. 34–61.
[2] W. J. Macquorn Rankine. “On the dynamical principles of the motion of ve-
locipedes”. In: The Engineer 28.79 (Aug. 1869), pp. 79, 129, 153, 175.
[3] F. J. W. Whipple. “The stability of motion of a bicycle”. In: Quarterly Journal
of Pure and Applied Mathematics 30 (1899), pp. 312–348.
[4] K. J. Åström, R. E. Klein, and K. Lennartsson. “Bicycle dynamics and control:
adapted bicycles for education and research”. In: IEEE Control Systems 25.4
(Aug. 2005), pp. 26–47.
[5] 梁景皓(Jing-Hao Liang). “騎乘腳踏車機器人之動態分析與轉向控制, Dynamic
analysis and steering control of a bicycle-riding robot”. In:
清華大學動力機械工程學系學位論文
(2015), pp. 1–55.
[6] Chun-Feng Huang and T. J. Yeh. “Control of a pedaled, self-balanced unicy-
cle with adaptation capability”. In: Informatics in Control, Automation and
Robotics (ICINCO), 2014 11th International Conference on. Vol. 02. Sept.
2014, pp. 120–126.
[7] Y. Tanaka and T. Murakami. “Self sustaining bicycle robot with steering
controller”. In: Advanced Motion Control, 2004. AMC ’04. The 8th IEEE
International Workshop on. Mar. 2004, pp. 193–197.
[8] 村田製造所. 村田頑童. http://www.murata.com/zh-cn/about/mboymgirl/mboy.
[9] J. Lowell and H. D. McKell. “The stability of bicycles”. In: American Journal
of Physics 50.12 (1982), pp. 1106–1112.
[10] Brad Lignoski. “Bicycle stability, is the steering angle proportional to the
lean?” In: Physics Department, The College of Wooster, Wooster, Ohio 44691
(2002).
27[11] J. Yi, Y. Zhang, and D. Song. “Autonomous motorcycles for agile maneuvers,
part I: Dynamic modeling”. In: Decision and Control, 2009 held jointly with
the 2009 28th Chinese Control Conference. CDC/CCC 2009. Proceedings of
the 48th IEEE Conference on. Dec. 2009, pp. 4613–4618.
[12] J. H. Ginsberg. Advanced Engineering Dynamics. Cambridge University Press,
1995.
[13] N. H. Getz. “Internal equilibrium control of a bicycle”. In: Decision and Con-
trol, Proceedings of the 34th IEEE Conference on. Vol. 4. Dec. 1995, pp. 4285–
4287.
[14] Arend L. Schwab, Jaap P. Meijaard, and Jim M. Papadopoulos. “Benchmark
results on the linearized equations of motion of an uncontrolled bicycle”. In:
Journal of Mechanical Science and Technology 19.1 (2005), pp. 292–304.
[15] 張超群,劉成群. 摩托車動力學. 五南圖書出版股份有限公司, 2012.
[16] David E. H. Jones. “The stability of the bicycle”. In: Physics Today 23.4
(1970), pp. 34–40.
[17] H. Yetkin and U. Ozguner. “Stabilizing control of an autonomous bicycle”. In:
Control Conference (ASCC), 9th Asian. June 2013, pp. 1–6.
[18] J. D. G. Kooijman et al. “A bicycle can be self-stable without gyroscopic or
caster eff ects”. In: Science 332.6027 (2011), pp. 339–342.
[19] 戴邦浩 (Bang-Hao Dai). “六軸慣性感測器融合及打滑偵測應用於電動輔助載具,
Sensor fusion of six-axis inertial sensors and skid detection for power-assist
vehicles”. In:
清華大學動力機械工程學系學位論文
(2015), pp. 1–66.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *