帳號:guest(3.144.243.147)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):桑翊禎
作者(外文):Sang, I-Chen
論文名稱(中文):Phenacene的自組裝與其電子結構之關聯
論文名稱(外文):Correlation between Electronic Properties and Self-Assembly Behavior of Phenacenes
指導教授(中文):霍夫曼
指導教授(外文):Germar Hoffmann
口試委員(中文):蘇維彬
陳錦地
口試委員(外文):Su, Wei-Bin
Chen, Chin-Ti
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理系
學號:103022515
出版年(民國):105
畢業學年度:104
語文別:英文中文
論文頁數:72
中文關鍵詞:掃描穿隧顯微鏡鍵結分子電子學有機電子元件Phenacene
外文關鍵詞:STMCoupling reactionMoleculePhenaceneOFET
相關次數:
  • 推薦推薦:0
  • 點閱點閱:56
  • 評分評分:*****
  • 下載下載:5
  • 收藏收藏:0
分子電子學(意即以分子構成電子元件)是目前很受關注的領域之一,因為分子不僅有半導體性質,也有許多不同於金屬的特殊物理性質。Phenacene系列分子為目前較受歡迎的選項之一,因此在本論文中,我們主要針對Phenacene中的9-Phenacene及Br2-picene做研究。我們以低溫、超高真空的掃描穿隧顯微鏡(STM)來研究9-phenacene在銀(111)表面上的附著,本實驗所觀察的曝量從低於一層至形成奈米晶體的厚度都有,並研究各種表面形態及其電子結構之關聯。Br2-picene之研究則是著重在低於一層的曝量,在此情形下Br2-picene會有總計4種的自組裝形式,並且可以以溫度調控之,除此之外,我們也對各個自組裝形式的不同點進行單點的掃描穿隧能譜測量(STS),並分析其與各種自組裝之關聯性。在分子電子學中,由小單元組成電子元件的技術也是發展重點之一,因此目前有許多研究是關於分子間的同質、異質結合,藉此發展出新分子或是分子元件(如導線),在本實驗中,我們也成功在金(111)的表面上以蒸鍍後再加熱樣品的方式進行Br2-picene及1,3,5-tris bromophenyl benzene (TBPB)間的異質結合反應。
Molecular electronics is receiving increased attention because of the unique properties of molecules. And phenacenes are popular candidates for this technology. In this thesis, we focus on the properties of 9-phenacene and Br2-picene. Here we study the adsorption of 9-phenacene on a Ag(111) surface. Different coverages ranging from sub-monolayer to nano-crystals are observed with low temperature scanning tunneling microscope (STM) in UHV, each are also correlated with their electronic states.Furthermore, the sub-monolayer adsorption of Br2-picene on Ag(111) is investigated. Four self-assembly configurations are observed and can be tuned by temperature. Their electronic states are also measured by point scanning tunneling spectroscopy (STS). For molecular electronics, the bottom-up construction of parts is also an approach. Therefore the polymerization and hetero-coupling reaction of molecules had been realized on several kinds of molecules. By evaporating molecules onto the surface and further annealing, we succeeded in the hetero-coupling of Br2-picene and 1,3,5-tris bromo phenyl benzene (TBPB) on Au(111).
1 Introduction 7
2 Theory 8
2.1 Tunneling 8
2.1.1 1-dimensional tunneling 8
2.1.2 Landauer theory and Tunneling Conductance 9
2.2 Scanning Tunneling Microscopy 10
2.2.1 Bardeen Theory 10
2.2.2 The mechanism of STM 11
2.3 Scanning Tunneling Spectroscopy 12
3 Instruments 13
3.1 Scanning Tunneling Microscope 13
3.1.1 Chambers 13
3.1.2 Scanner 15
3.1.3 Tip 15
3.2 Ultra High Vacuum 16
3.2.1 The definition of Vacuum 16
3.2.2 The Vacuum system of our STM 17
3.3 Low Temperature Environment 19
3.4 Preparation 19
3.4.1 Ag(111) Crystal 19
3.4.2 Sputter 20
3.4.3 Anneal 21
3.4.4 Evaporation 21
4 9-Phenacene on Ag(111) 22
4.1 9-Phenacene Molecule 22
4.2 Topography 23
4.2.1 0.3 monolayer 23
4.2.2 0.9 monolayer 24
4.2.3 1st monolayer 25
4.2.4 2nd monolayer 25
4.2.5 Islands above the second monolayer 28
4.2.6 Islands on islands 28
4.2.7 Orientations 29
4.3 Electronic states 31
4.3.1 Band gap 31
4.3.2 1st monolayer 31
4.3.3 2nd monolayer 34
4.4 Discussion 36
4.4.1 Topography 36
4.4.2 Electronic states 38
5 Br2-Picene on Ag(111) 39
5.1 Br2-Picene 39
5.2 Topography 41
5.2.1 Overview 41
5.2.2 Characterization 42
5.2.3 Self-assembly structures 45
5.3 Electronic states 49
5.4 Coupling reaction 56
5.4.1 TBPB molecule 56
5.4.2 Picene coupling reaction with TBPB on Au(111) crystal 57
5.5 Discussion 60
5.5.1 Self-assembly of Br2-picene 60
5.5.2 Coupling reaction 62
6 Summary 64
[1] John Greenwood, Herbert A. Früchtl, and Christopher J. Baddeley. “Surface-Confined Reaction of Aliphatic Diamines with Aromatic Diisocyanates on Au111 Leads to Ordered Oligomer Assemblies”. In: The Journal of Physical
Chemistry C 117.9 (2013), pp. 4515–4520. doi:10.1021/jp3107606. eprint: http://dx.doi.org/10.1021/jp3107606. url: http://dx.doi.org/10.1021/jp3107606.
[2] Yuma Shimo et al. “Synthesis and transistor application of the extremely extended phenacene molecule, [9]phenacene”. In: Scientific Reports 6 (2016), p. 21008. doi: http://www.nature.com/articles/srep21008#supplementaryinformation.
url: http://dx.doi.org/10.1038/srep21008.
[3] Takeshi Yasuda et al. “Ambipolar pentacene field-effect transistors with calcium
source-drain electrodes”. In: Applied Physics Letters 85.11 (2004), pp. 2098–
2100. doi: http : / / dx . doi . org / 10 . 1063 / 1 . 1794375. url: http : / /
scitation . aip . org / content / aip / journal / apl / 85 / 11 / 10 . 1063 / 1 .
1794375.
[4] Hideki Okamoto et al. “Air-assisted High-performance Field-effect Transistor
with Thin Films of Picene”. In: Journal of the American Chemical Society
130.32 (2008). PMID: 18627146, pp. 10470–10471. doi: 10.1021/ja803291a.
eprint: http://dx.doi.org/10.1021/ja803291a. url: http://dx.doi.
org/10.1021/ja803291a.
[5] Hideki Okamoto et al. “Facile Synthesis of Picene from 1,2-Di(1-naphthyl)ethane
by 9-Fluorenone-Sensitized Photolysis”. In: Organic Letters 13.10 (2011). PMID:
21513300, pp. 2758–2761. doi: 10.1021/ol200874q. eprint: http://dx.doi.
org/10.1021/ol200874q. url: http://dx.doi.org/10.1021/ol200874q.
[6] Lieber Charles M. Lu Wei. “Nanoelectronics from the bottom up”. In: Nat
Mater 6.11 (2007). 10.1038/nmat2028, pp. 841–850. url: http://dx.doi.
org/10.1038/nmat2028.
[7] Sam Haq et al. “Versatile Bottom-Up Construction of Diverse Macromolecules
on a Surface Observed by Scanning Tunneling Microscopy”. In: ACS Nano 8.9
(2014). PMID: 25191836, pp. 8856–8870. doi: 10.1021/nn502388u. eprint:
http://dx.doi.org/10.1021/nn502388u. url: http://dx.doi.org/10.
1021/nn502388u.
[8] C.Julian Chen. Introduction to Scanning Tunneling Microscopy. Oxford Science
Publications, 2008.
[9] Ch. Gerber G. Binnig H Rohrer and E. Weibel. “Tunneling through a controllable
vacuum gap”. In: Appl. Phys. Lett. 40 (1982), pp. 178–180.
[10] Ch. Gerber G. Binnig H Rohrer and E. Weibel. “Surface studies by scanning
tunneling microscopy”. In: Phys. Rev. Lett 49 (1982), pp. 57–61.
[11] Othmar Marti Bharat Bhushan. Springer Handbook of Nanotechnology. Springer
Berlin Heidelberg, 2010.
[12] David Hucknall. Vacuum Technology and Applications. Butterworth-Heinemann,
1991.
[13] Marsbed H. Hablanian. High-Vacuum Tecknology— A Practical Guide. 2nd ed.
Marcel Dekker, 1997.
[14] 小宮宗治. 圖解真空技術入門. 世茂出版, 2010.
[15] Dr. Walter Umrath et al. Fundamentals of Vacuum Technology. Oerlikon leybold
vacuum, 2007.
[16] N. David Mermin Neil W. Ashcroft. Solid State Physics. Brooks/Cole, Cengage
Learning, 1976.
[17] Colin Reese et al. “Organic thin film transistors”. In: Materials Today 7.9
(2004), pp. 20–27. issn: 1369-7021. doi: http : / / dx . doi . org / 10 . 1016 /
S1369-7021(04)00398-0. url: http://www.sciencedirect.com/science/
article/pii/S1369702104003980.
[18] Yasuo Yoshida et al. “Scanning tunneling microscopy/spectroscopy of picene
thin films formed on Ag(111)”. In: The Journal of Chemical Physics 141.11,
114701 (2014). doi: http://dx.doi.org/10.1063/1.4894439. url: http:
//scitation.aip.org/content/aip/journal/jcp/141/11/10.1063/1.
4894439.
[19] M. Yano et al. “Well-ordered monolayers of alkali-doped coronene and picene:
Molecular arrangements and electronic structures”. In: The Journal of Chemical
Physics 141.3, 034708 (2014). doi: http://dx.doi.org/10.1063/1.
4887776. url: http://scitation.aip.org/content/aip/journal/jcp/
141/3/10.1063/1.4887776.
[20] Takuya Hosokai et al. “Thickness and Substrate Dependent Thin Film Growth
of Picene and Impact on the Electronic Structure”. In: The Journal of Physical
Chemistry C 119.52 (2015), pp. 29027–29037. doi: 10 . 1021 / acs . jpcc .
5b10453. eprint: http://dx.doi.org/10.1021/acs.jpcc.5b10453. url:
http://dx.doi.org/10.1021/acs.jpcc.5b10453.
[21] R. John Kominar, Michael J. Krech, and Stanley James W. Price. “Pyrolysis of
bromobenzene by the toluene carrier technique and determination of D(C6H5
￿Br)”. In: Canadian Journal of Chemistry 56.11 (1978), pp. 1589–1592. doi:
10.1139/v78- 259. eprint: http://dx.doi.org/10.1139/v78- 259. url:
http://dx.doi.org/10.1139/v78-259.
[22] Vijay K. Kanuru et al. “Sonogashira Coupling on an Extended Gold Surface
in Vacuo: Reaction of Phenylacetylene with Iodobenzene on Au(111)”. In:
Journal of the American Chemical Society 132.23 (2010). PMID: 20491472,
pp. 8081–8086. doi: 10.1021/ja1011542. eprint: http://dx.doi.org/10.
1021/ja1011542. url: http://dx.doi.org/10.1021/ja1011542.
[23] Rico Gutzler et al. “Surface mediated synthesis of 2D covalent organic frameworks:
1,3,5-tris(4-bromophenyl)benzene on graphite(001), Cu(111), and Ag(110)”.
In: Chem. Commun. (29 2009), pp. 4456–4458. doi: 10.1039/B906836H. url:
http://dx.doi.org/10.1039/B906836H.
[24] Steven De Feyter and Frans C. De Schryver. “Two-dimensional supramolecular
self-assembly probed by scanning tunneling microscopy”. In: Chem. Soc. Rev.
32 (3 2003), pp. 139–150. doi: 10.1039/B206566P. url: http://dx.doi.
org/10.1039/B206566P.
[25] Marina Pivetta et al. “Temperature-dependent self-assembly of NC–Ph5–CN
molecules on Cu(111)”. In: The Journal of Chemical Physics 142.10, 101928
(2015). doi: http : / / dx . doi . org / 10 . 1063 / 1 . 4909518. url: http : / /
scitation . aip . org / content / aip / journal / jcp / 142 / 10 / 10 . 1063 / 1 .
4909518.
[26] Camille Marie et al. “Tuning the Packing Density of 2D Supramolecular Self-
Assemblies at the Solid−Liquid Interface Using Variable Temperature”. In:
ACS Nano 4.3 (2010). PMID: 20155970, pp. 1288–1292. doi: 10.1021/nn901717k.
eprint: http://dx.doi.org/10.1021/nn901717k. url: http://dx.doi.
org/10.1021/nn901717k.
[27] Matthew O. Blunt et al. “Templating molecular adsorption using a covalent
organic framework”. In: Chem. Commun. 46 (38 2010), pp. 7157–7159. doi:
10.1039/C0CC01810D. url: http://dx.doi.org/10.1039/C0CC01810D.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *