帳號:guest(3.144.227.146)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃育璋
作者(外文):Huang, Yu Zhang
論文名稱(中文):單層鉍化銦在Si(111)晶面的成長與原子結構
論文名稱(外文):Structure and Growth Mode of the Single Indium-Bismuth Atomic Layer on the Si(111) Surface
指導教授(中文):林登松
指導教授(外文):Lin, Deng Sung
口試委員(中文):陳家浩
蘇雲良
口試委員(外文):Chen, Chia Hao
Soo,Yun Liang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理系
學號:103022505
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:78
中文關鍵詞:鉍化銦矽(111)X-ray光電子能譜技術掃描式穿隧電子顯微術
外文關鍵詞:InBiSi(111)X-ray photoemission spectroscopyScanning tunneling microscopyBiIn
相關次數:
  • 推薦推薦:0
  • 點閱點閱:110
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來單層以及數個原子層二維材料逐漸受到重視,二維材料與一般工業界常用的矽晶基板不同之處在於,二維原子層平面間原子以共價鍵形成網狀結構,而層與層之間則是凡德瓦力(Van der Waals force)鍵結。拓樸絕緣體(topological insulator)近幾年同樣受到學術界重視,拓樸絕緣體最奇特之處在於內部屬於絕緣體,而表面或是邊緣處自旋電子具備導電性質。
最近一些Ⅲ-Ⅴ族化合物薄膜被預測具備二維拓樸絕緣體性質,因此本實驗藉由分子束磊晶(Molecular beam epitaxy)方式將In與Bi沉積於Si(111)表面接著進行熱退火處理,並透過X-ray光電子能譜技術觀察In與Bi鍵結情形以及掃描式穿隧電子顯微技術探測表面形貌以及原子結構。X-ray光電子能譜術含有三組實驗:(1)先成長Bi薄膜接著室溫蒸鍍In (2)先成長In薄膜接著室溫蒸鍍Bi (3)室溫同時蒸鍍In與Bi,三組實驗最後皆進行退火處理,於450℃明顯看出In與Bi有內殼層電子位移的現象,因此推測In與Bi在此狀態產生鍵結;掃描式穿隧電子顯微術實驗中利用室溫同時蒸鍍In與Bi比例1:1 曝量0.5 ML:0.5 ML、1 ML:1 ML以及2 ML:2 ML再進行退火處理於425℃以及480℃退火後成長√7 × √7-InBi 薄膜,最高覆蓋率可達73 %。綜合兩種不同實驗方法得知400℃ ~ 500℃為√7 × √7-InBi成長溫度。
  本實驗成功藉由分子束磊晶方式再透過熱退火處理成長√7 × √7-InBi薄膜,但是InBi是否具備二維拓樸絕緣體性質仍有待確認,若具備此性質在邊緣處電子態密度會有劇烈變化,因此這方面可藉由掃描探針顯微術加以驗證。若為二維拓樸絕緣體,透過角分辨光電子能譜學(ARPES)分析能帶結構得知能隙大小,進一步確認運用於科技產品的可能性。
In recent years, researchers pay lots of attention to two dimensional (2D) materials with single atomic layer and multi-layers. The difference between 2D materials and the widely-used silicon substrates is that atoms in 2D atomic layer form networks by covalent bonds in plane, but the bonding between layers is by Van der Waals force. Besides two dimensional materials, topological insulators (TI) have also attracted much interests. The TI’s interior behaves as an insulator, but its surface or edge have conducting states due to spin-orbital interactions.
  Some Ⅲ-Ⅴ compounds including InBi and GaBi have been recently predicted to be two dimensional topological insulator recently. Therefore, we use molecular beam epitaxy (MBE) method to deposit Indium (In) and Bismuth (Bi) on the Si(111) surface, with subsequently thermal annealing. We utilize synchrotron radiation to observe the core-level spectra of Si, In and Bi and use Scanning tunneling microscopy (STM) to observe the surface topography and atomic structure of the grown films. Three experiments have been performed : 1. to grow a Bi layer first followed by In deposition at room temperature (RT), 2. to grow an In layer first and followed by Bi deposition at RT, 3. co-deposition of In and Bi at RT. We have observed core level shift at 450℃ during post annealing for In 4d and Bi 5d, suggesting the formation of In-Bi layer. In the STM measurement, we co-deposited at RT In and Bi with various In:Bi ratios: 0.5 :0.5 ML, 1.0 :1.0 ML, 2.0 :2.0 ML. We observed √7 × √7-InBi film growth after annealing at 425℃ and 480℃. The highest coverage of the √7 × √7-InBi domains achieved about 73 %. Combining results from the two complementary techniques, we concluded that √7 × √7-InBi layer can be grown between 400℃ to 500℃.
第一章 簡介 1
1.1研究動機 1
1.2 矽晶體結構 2
1.3 相關文獻 5
1.3.1 預測Ⅲ-Ⅴ在Si(111)薄膜的二維(2D)拓樸絕緣體(TI)性質[3,12] 5
1.3.2 TlBi二維化合物在Si(111)成長[13] 9
1.3.3 InBi二維化合物在Si(111)成長[14] 13
第二章 實驗儀器操作及原理 18
2.1 真空系統 18
2.1.1真空幫浦及氣壓測量儀介紹 19
2.1.2 抽真空過程概述 23
2.2 掃描穿隧顯微鏡( Scanning Tunneling Microscopy:STM ) 24
2.2.1 量子穿隧效應 24
2.2.2 掃描穿隧式顯微鏡(STM)細部構造 26
2.2.3 掃描穿隧式顯微鏡之影像擷取 28
2.3 蒸鍍槍 29
2.4 X射線光電子能譜學( X-ray photoelectron spectroscopy) 31
2.5 探針製作、樣品準備及溫度測量 33
2.5.1 探針製作 33
2.5.2 樣品準備 35
第三章 X射線光電子能譜術實驗結果與分析 36
3.1原子曝量校正 36
3.1.1 Bi曝量校正 36
3.1.2 In曝量校正 39
3.2 InBi在Si(111)晶面的成長 41
3.2.1先蒸鍍In再蒸鍍Bi成長 43
3.2.2先蒸鍍Bi再蒸鍍In成長 41
3.2.3同時蒸鍍Bi與In成長 45
3.3 總結 49
第四章 掃描探針顯微術(STM)實驗結果與分析 50
4.1 Si(111)- 7×7表面結構 50
4.2 Bi在Si(111)- 7×7的表面結構 51
4.3 In在Si(111)- 7×7的表面結構 53
4.4 同時蒸鍍Bi 1 ML與In 1 ML成長InBi的過程 55
4.4.1 室溫同時蒸鍍Bi 1 ML與In 1 ML 56
4.4.2以300℃、425℃進行熱退火處理 57
4.4.3以480℃進行熱退火處理 59
4.4.4以570℃進行熱退火處理 63
4.5 同時蒸鍍Bi 0.5 ML與In 0.5 ML成長InBi的過程 64
4.6 同時蒸鍍Bi 2 ML與In 2 ML成長InBi的過程 69
4.7 總結 71
第五章 結論 72
參考文獻 74
圖表目錄 76
[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306 (2004).
[2] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nature nanotechnology 6, 147 (2011).
[3] L. Z. Yao, C. P. Crisostomo, C. C. Yeh, S. M. Lai, Z. Q. Huang, C. H. Hsu, F. C. Chuang, H. Lin, and A. Bansil, Scientific reports 5, 15463 (2015).
[4] W. A. Harrison, Surface Science 55, 1 (1976).
[5] G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, Physical Review Letters 50, 120 (1983).
[6] K. Takayanagi, Y. Tanishiro, S. Takahashi, and M. Takahashi, Surface Science 164, 367 (1985).
[7] H. HUANG and S. Y. TONG, Phys. Lett. A 130, 166 (1988).
[8] S. Y. Tong, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 6, 615 (1988).
[9] A. ICHIMIYA, Surface Science 192, L893 (1987).
[10] Y. HORIO and A. ICHIMIYA, Surface Science 219, 128 (1989).
[11] I. K. Robinson, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 6, 1966 (1988).
[12] C. P. Crisostomo, L. Z. Yao, Z. Q. Huang, C. H. Hsu, F. C. Chuang, H. Lin, M. A. Albao, and A. Bansil, Nano letters 15, 6568 (2015).
[13] D. V. Gruznev et al., Scientific reports 6, 19446 (2016).
[14] N. V. Denisov, A. A. Alekseev, O. A. Utas, S. G. Azatyan, A. V. Zotov, and A. A. Saranin, Surface Science 651, 105 (2016).
[15] J. M. Roesler, M. T. Sieger, Y. Miller, and T.-C. Chiang, Surface Science 380, L485 (1997).
[16] S. W. Cho, K. Nakamura, H. Koh, W. H. Choi, C. N. Whang, and H. W. Yeom, Physical Review B 67 (2003).
[17] J. P. Chou, C. M. Wei, Y. L. Wang, D. V. Gruznev, L. V. Bondarenko, A. V. Matetskiy, A. Y. Tupchaya, A. V. Zotov, and A. A. Saranin, Physical Review B 89 (2014).
[18] S. G. Kwon and M. H. Kang, Physical Review B 89 (2014).
[19] K. J. Wan, T. Guo, W. K. Ford, and J. C. Hermanson, Surface Science 261, 69 (1992).
[20] K. J. Wan, T. Guo, W. K. Ford, and J. C. Hermanson, Physical Review B 44, 3471 (1991).
[21] J. C. Woicik, G. E. Franklin, C. Liu, R. E. Martinez, I. S. Hwong, M. J. Bedzyk, J. R. Patel, and J. A. Golovchenko, Physical Review B 50, 12246 (1994).
[22] J. Kraft, M. G. Ramsey, and F. P. Netzer, Physical Review B 55, 8 (1997).
[23] A. A. Saranin et al., Physical Review B 74 (2006).
[24] D. Shin, J. Woo, Y. Jeon, H. Shim, and G. Lee, Journal of the Korean Physical Society 67, 1192 (2015).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *