帳號:guest(18.117.145.254)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):謝忠耘
作者(外文):Hsieh, Chung Yun
論文名稱(中文):Study on Nonlocality, Steering, Teleportation, and Their Superactivation
論文名稱(外文):量子非局域性、量子操控性、量子傳輸、 以及其超啟動特性之研究
指導教授(中文):李瑞光
指導教授(外文):Lee, Ray Kuang
口試委員(中文):林秀豪
梁永成
口試委員(外文):Lin, Hsiu Hau
Liang, Yeong Cherng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理系
學號:103022502
出版年(民國):105
畢業學年度:104
語文別:英文
論文頁數:86
中文關鍵詞:量子非局域性量子操控性量子傳輸超啟動貝爾不等式操控不等式
外文關鍵詞:quantum nonlocalityquantum steeringquantum teleportationsuperactivationBell inequalitysteering inequality
相關次數:
  • 推薦推薦:0
  • 點閱點閱:165
  • 評分評分:*****
  • 下載下載:17
  • 收藏收藏:0
量子非局域性(quantum nonlocality,又稱為Bell nonlocality)、量子操控性(quantum steering,又稱為 Einstein-Podolsky-Rosen steering)、量子糾纏(quantum entanglement)、以及量子傳輸適用性(usefulness of quantum teleportation)是四個各自互異的量子效應。有鑑於最近量子非局域性的超啟動(superactivation)被證明,是否量子操控性以及量子傳輸適用性亦具備超啟動特性便成為了一個有趣的問題。在這篇碩士論文之中,我嘗試將上述四種不同的量子效應之間的關係釐清,以及更進一步證明與探討量子操控性的超啟動特質。另外,我亦會於此篇論文之中介紹我所證明出的量子非局域性以及量子操控性之超啟動特質的充分條件(sufficient condition),並將會介紹此充分條件的可能應用與推廣,其中包含使用此充分條件所得到對於非負貝爾泛函(nonnegative Bell functional)的最大貝爾違反量(the largest Bell violation)以及飛覆操控泛函(nonnegative steering functional)的最大操控違反量(the largest steering violation)的上界估計(upper bounds)。
Einstein-Podolsky-Rosen (EPR) steering, together with Bell nonlocality and entanglement, are three important nonlocal feature of Quantum Mechanics. They are crucial in their own ways: entanglement is the core of many novel phenomena in quantum computation and quantum information; Bell nonlocality is not only one of the strongest experimental verification of Quantum Mechanical phenomena, but also admitting many applications in quantum cryptography, communication complexity, and many other topics. EPR steering, having its strength between nonlocality and entanglement, has its own unique role. For instance, in a quantum key distribution scenario between two parties Alice and Bob, a violation of steering inequality allows certification of quantum correlation shared by them even if Bob doesn’t trust Alice’s apparatus. It also has potential application in quantum communication. Moreover, being a nonlocal property weaker than nonlocality, EPR steering has potential to reveal quantumness easier than nonlocality. These motivation encouraged people to verify and study EPR steering experimetnally and theoretically. However, unlike nonlocality and entanglement, the current understanding of EPR steering is limited. One such example is the superactivation of EPR steering. To capture the idea of superactivation, suppose there is a state which doesn’t have a given physical property (e.g. nonlocality, entanglement, EPR steerability, etc.). One can ask the question: How about we consider several copies of that state? Can the resulting state obtain the physical property? If a given physical property can be superactivated, it means one can construct the given physical property from a collection of states without that property. In 2012, Palazuelos established nontrivial superactivation of Bell nonlocality. This important breakthrough not only enables people to see more about the theoretical structure such as the relation between nonlocality and teleportation, it also sheds new lights on the experimental demonstration of nonlocality from a collection of local states. Hence, whether EPR steering can be superactivated becomes an interesting question both theoretically and experimentally.
In this thesis, I will give a brief introduction of Bell nonlocality, EPR steering, entanglement, quantum teleportation, their superactivation property, and how they are related to each other. This thesis is constructed as follows. Chapter 1 is for a conceptual introduction for Bell nonlocality, quantum teleportation, EPR steering, entanglement, and their nontrivial relations. In Chapter 2, two mathematical tools called fully entangled fraction (FEF) and quantum twirling will be introduced. Both of them are crucial for Chapter 3, and rather than simply stating known results, readers can find my progress on the study of relation between FEF and two generalized versions of quantum twirling defined by me. In Chapter 3, I will firstly state the mathematical formalism for Bell nonlocality, EPR steering, and the nontrivial superactivation of Bell nonlocality. After the discussion of those known results, I will demonstrate nontrivial superactivation of EPR steering, with an exact form of the steering functional achieving the superactivation, and I will also derive new sufficient condition for k-copy nonlocality and k-copy steerability (from Alice to Bob). Using a simple physical argument, those two sufficient conditions will give us upper bounds for the largest Bell/steering violation of maximally entangled state with a given nonnegative Bell/steering functional. Furthermore, by considering projective measurement, better upper bounds can be found.

In this thesis, I will give a brief introduction of Bell nonlocality, EPR steering, entanglement, quantum teleportation, their superactivation property, and how they are related to each other. This thesis is constructed as follows. Chapter 1 is for a conceptual introduction for Bell nonlocality, quantum teleportation, EPR steering, entanglement, and their nontrivial relations. In Chapter 2, two mathematical tools called fully entangled fraction (FEF) and quantum twirling will be introduced. Both of them are crucial for Chapter 3, and rather than simply stating known results, readers can find my progress on the study of relation between FEF and two generalized versions of quantum twirling defined by me. In Chapter 3, I will firstly state the mathematical formalism for Bell nonlocality, EPR steering, and the nontrivial superactivation of Bell nonlocality. After the discussion of those known results, I will demonstrate nontrivial superactivation of EPR steering, with an exact form of the steering functional achieving the superactivation, and I will also derive new sufficient condition for k-copy nonlocality and k-copy steerability (from Alice to Bob). Using a simple physical argument, those two sufficient conditions will give us upper bounds for the largest Bell/steering violation of maximally entangled state with a given nonnegative Bell/steering functional. Furthermore, by considering projective measurement, better upper bounds can be found.
CHAPTER 1: INTRODUCITON......1
1.1 Bell Nonlocality, Quantum Teleportation, and Entanglement......2
1.2 Bell Nonlocality, Einstein-Podolsky-Rosen Steering, and Entanglement......12
CHAPTER 2: PRELIMINARY......17
2.1 Fully Entangled Fraction (FEF)......18
2.2 Quantum Twirling......23
CHAPTER 3: SUPERACTIVATION......31
3.1 Notations......32
3.2 Khot-Vishnoi Game and Superactivation of Bell Nonlocality......35
3.3 Superactivation of Einstein-Podolsky-Rosen Steering......49
3.4 Superactivation of Quantum Teleportation?......61
SUMMARY......63
APPENDIX......64
Appendix A: Einstein-Podolsky-Rosen Paradox......65
Appendix B: W is a Werner State......67
Appendix C: Teleportation with Arbitrary Local Dimension......70
Appendix D: No-Cloning Theorem......74
Appendix E: Detailed Proof of Proposition 2.22......75
Appendix F: Detailed Proof of Lemma 3.7......76
Appendix G: Ho ̈lder’s Inequaltiy for Trace Norm and Hilbert-Schmidt Norm ......81
REFERENCES......82
[1] J. S. Bell, On the Einstein Podolsky Rosen paradox, Physics (Long Island City, N. Y.) 1, 195 (1964)
[2] N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, Bell nonlocality, Rev. Mod. Phys. 86, 419 (2014)
[3] A. Einstein, B. Podolsky, and N. Rosen, Can quantum-mechanical description of physical reality be considered complete?, Phys. Rev. 47, 777 (1935)
[4] E. Schro ̈dinger, Probability relations between separated systems, Proc. Camb. Phil. Soc. 32, 446 (1936)
[5] H. M. Wiseman, S. J. Jones, and A. C. Doherty, Steering, entanglement, nonlocality, and the Einstein-Podolsky-Rosen paradox, Phys. Rev. Lett. 98, 140402 (2007)
[6] R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, Quantum entanglement, Rev. Mod. Phys. 81, 865 (2007)
[7] C. H. Bennett, , G. Brassard, C. Cre ́peau, R. Jozsa, A. Peres, W. K. Wootters, Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels, Phys. Rev. Lett. 70, 1895 (1993)
[8] S. Popescu, Bell’s inequalities versus teleportation: what is nonlocality?, Phys. Rev. Lett. 72, 797 (1994)
[9] M. Horodecki, P. Horodecki, and R. Horodecki, General teleportation channel, singlet fraction, and quasidistillation, Phys. Rev. Lett. 60, 1888 (1999)
[10] M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information, 10th anniversary edition, Cambridge press (2011)
[11] A. Einstein, Zur elektrodynamik bewegter körper, Annalen. der. Physik. 17, 891 (1905)
[12] J. J. Callahan, The geometry of spacetime: an introduction to special and general relativity, Springer press (2000)
[13] B. Schutz, A first course in general relativity, 2nd edition, Cambridge press, (2009)
[14] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, Proposed experiment to test local hidden-variable theories, Phys. Rev. Lett. 23, 880 (1969)
[15] S. J. Freedman and J. F. Clauser, Experimental test of local hidden-variable theories, Phys. Rev. Lett. 28, 938 (1972)
[16] N. Gisin, Bell's inequality holds for all non-product states, Phys. Lett. A 154, 201 (1991)
[17] N. Gisin and A. Peres, Maximal violation of Bell's inequality for arbitrarily large spin, Phys. Lett. A 162, 15 (1992)
[18] S. Popescu and D. Rohrlich, Generic quantum nonlocality, Phys. Lett. A 166, 293 (1992)
[19] A. Aci ́n, N. Gisin, and B. Toner, Grothendieck’s constant and local models for noisy entangled quantum states, Phys. Rev. A 73, 062105 (2006)
[20] R. F. Werner, Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model, Phys. Rev. A 40, 4277 (1989)
[21] J. Barrett, Nonsequential positive-operator-valued measurements on entnagled mixed states do not always violate a Bell inequality, Phys. Rev. A 65, 042312 (2002)
[22] S. L. Braunstein, A. Mann, and M. Revzen, Maximal violation of Bell inequalities for mixed states, Phys. Rev. Lett. 68, 3259 (1992).
[23] B. S. Cirel'son, Quantum generalization of Bell's inequality, Lett. Math. Phys. 4:2, 93 (1980)
[24] D. Gottesman and L. Chuang, Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations, Nature 402, 390 (1999)
[25] R. Horodecki, M. Horodecki, and P. Horodecki, Teleportation, Bell's inequalities and inseparability, Phys. Lett. A 222, 21 (1996)
[26] S. Massar and S. Popescu, Optimal extraction of information from finite quantum ensembles, Phys. Rev. Lett., 74, 1259 (1995)
[27] W. K. Wotters and W. H. Zurek, A single quantum cannot be cloned, Nature 299, 802 (1982)
[28] M-J. Zhao, Z-G. Li, S-M. Fei, and Z-X. Wang, A note on fully entangled fraction, J. Phys A: Math. Theor. 43, 275203 (2010)
[29] M. Horodecki and P. Horodecki, Reduction criterion of separability and limits for a class of distillation protocols, Phys. Rev. A 59, 4206 (1999)
[30] J. J. Sakurai and J. Napolitano, Modern quantum mechanics, 2nd edition, Pearson press (2011)
[31] C. Palazuelos, Superactivation of quantum nonlocality, Phys. Rev. Lett. 109, 190401 (2012)
[32] C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, Purification of noisy entanglement and faithful teleportation via noisy channels, Phys. Rev. Lett. 76, 722 (1996)
[33] S. Albeverio, S-M. Fei, and W-L. Yang, Optimal teleportation based on bell measurements, Phys. Rev. A 66, 012301 (2002)
[34] E. G. Cavalcanti, S. J. Jones, H. M. Wiseman, and M. D. Reid, Experimental criteria for steering and the Einstein-Podolsky-Rosen paradox, Phys. Rev. A 80, 032112 (2009)
[35] Z. Yin, M. Marciniak, and M. Horodecki, Operator space approach to steering inequality, J. Phys. A: Math. Theor. 48, 135303 (2015)
[36] R. Jozsa, Fidelity for mixed quantum states, J Mod. Opt. 41, 2315 (1994)
[37] L. Masanes, All bipartite entangled states are useful for information processing, Phys. Rev. Lett. 96, 150501 (2006)
[38] L. Masanes, Y-C. Liang, and A. C. Doherty, All bipartite entangled states display some hidden nonlocality, 100, 090403 (2008)
[39] Y-C. Liang, L. Masanes, and D. Rosset, All entangled states display some hidden nonlocality, Phys. Rev. A 86, 052115 (2012)
[40] M-J. Zhao, S-M. Fei, and X. Li-Jost, Complete entanglement witness for quantum teleportation, Phys. Rev. A 85, 054301 (2012)
[41] N. Ganguly, S. Adhikari, A. S. Majumdar, and J. Chatterjee, Entanglement witness operator for quantum teleportation, Phys. Rev. Lett. 107, 270501 (2011)
[42] R. L. Wheeden and A. Zygmund, Measure and integral: an introduction to real analysis, CRC press (1977)
[43] T. M. Apostol, Mathematical analysis: a modern approach to advanced calculus, 2nd edition, Pearson press (1973)
[44] J. R. Munkres, Topology, 2nd edition, Prentice Hall press (2000)
[45] A. Karlsson and M. Bourennane, Quantum teleportation using three-particle entanglement, Phys. Rev. A 58, 4394 (1998)
[46] S. L. Braunstein and H. J. Kimble, Teleportation of continuous quantum variables,, Phys. Rev. Lett. 80, 869 (1998)
[47] P. Agrawal and A. K. Pati, Probabilistic quantum teleportation, Phys. Lett. A 305, 12 (2002)
[48] N. Gisin, Nonlocality criteria for quantum teleportation, Phys. Lett. A 210, 157 (1996)
[49] K. Hammerer, M. M. Wolf, E. S. Polzik, and J. I. Cirac, Quantum benchmark for storage and transmission of coherent states, Phys. Rev. Lett. 94, 150503 (2005)
[50] N. Gisin, Hidden quantum nonlocality revealed by local filters, Phys. Lett. A 210, 151 (1996)
[51] A. Peres, Separability criterion for density matrices, Phys. Rev. Lett. 77, 1413 (1996)
[52] M. Horodecki, P. Horodecki, and R. Horodecki, Separability of mixed states: necessary and sufficient conditions, Phys. Lett. A 223, 1 (1996)
[53] J. B. Gutowski, Symmetry and particle physics, lecture notes on Michaelmas term 2007, DAMTP, Cambridge
[54] S. A. Khot and N. K. Vishnoi, The unique games conjecture, integrality gap for cut problems and embeddability of negative type metrics into l_1, in Proceedings 46th FOCS, Pittsburgh, 2005 (IEEE, Piscataway, NJ, 2005), pp53-62
[55] H. Buhrman, O. Regev, G. Scarpa, and R. de Wolf, Near-optimal and explicit Bell inequality violations, in 26th IEEE Conference on Computational Complexity (CCC 11), San Diego, 2011 (IEEE, Piscataway, NJ, 2011), pp.157-166
[56] H. Buhrman, O. Regev, G. Scarpa, and R. de Wolf, Near-optimal and explicit Bell inequality violations, Theor. Comp. 8, 623 (2012)
[57] D. Cavalcanti, A. Aci ́n, N. Brunner, and T. Ve ́rtesi, All quantum states useful for teleportation are nonlocal resources, Phys. Rev. A 87, 042104 (2013)
[58] M. Horodecki, P. Horodecki, and R. Horodecki, Inseparable two spin- 1/2 density matrices can be distilled to a singlet form, Phys. Rev. Lett. 78, 574 (1997)
[59] M. Horodecki, P. Horodecki, and R. Horodecki, Mixed-state entanglement and distillation: is there a bound entanglement in nature?, Phys. Rev. Lett. 80, 5239 (1998)
[60] M. Junge and C. Palazuelos, Largest violation of Bell inequalities with low entanglement, Comm. Math. Phys.306, 695 (2011)
[61] M. Junge, C. Palazuelos, D. Pe ́rez-Garci ́a, I. Villaneuva, and M. M. Wolf, Unbounded violations of bipartite Bell inequalities via operator space theory, Commun. Math. Phys. 300, 715 (2010)
[62] D. Cavalcanti, private communication
[63] M. Junge, C. Palazuelos, D. Pe ́rez-Garci ́a, I. Villaneuva, and M. M. Wolf, Operator space theory: a nature framework for Bell inequalities, Phys. Rev. Lett. 104, 170405 (2010)
[64] C. Palazuelos, On the largest Bell violation attainable by a quantum state, J. Funct. Anal. 267, 1959 (2014)
[65] L. P. Hughston, R. Jozsa, and W. K. Wooters, A complete classification of quantum ensembles having a given density matrix, Phys. Lett. A 183, 14 (1993)
[66] E. Schro ̈dinger, Discussion of Probability relations between separated systems, Proc. Camb. Phil. Soc. 31, 555 (1935)
[67] S-L. Chen, N. Lambert, C-M. Li, A. Miranowicz, Y-N. Chen, and F. Nori, Quantifying non-Markovianity with temporal steering, Phys. Rev. Lett. 116, 020503 (2016)
[68] M. Pivoluska and M. Plesch, An explicit classical strategy for winning a CHSHq game, New J. Phys. 18, 025013 (2016)
[69] S. L. Braunstein and P. van Loock, Quantum information with continuous variables, Rev. Mod. Phys. 77, 513 (2005)
[70] A. Haar, Der Massbegriff in der Theorie der kontinuierlichen Gruppen, Annals of Mathematics 2 34 (1), 147 (1933)
[71] Y-C. Liang, private communication
[72] H. M. Wiseman, S. J. Jones, and A. C. Doherty, Entanglement, Einstein-Podolsky-Rosen correlations, Bell nonlocality, and steering, Phys. Rev. A 76, 052116 (2007)
[73] J. F. Clauser and A. Shimony, Bell’s theorem: experimental tests and implications, Rep. Prog. Phys. 41, 1883 (1978)
[74] E. S. Fry and R. C. Thompson, Experimental test of local hidden-variable theories, Phys. Rev. Lett. 37, 465 (1976)
[75] A. Aspect, P. Gangier, and G. Roger, Experimental tests of realistic local theories via Bell’s theorem, Phys. Rev. Lett. 47, 460 (1981)
[76] A. Aspect, P. Grangier, and G. Roger, Experimental realization of Einstein-Podolsky-Rosen-Bohm gedankenexperiment: a new violation of Bell's inequalities, Phys. Rev. Lett. 49, 91 (1982)
[77] A. Aspect, J. Dalibard, and G. Roger, Experimental test of Bell's inequalities using time- varying analyzers, Phys. Rev. Lett. 49, 1804 (1982)
[78] Z. Y. Ou, and L. Mandel, Violation of Bell's Inequality and Classical Probability in a Two-Photon Correlation Experiment, Phys. Rev. Lett. 61, 50 (1988)
[79] Y. H. Shih and C. O. Alley, New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric down conversion, Phys. Rev. Lett. 61, 2921 (1988)
[80] P. R. Tapster, J. G. Rarity, and P. C. M. Owens, Violation of Bell's inequality over 4 km of optical fiber, Phys. Rev. Lett. 73, 1923 (1994)
[81] P. G. Kwiat, K. Mattle, H. Weinfurter, and A. Zeilinger, New high-intensity source of polarization-entangled photon pairs, Phys. Rev. Lett. 75, 4337 (1995)
[82] W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, Violation of Bell inequalities by photons more than 10 km apart, Phys. Rev. Lett. 81, 3563 (1998)
[83] G. Weihs, T. Jennewein, C. Simon, H. Weinfurter, and A. Zeilinger, Violation of Bell's inequality under strict Einstein locality conditions, Phys. Rev. Lett. 81, 5039 (1998)
[84] N. Gisin and H. Zbinden, Bell inequality and the locality loophole: Active versus passive switches, Phys. Lett. A 264, 103 (1999)
[85] M. A. Rowe et al., Experimental violation of a Bell inequality with efficient detection, Nature 409, 791 (2001)
[86] T. Scheidl et al., Violation of local realism with freedom of choice, PNAS 107, 19708 (2010)
[87] B. Hensen et al., Loophole-free Bell inequality violation using electron spin separated by 1.3 kilometres, Nature 526, 682 (2015)
[88] A. K. Ekert, Quantum cryptography based on Bell’s theorem, Phys. Rev. Lett. 67, 661 (1991)
[89] C ̌. Brukner, M. Z ̇ukowski, J.-W. Pan, and A. Zeilinger, Bell’s inequality and quantum communication complexity, Phys. Rev. Lett. 92, 127901 (2004)
[90] H. Buhrman, R. Cleve, S. Massar, and R. de Wolf, Nonlocality and communication complexity, Rev. Mod. Phys. 82, 665 (2010)
[91] T. S. Cubitt, D. Leung, W. Matthews, and A. Winter, Zero-Error Channel Capacity and Simulation Assisted by Non-Local Correlations, IEEE Trans. Inf. Theory 57, 5509 (2011)
[92] C. Branciard, E. G. Cavalcanti, S. P. Walborn, V. Scarani, and H. M. Wiseman, One-sided device-independent quantum key distribution: Security, feasibility, and the connection with steering, Phys. Rev. A 85, 010301(R) (2012)
[93] D. H. Smith et al., Conclusive quantum steering with superconducting transition-edge sensors, Nature Commun. 1628 (2012)
[94] M. D. Reid et al., Colloquium: the Einstein-Podolsky-Rosen paradox: from concepts to applications, Rev. Mod. Phys. 81, 1727 (2009)
[95] D. J. Saunders, S. J. Jones, H. M. Wiseman, and G. J. Pryde, Experimental EPR-steering using Bell-local states, Nature Phys. 6, 845 (2010)
[96] V. Ha ̈ndchen et al., Observation of one-way Einstein-Podolsky-Rosen steering, Nature Photonics 6, 596 (2012)
[97] A. J. Bennet et al., Arbitrarily loss-tolerant Einstein-Podolsky-Rosen steering allowing a demonstration over 1 km of optical fiber with no detection loophole, Phys. Rev. X 2, 031003 (2012)
[98] B. Wittmann et al., Loophole-free Einstein-Podolsky-Rosen experiment via quantum steering, New J. Phys. 14, 053030 (2012)
[99] S. Jevtic, M. Pusey, D. Jennings, and T. Rudolph, Quantum steering ellipsoids, Phys. Rev. Lett. 113, 020402 (2014)
[100] M. T. Quintino, T. Ve ́rtesi, and N. Brunner, Joint measurability, Einstein-Podolsky-Rosen Steering, and Bell nonlocality, Phys. Rev. Lett. 113, 160402 (2014)
[101] P. Skrzypczyk, M. Navascues, and D. Cacalcanti, Quantifying Einstein-Podolsky-Rosen steering, Phys. Rev. Lett. 112, 180404 (2014)
[102] J. Bowles, T. Vertesi, M. T. Quintino, and N. Brunner, One-way Einstein-Podolsky-Rosen steering, Phys. Rev. Lett. 112, 200402 (2014)
[103] M. T. Quintino, T. Ve ́rtesi, D. Cavalcanti, and R. Augusiak, Inequivalence of entanglement, steering, and Bell nonlocality for general measurements, Phys. Rev. A 92, 032107 (2015)
[104] Z-G. Li, M-J. Zhao, S-M. Fei, H. Fan, and W-M. Liu, Mixed maximally entangled states, Quantum Inf. Comp. 12, 63 (2012)
[105] A. Peres, All the Bell inequalities, Found Phys. 29, 589 (1999)
[106] T. Ve ́rtesi and N. Brunner, Disproving the Peres conjecture by showing Bell nonlocality from bound entanglement, Nature Commun. 5, 5297 (2014)
[107] M. L. Almeida, S. Pironio, J. Barrett, G. Toth, and A. Acin, Noise robustness of the nonlocality of entangled quantum states, Phys. Rev. Lett. 99, 040403 (2007)
[108] S. R. Finch, Mathematical Constants (Cambridge University Press, Cambridge, U.K., 2003), p. 235.
[109] J. L. Krivine, Constantes de Grothendieck et fonctions de type positif sur les spheres, Adv. Math. 31, 16 (1979)
[110] T. Ve ́rtesi, More efficient Bell inequalities for Werner states, Phys. Rev. A 78, 032112 (2008)
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *