|
[1] R. A. Fisher. The wave of advance of advantageous genes. Annals of Eugenics, 7:355–369, 1937. [2] V. M. Kenkre. Results from variants of the fisher equation in the study of epidemics and bacteria. Physica a-Statistical Mechanics and Its Applications, 342(1-2):242–248, 2004. [3] D. J. P. da Silva and R. A. Kraenkel. Population persistence in weaklycoupled sinks. Physica a-Statistical Mechanics and Its Applications, 391(1-2): 142–146, 2012. [4] V. M. Kenkre and N. Kumar. Nonlinearity in bacterial population dynamics: Proposal for experiments for the observation of abrupt transitions in patches. Proceedings of the National Academy of Sciences of the United States of America, 105(48):18752–18757, 2008. [5] V. M. Kenkre and M. N. Kuperman. Applicability of the fisher equation to bacterial population dynamics. Physical Review E, 67(5), 2003. [6] N. Perry. Experimental validation of a critical domain size in reactiondiffusion systems with escherichia coli populations. Journal of the Royal Society Interface, 2(4):379–387, 2005. [7] V. Mendez and D. Campos. Population extinction and survival in a hostile environment. Physical Review E, 77(2), 2008. [8] G. Abramson and V. M. Kenkre. Spatiotemporal patterns in the hantavirus infection. Physical Review E, 66(1), 2002. [9] N. Kumar, M. N. Kuperman, and V. M. Kenkre. Theory of possible effects of the allee phenomenon on the population of an epidemic reservoir. Physical Review E, 79(4), 2009. [10] V. M. Kenkre. Statistical mechanical considerations in the theory of the spread of the hantavirus. Physica a-Statistical Mechanics and Its Applications, 356(1):121–126, 2005. [11] N. Kumar, R. R. Parmenter, and V. M. Kenkre. Extinction of refugia of hantavirus infection in a spatially heterogeneous environment. Physical Review E, 82(1), 2010. [12] O. Bang, W. Krolikowski, J. Wyller, and J. J. Rasmussen. Collapse arrest and soliton stabilization in nonlocal nonlinear media. Physical Review E, 66(4). [13] L. Gelens, G. Van der Sande, P. Tassin, M. Tlidi, P. Kockaert, D. Gomila, I. Veretennicoff, and J. Danckaert. Impact of nonlocal interactions in dissipative systems: Towards minimal-sized localized structures. Physical Review A, 75(6). [14] Y. J. He, B. A. Malomed, D. Mihalache, and H. Z. Wang. Spinning bearingshaped solitons in strongly nonlocal nonlinear media. Physical Review A, 77(4). [15] Y. V. Kartashov, L. Torner, V. A. Vysloukh, and D. Mihalache. Multipole vector solitons in nonlocal nonlinear media. Optics Letters, 31(10):1483–1485. [16] W. Krolikowski, O. Bang, J. J. Rasmussen, and J. Wyller. Modulational instability in nonlocal nonlinear kerr media. Physical Review E, 64(1). [17] W. Krolikowski, B. Luther-Davies, and O. Bang. Optical spatial solitons in nonlocal nonlinear medium. Nonlinear Optics: Materials, Fundamentals, and Applications, 46:209–211. [18] D. Mihalache, D. Mazilu, F. Lederer, L. C. Crasovan, Y. V. Kartashov, L. Torner, and B. A. Malomed. Stable solitons of even and odd parities supported by competing nonlocal nonlinearities. Physical Review E, 74(6). [19] C. Lopez and E. Hernandez-Garcia. Fluctuations impact on a patternforming model of population dynamics with non-local interactions. Physica D-Nonlinear Phenomena, 199(1-2):223–234. [20] Y. Kuramoto, D. Battogtokh, and H. Nakao. Multiaffine chemical turbulence. Physical Review Letters, 81(16):3543–3546. [21] S. Shima and Y. Kuramoto. Rotating spiral waves with phase-randomized core in nonlocally coupled oscillators. Physical Review E, 69(3). [22] H. Riecke. Self-trapping of traveling-wave pulses in binary mixture convection. Physical Review Letters, 68(3):301–304. [23] H. Riecke and G. D. Granzow. Localization of waves without bistability: Worms in nematic electroconvection. Physical Review Letters, 81(2):333–336. [24] P. B. Umbanhowar, F. Melo, and H. L. Swinney. Localized excitations in a vertically vibrated granular layer. Nature, 382(6594):793–796. [25] B. A. Malomed and A. A. Nepomnyashchy. Kinks and solitons in the generalized ginzburg-landau equation. Physical Review A, 42(10):6009–6014. [26] P. Kolodner, D. Bensimon, and C. M. Surko. Traveling-wave convection in an annulus. Physical Review Letters, 60(17):1723–1726. [27] M. Dennin, G. Ahlers, and D. S. Cannell. Spatiotemporal chaos in electroconvection. Science, 272(5260):388–390. [28] W. Barten, M. Lucke, and M. Kamps. Localized traveling-wave convection in binary-fluid mixtures. Physical Review Letters, 66(20):2621–2624. [29] C. Crawford and H. Riecke. Oscillon-type structures and their interaction in a swift-hohenberg model. Physica D-Nonlinear Phenomena, 129(1-2):83–92. [30] T. E. Woolley, R. E. Baker, E. A. Gaffney, and P. K. Maini. Stochastic reaction and diffusion on growing domains: Understanding the breakdown of robust pattern formation. Physical Review E, 84(4). [31] R. F. Costantino, R. A. Desharnais, J. M. Cushing, and B. Dennis. Chaotic dynamics in an insect population. Science, 275(5298):389–391. [32] M. G. Clerc, D. Escaff, and V. M. Kenkre. Patterns and localized structures in population dynamics. Physical Review E, 72(5), 2005. [33] M. G. Clerc, D. Escaff, and V. M. Kenkre. Analytical studies of fronts, colonies, and patterns: Combination of the allee effect and nonlocal competition interactions. Physical Review E, 82(3), 2010. [34] M. A. Fuentes, M. N. Kuperman, and V. M. Kenkre. Analytical considerations in the study of spatial patterns arising from nonlocal interaction effects. Journal of Physical Chemistry B, 108(29):10505–10508, 2004. [35] M. A. Fuentes, M. N. Kuperman, and V. M. Kenkre. Nonlocal interaction effects on pattern formation in population dynamics. Physical Review Letters, 91(15), 2003. [36] E. H. Colombo and C. Anteneodo. Nonlinear diffusion effects on biological population spatial patterns. Physical Review E, 86(3), 2012. [37] L. A. da Silva, E. H. Colombo, and C. Anteneodo. Effect of environment fluctuations on pattern formation of single species. Physical Review E, 90(1), 2014. [38] E. Gilad, J. von Hardenberg, A. Provenzale, M. Shachak, and E. Meron. Ecosystem engineers: From pattern formation to habitat creation. Physical Review Letters, 93(9), 2004. [39] R. Lefever, N. Barbier, P. Couteron, and O. Lejeune. Deeply gapped vegetation patterns: On crown/root allometry, criticality and desertification. Journal of Theoretical Biology, 261(2):194–209, 2009. [40] D. Escaff, C. Fernandez-Oto, M. G. Clerc, and M. Tlidi. Localized vegetation patterns, fairy circles, and localized patches in arid landscapes. Physical Review E, 91(2), 2015. [41] F. Borgogno, P. D’Odorico, F. Laio, and L. Ridolfi. Mathematical models of vegetation pattern formation in ecohydrology. Reviews of Geophysics, 47. [42] O. Lejeune, M. Tlidi, and P. Couteron. Localized vegetation patches: A self-organized response to resource scarcity. Physical Review E, 66(1). [43] E. Meron, E. Gilad, J. von Hardenberg, M. Shachak, and Y. Zarmi. Vegetation patterns along a rainfall gradient. Chaos Solitons Fractals, 19(2):367– 376. [44] M. Rietkerk, S. C. Dekker, P. C. de Ruiter, and J. van de Koppel. Self-organized patchiness and catastrophic shifts in ecosystems. Science, 305(5692):1926–1929. [45] C. Fernandez-Oto, M. G. Clerc, D. Escaff, and M. Tlidi. Strong nonlocal coupling stabilizes localized structures: An analysis based on front dynamics. Physical Review Letters, 110(17). [46] J. Siebert, S. Alonso, M. Bar, and E. Scholl. Dynamics of reaction-diffusion patterns controlled by asymmetric nonlocal coupling as a limiting case of differential advection. Physical Review E, 89(5), 2014. [47] M. J. Grimson and G. C. Barker. Continuum model for the spatiotemporal growth of bacterial colonies. Physical Review E, 49(2):1680–1684, 1994. [48] S. Kitsunezaki. Interface dynamics for bacterial colony formation. Journal of the Physical Society of Japan, 66(5):1544–1550, 1997. [49] J. Wakita, K. Komatsu, A. Nakahara, T. Matsuyama, and M. Matsushita. Experimental investigation on the validity of population-dynamics approach to bacterial colony formation. Journal of the Physical Society of Japan, 63(3):1205–1211, 1994. [50] F. Courchamp, T. Clutton-Brock, and B. Grenfell. Inverse density dependence and the allee effect. Trends in Ecology Evolution, 14(10):405–410,1999. [51] M. J. Groom. Allee effects limit population viability of an annual plant. American Naturalist, 151(6):487–496.1998. |