帳號:guest(18.119.253.133)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):許慧姿
作者(外文):Hui-Tzu Hsu
論文名稱(中文):錯位雙層石墨烯與單層石墨烯/過渡金屬硫族化物中電子-聲子交互作用之研究
論文名稱(外文):A Study of Electron-Phonon Interactions in Misoriented Bilayer Graphene and Graphene/ Transition metal dichalcogenides Heterostructures
指導教授(中文):陳正中
指導教授(外文):Jeng-Chung Chen
口試委員(中文):林大欽
齊正中
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理系
學號:103022519
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:79
中文關鍵詞:石墨烯過渡金屬硫族化物電子聲子交互作用
外文關鍵詞:GrapheneTransition metal dichalcogenidesElectron-Phonon Interactions
相關次數:
  • 推薦推薦:0
  • 點閱點閱:129
  • 評分評分:*****
  • 下載下載:6
  • 收藏收藏:0
此論文的目的是透過量測單層石墨烯、錯位雙層石墨烯、單層石墨烯/二硫化鉬、單層石墨烯/二硒化鎢在不同費米能級時的拉曼光譜,觀察各樣品中電子-聲子交互作用的情形。
本文選擇以化學氣相沉積法成長大面積的石墨烯、二硫化鉬與二硒化鎢薄膜,再經過轉移製程,得到錯位雙層石墨烯與堆疊異質材料結構:單層石墨烯/二硫化鉬、單層石墨烯/二硒化鎢,並將薄膜製作成方便電性測量的四點量測元件,另外再塗佈上離子液體當作閘極,透過外加閘極電壓的方式來調控石墨烯的費米能級。
我們使用632.8奈米的氦-氖雷射,在室溫環境下量測各樣品在不同費米能級時的拉曼光譜,我們將以單層石墨烯的結果為標準,看其他樣品是否會與單層石墨烯有不同的趨勢。石墨烯的兩個主要拉曼特徵峰為G 峰與2D 峰,我們發現錯位雙層石墨烯的 I(2D)/I(G)強度比值隨著摻雜濃度的變化趨勢,與單層石墨烯的趨勢差異甚大,而單層石墨烯/二硫化鉬卻與單層石墨烯的趨勢相似,因此可以由I(2D)/I(G)對摻雜濃度的關係來判斷石墨烯的厚度是否為單層。
電子與聲子之間耦合力的大小會影響G 峰的偏移量,我們發現錯位雙層石墨烯的G 峰位置變化趨勢與單層石墨烯的趨勢相似,而在單層石墨烯/二硫化鉬以及單層石墨烯/二硒化鎢異質結構中G 峰位置變化趨勢都比單層石墨烯的趨勢要大,表示電子與G 峰聲子間的耦合力有增強的現象。
We investigate the Fermi-level (EF) dependence of electron-phonon coupling (EPC) in stacked graphene and graphene/transition metal dichalcogenides (TMD) heterostructures. The samples include single layer graphene (SLG), misoriented bilayer graphene (BLG), single layer graphene/molybdenum disulfide (SLG/MoS2), and single layer graphene/tungsten diselenide (SLG/WSe2). All materials were prepared by chemical vapor deposition and graphene transformation. We employ an ion-gel gate on top on graphene as a gate-electrode to tune EF. To reveal EPC, we use Raman spectroscopy to study the 2D or G peak shifts of graphene as a function of EF. The Raman spectra are measured at room temperature, with the 633-nm line of a He-Ne laser as exciting radiation. EPC can be characterized by the changes of G peak position with EF.
We find the changes of G-peak position in BLG are similar to the case in SLG, suggesting the weak induced EPC between two stacked graphene. Intriguingly, the G- peak position changes dramatically in SLG/MoS2 and SLG/WSe2. In contrast, the characteristic Raman peaks of MoS2 and WSe2 exhibit weak EF dependence. Data analysis suggests that the EPC strength is enhanced in SLG/MoS2 and SLG/WSe2 samples, and is increased with the increase of the carrier density. The increase of the EPC may be related to possible charge transfer in between the stacked layers. Our results provide useful information for the mechanisms of EPC for TMD heterostructures, and have strong implications in the device applications.

摘要 I
Abstract II
誌謝 III
圖目錄 VII
表目錄 XII
第一章 緒論 1
1.1 研究動機 1
1.2 二維材料的介紹 2
1.3 石墨烯介紹 3
1.3.1 石墨烯的晶格結構 3
1.3.2 石墨烯的電子能帶結構與電學特性 4
1.3.3 石墨烯的聲子色散特性 7
1.4 過渡金屬硫族化物介紹 8
1.4.1 過渡金屬硫族化物之組成與結構 8
1.4.2 過渡金屬硫族化物之電子特性 12
1.4.3 二硫化鉬與二硒化鎢之能帶結構 13
1.4.4 二硫化鉬與二硒化鎢之聲子模式 15
1.5 拉曼光譜術 17
1.5.1 拉曼光譜的原理 17
1.5.2 石墨烯之拉曼特徵光譜 19
1.5.3 二硫化鉬之拉曼特徵光譜 21
1.5.4 二硒化鎢之拉曼特徵光譜 22
1.6 電子-聲子耦合介紹 23
第二章 文獻回顧 25
2.1 單層石墨烯 25
2.2 雙層石墨烯 30
2.3 二硫化鉬 33
2.4 石墨烯/二硫化鉬 34
2.5 石墨烯/二硒化鎢 34
2.6 研究主題 36
第三章 樣品製備與實驗儀器介紹 37
3.1 樣品介紹與製作流程 37
3.2 二硫化鉬製備 39
3.3 二硒化鎢製備 39
3.4 石墨烯製備流程 40
3.4.1 銅箔前置處理 40
3.4.2 化學氣相沉積法 40
3.4.3 石墨烯轉移 41
3.5 金屬電極與電路板製作 44
3.6 拉曼光譜儀介紹 46
第四章 實驗結果與分析 47
4.1 電性量測結果 47
4.2 拉曼光譜檢測結果 49
4.2.1 單層石墨烯與錯位雙層石墨烯之拉曼光譜比較 49
4.2.2 單層石墨烯/二硫化鉬之拉曼光譜分析 50
4.2.3 單層石墨烯/二硒化鎢之拉曼光譜分析 53
4.3 閘極調變拉曼實驗結果 55
4.3.1 單層石墨烯之實驗結果 56
4.3.2 錯位雙層石墨烯之實驗結果 58
4.3.3 單層石墨烯/二硫化鉬之實驗結果 60
4.3.4 單層石墨烯/二硒化鎢之實驗結果 63
4.3.5 各樣品實驗結果比較 65
第五章 結論與未來展望 73
參考文獻 75

[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, S. V. Dubonos, I. V.
Grigorieva, and A. A. Firsov, Science, 306, 666 (2004).

[2] M. Rotter, A. Wixforth, W. Ruile, D. Bernklau, and H. Riechert, Applied Physics Letters, 73, 2128 (1998).

[3] A. H. Castro Neto, F. Guinea, N. M. Peres, K. S. Novoselov, and A. K. Geim,
Reviews of Modern Physics, 81, 109 (2009).

[4] J. M. Shilton et al., Physical Review B (Condensed Matter), 51, 83825 (1995).

[5] A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K.Saha, U.V. Waghmare,
K. S. Novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari and A. K. Sood R, Nature Nanotechnology, 3, 210 (2008).

[6] Kin Fai Mak, Matthew Y. Sfeir, Yang Wu, Chun Hung Lui, James A. Misewich, and Tony F. Heinz, Physical Review Letters, 101, 19405 (2008).

[7] Qing Tang and De-en Jiang, Chemistry of Materials, 27, 3743 (2015)

[8] Xin Zhang, Xiao-Fen Qiao, Wei Shi, Jiang-Bin Wu, De-Sheng Jiang, and Ping-Heng Tan, Chemical Society Reviews, 44, 2725 (2015).

[9] Y. Ding, Y. Wang, J. Ni, L. Shi, S. Shi, and W. Tang, Physical Review B (Condensed Matter), 406, 2254 (2011).

[10] M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang, Nature chemistry, 5, 263 (2013).

[11] A. Klein, S. Tiefenbacher, V. Eyert, C. Pettenkofer, and W. Jaegermann, Physical Review B, 64, 205416 (2001).

[12] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, and F. Wang, Nano Lett., 10, 1271 (2010).
[13] W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P.-H. Tan, and G. Eda,
ACS Nano, 7, 791 (2012).

[14] A. Kumar and P. Ahluwalia, Eur. Phys. J. B., 85, 1 (2012).

[15] X. Luo, Y. Zhao, J. Zhang, M. Toh, C. Kloc, Q. Xiong, and S. Y. Quek, Physical Review B, 88, 195313 (2013).

[16] L.M. Malard, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, Physics Reports, 473, 51 (2009).

[17] Ying ying Wang, Zhen hua Ni, Ting Yu, Ze Xiang Shen, Hao min Wang, Yi hong Wu, Wei Chen, and Andrew Thye Shen Wee, J. Phys. Chem. C, 112, 10637, (2008).

[18] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec,1 D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, Physical Review Letters, 97, 187401 (2006).

[19] Hong Li, Qing Zhang, Chin Chong Ray Yap, Beng Kang Tay, Teo Hang Tong Edwin, Aurelien Olivier , and Dominique Baillargeat, Adv. Funct. Mater., 22, 1385 (2012).

[20] Jae-Ung Lee, Jaesung Park, Young-Woo Sonb, and Hyeonsik Cheong, Nanoscale, 7, 3229 (2015).

[21] P. Tonndorf, R. Schmidt, P. Böttger, X. Zhang, J. Börner, A. Liebig, M. Albrecht, C. Kloc, O. Gordan, D. R. Zahn, et al., Optics express, 21, 4908 (2013).

[22] H. Terrones1, E. Del Corro, S. Feng, J. M. Poumirol, D. Rhodes, D. Smirnov, N. R. Pradhan, Z. Lin1, M. A. T. Nguyen, A. L. Elı´as1, T. E. Mallouk1, L. Balicas, M. A. Pimenta, and M. Terrones1, Scientific Reports, 4, 4215 (2014).

[23] Jia-He Fan, Po Gao, An-Min Zhang, Bai-Ren Zhu, Hua-Ling Zeng, Xiao-Dong Cui, Rui He, and Qing-Ming Zhang, Journal of Applied Physics, 115, 053527 (2014).

[24] Weijie Zhaoa, Zohreh Ghorannevisa, Amara Kiran Kumar, Jing Ren Pang, Minglin Tohd, Xin Zhange, Christian Klocd, Ping Heng Tane, Goki Eda, Nanoscale, 5, 9677, (2013).

[25] A. Grüneis, C. Attaccalite, A. Rubio, D. V. Vyalikh, S. L. Molodtsov, J. Fink, R. Follath, W. Eberhardt, B. Bu chner, and T. Pichler, Physical Review B, 79, 205106 (2009).

[26] A. Grüneis, J. Serrano, A. Bosak, M. Lazzeri, S. L. Molodtsov, L. Wirtz, C. Attaccalite, M. Krisch, A. Rubio, F. Mauri, and T. Pichler, Physical Review B, 80, 085423 (2009).

[27] Guohong Li, Adina Luican, and Eva Y. Andrei, Physical Review Letters, 102, 176804 (2009).

[28] Jun Yan, Yuanbo Zhang, Philip Kim, and Aron Pinczuk, Physical Review Letters, 98, 166802 (2007).

[29] Simone Pisana, Michele Lazzeri, Cinzia Casiraghi, Kostya S. Novoselov, A. K. Geim, Andrea C. Ferrari, and Francesco Mauri, Nature Materials, 6, 198 (2007).

[30] C. Stampfer, F. Molitor, D. Graf, K. Ensslin, A. Jungen, C. Hierold, and L. Wirtz, Applied Physics Letters, 91, 241907 (2007).

[31] Jun Yan, Erik A. Henriksen, Philip Kim, and Aron Pinczuk, Physical Review Letters, 101, 136804 (2008) .

[32] L. M. Malard, D. C. Elias, E. S. Alves, and M. A. Pimenta, Physical Review Letters, 101, 257401 (2008) .

[33] A. Das, B. Chakraborty, S. Piscanec, S. Pisana, A. K. Sood, and A. C. Ferrari, Physical Review B, 79, 155417 (2009).

[34] Biswanath Chakraborty, Achintya Bera, D. V. S. Muthu, Somnath Bhowmick, U. V. Waghmare, and A. K. Sood, Physical Review B, 85, 161403 (2012).

[35] Yang Li, Jing-Kai Qin, Cheng-Yan Xu, Jian Cao, Zhao-Yuan Sun, Lai-Peng Ma, Ping An Hu, Wencai Ren, and Liang Zhen, Adv. Funct. Mater., 26, 4319 (2016).

[36] Thanasis Georgiou, Rashid Jalil, Branson D. Belle, Liam Britnell, Roman V. Gorbachev, Sergey V. Morozov, Yong-Jin Kim, Ali Gholinia, Sarah J. Haigh, Oleg Makarovsky, Laurence Eaves, Leonid A. Ponomarenko, Andre K. Geim, Kostya S. Novoselov, and Artem Mishchenko, Nature Nanotechnology, 8, 100 (2013).

[37] Woo Jong Yu, Zheng Li, Hailong Zhou, Yu Chen, Yang Wang, Yu Huang, and Xiangfeng Duan, Nature Materials, 12, 246 (2013) .

[38] P. Poncharal, A. Ayari, T. Michel, and J.-L. Sauvajol, Physical Review B, 78, 113407 (2008).

[39] Wenjing Zhang, Chih-Piao Chuu, Jing-Kai Huang, Chang-Hsiao Chen, Meng-Lin Tsai, Yung-Huang Chang, Chi-Te Liang, Yu-Ze Chen, Yu-Lun Chueh, Jr-Hau He, Mei-Yin Chou1, and Lain-Jong Li, Scientific Reports, 4, 3826 (2014).

[40] Jing-Kai Huang, Jiang Pu, Chang-Lung Hsu, Ming-Hui Chiu, Zhen-Yu Juang, Yung-Huang Chang, Wen-Hao Chang, Yoshihiro Iwasa, Taishi Takenobu, and Lain-Jong Li, ACS Nano, 8, 923 (2012).

[41] Michele Lazzeri and Francesco Mauri, Physical Review Letters, 97, 266407 (2006).

[42] W. E. Pickett and P. B. Allen, Physical Review B, 16, 3127 (1977).


[43] Michele Lazzeri, S. Piscanec, Francesco Mauri, A. C. Ferrari, and J. Robertson,
Physical Review B, 73, 155426 (2006).

[44] Choongyu Hwang, David A. Siegel, Sung-Kwan Mo, William Regan, Ariel Ismach, Yuegang Zhang, Alex Zettl, and Alessandra Lanzara, Scientific Reports, 2, 590 (2012).

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *