帳號:guest(18.118.151.51)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃品鈞
作者(外文):Huang, Pin-Chiun
論文名稱(中文):核能電廠反應器壓力槽腹帶區壓力熱震結構可靠度評估
論文名稱(外文):Structure reliability assessment of PWR pressure vessel subjected to pressurized thermal shock events
指導教授(中文):馮玉明
周雄偉
指導教授(外文):Ferng, Yuh-Ming
Chou, Hsoung-Wei
口試委員(中文):曾永信
林志宏
口試委員(外文):Tseng, Yung-Shin
Lin, Chih-Hung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:核子工程與科學研究所
學號:103013519
出版年(民國):105
畢業學年度:104
語文別:中文英文
論文頁數:64
中文關鍵詞:壓力熱震機率破裂力學化學組成變化煙雲效應
外文關鍵詞:Pressurized thermal shockProbabilistic fracture mechanicsChemical content variationPlume effect
相關次數:
  • 推薦推薦:0
  • 點閱點閱:170
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
反應器壓力槽(Reactor Pressure Vessel, RPV)為核能電廠中重要的壓力邊界組件,在運轉時承受高劑量中子照射,將導致其腹帶區(Beltline region)內的殼壁材料產生輻射脆化,進而影降低其破裂韌性。故經過多年的運轉後,RPV的結構完整性評估變得十分重要,應謹慎評估以確保核能安全。本研究針對壓水式反應器(Pressurized Water Reactor, PWR)RPV在承受壓力熱震(Pressurized Thermal Shock, PTS)下其殼壁材料的化學組成不確定性以及考慮注入水的不均勻性對於RPV破壞機率的影響。
在研究中所使用的分析軟體為美國橡樹嶺國家實驗室所開發的機率破裂力學(Probabilistic Fracture Mechanics, PFM)軟體FAVOR(Fracture Analysis of Vessels – Oak Ridge) 。壓力熱震暫態則使用美國核能管制委員會(United States Nuclear Regulatory Commission, U.S. NRC)對於Beaver Valley電廠所分析的暫態來做為輸入參數。針對不同的化學成分與不同的輻射脆化條件下進行分析,發現銅和鎳的改變對於PWR壓力容器腹帶區材料的輻射脆化和破壞機率有很大的影響,可作為安全法規訂定與電廠操作風險上的參考。
另外,暫態發生時冷水注入的不均勻性所形成的煙雲效應(Plume effect)對於FAVOR在計算三迴路壓水式反應器RPV破裂機率時的影響在本研究中也有納入考慮。從其結果可知三迴路同時注水下是否考慮煙雲效應對於RPV破壞機率結果影響並不明顯。呼應IAEA-TECDOC-1627報告中所提及當壓水式反應器RPV遭受壓力熱震暫態時所發生的煙雲效應是可以忽略的;但如果是只有一迴路失效則會有一定程度的影響。
The reactor pressure vessel (RPV) is one of the most important components in a nuclear power plant which is exposed to various transients associated with high neutron fluence during operation. The neutron irradiation may cause the vessel material to become more brittle especially for the weld and plate materials in the beltline region corresponding to the reactor core. After years of operation, the structural integrity of the degraded RPV becomes crucial and needs to be evaluated to ensure the nuclear safety. This paper is to study the effects of copper and nickel content variations and non-uniform temperature distribution causing by inlet water on the fracture probability of the pressurized water reactor (PWR) pressure vessel subjected to pressurized-thermal-shock (PTS) transients.
The probabilistic fracture mechanics (PFM) code, FAVOR, which was developed by the Oak Ridge National Laboratory in the United States, is employed to perform the analyses. Some PTS transients analyzed from Beaver Valley Unit 1 for establishing the USNRC’s new PTS rule are applied as the loading conditions. It is found that the content variation of copper and nickel will significantly affect the radiation embrittlement and the fracture probability of PWR pressure vessels. The results can be regarded as the risk incremental factors for comparison with the safety regulation requirements on vessel degradation as well as a reference for the operation of PWR plants in Taiwan.
We also consider about the effect of non-uniform temperature distribution, plume effect, caused by cold cooling water inlet on the fracture probability of the three loop PWR pressure vessel subjected to PTS events. It is found that the plume effect will not have a significant impact on the fracture probability of the PWR under the injection of three loops cooling water at the same time consist with the IAEA-TECDOC-1627 report., However, it would increase the fracture probability even if there is only one loop failure.
摘要 i
ABSTRACT ii
致謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
1 第一章 緒論 9
1.1 研究背景 9
1.2 研究目的 10
1.3 文獻回顧 10
2 第二章 FAVOR主體架構 12
2.1 FAVOR整體資料串流(Data stream) 12
2.2 機率破裂力學主體架構及流程圖 16
2.3 熱預應力(WPS)之判定與分析流程 21
3 第三章 理論基礎與分析模型 23
3.1 破裂力學 23
3.1.1 破壞準則 23
3.1.2 機率破壞力學 25
3.2 FAVOR程式採用之機率分佈函數 26
3.2.1 均勻分佈(Uniform distribution): 26
3.2.2 常態分佈(Normal distribution): 27
3.2.3 對數常態分佈(Lognormal distribution): 28
3.2.4 偉伯分佈(Weibull distribution): 29
3.2.5 邏輯分佈(Logistic distribution): 30
3.3 分析模型 31
3.4 壓力熱震事件概述 35
3.4.1 一次側管路破裂事故 (LOCA) 35
3.4.2 一次側系統安全釋壓閥卡開 (SO-1) 36
3.4.3 二次側系統安全釋壓閥卡開 (MSLB&SO-2) 36
4 第四章 運算分析與結果 38
4.1 化學組成對壓力槽破壞機率影響分析結果 38
4.2 溫度不均性分析 48
4.2.1 CFD分析模型 48
4.3 分析結果討論 50
第六章 結論 59
參考文獻 60


1. 10CFR50.61, “Fracture Toughness Requirements for Protection against Pressurized Thermal Shock Events.” Code of Federal Regulations.
2. 10 CFR 50.61a, “Alternative Fracture Toughness Requirements for Protection against Pressurized Thermal Shock Events.” Code of Federal Regulations.
3. BWR Vessel and Internals Project, “BWR Reactor Pressure Vessel Shell Weld Inspection Recommendations (BWRVIP-05).” EPRI TR-105697, (1995).
4. NRC Generic Letter 98-05, “Boiling Water Ractor Lcensee Use of the BWRVIP-05 Report to Request Relief from Augmented Examination Requirements on Reactor Pressure Vessel Circumferential Shell Welds.” (1998).
5. K. Wichman, B. Elliot and C. Carpenter, “U.S. Nuclear Regulatory Commission’s Review of the Impact of Inservice Inspection of BWR Reactor Pressure Vessel Welds on Vessel Failure.” Transactions of the 15th internal conference on structure mechanics in reactor technology, 1999.
6. U. S. Nuclear Regulatory Policy Issue, “NRC Staff Evaluation of Pressurized Thermal Shock.” SECY 82-465, 1982.
7. NUREG-1806, “Technical Basis for Revision of the Pressurized Thermal Shock (PTS) Screening Limit in the PTS Rule (10 CFR 50.61).” U. S. NRC, August, 2007.
8. NUREG-1874, “Recommended Screening Limits for Pressurized Thermal Shock (PTS).” U. S. NRC, 2010.
9. F. A. Simonen, S. R. Doctor, G. J. Schuster and P. G. Heasler, 2003, “A Generalized Procedure for Generating Flaw-related Inputs for the FAVOR Code,” NUREG/CR-6817, Pacific Northwest National Laboratory, USA.
10. N. A. Palm, B. A. Bishop, and C. L. Boffess, “Risk-informed Extension of the Inservice Inspection Interval for Pressurized Water Reactor Vessel from 10 to 20 years.” Nuclear Engineering and Design, 238, 2027, 2008.
11. H. W. Chou, C. C. Huang, B. Y. Chen, R. F. Liu, and H. C. Lin, 2010, “Probabilistic Fracture Analysis For Boiling Water Reactor Pressure Vessels Subjected To Low Temperature Over-Pressure Event,” Proceedings of the ASME 2010 Pressure Vessels & Piping Conference, PVP2010-25196.
12. “Radiation Embrittlement of Reactor Vessel Materials,” U.S. NRC, Regulatory Guide 1.99, Rev. 2,1988.
13. B. Y. Chen, C. C. Huang, Hsuing-Wei Chou, Ru-Feng Liu and Hsien-Chou Lin, 2011, “The Influence of Chemistry Concentration Uncertainty on the Probabilistic Fracture Mechanics Analysis,” Proceedings of the ASME 2011 Pressure Vessels & Piping Conference, PVP2011-57470.
14. Guian Qian, V.F. González-Albuixech, Markus Niffenegger, and Medhat Sharabi, 2015, “Probabilistic Pressurized Thermal Shocks Analysis for a Reactor Pressure Vessel by Considering Plume Effect,” Proceedings of the ASME 2015 Pressure Vessels & Piping Conference, PVP2015-45963.
15. Chou Hsoung-Wei, Huang Kuan-Rong, Liu Ru-Feng, Huang Chin-Cheng “Theoretical Basis and Application of Probabilistic Fracture Mechanics Analysis Computer Code for Reactor Pressure Vessels”
16. W. O. Shabbits, W. H. Pryle, and E. T. Wessel, “Heavy Section Fracture Toughness Properties of A533, Grade B, Class-1 Steel Plate and Submerged Arc Weldments.” HSST Technical Report 6, WCAP-7414 (1969).
17. K. O. Bowman and P. T. Williams, “Technical Basis for Statistical Models of Extended KIC and KIa Fracture Toughness Databases for RPV Steels.” ORNL/NRC/LTR-99/27, (2000).
18. A. J. Brothers and S. Yukawa, “The Effects of Warm Prestressing on Notch Fracture Strength.” Journal of Basic Engineering, Transaction of the ASME, Series D, 85(1), 87 (1963).
19. M. T. Kirk, “Inclusion of Warm Prestressing Effects in Probabilistic Fracture Mechanics Calculation Performed to Assess the Risk of RPV Failure Produced by Pressurized Thermal Shock Events: An Opinion.” NATO Advanced Research Workshop – Scientific Fundamentals for the Life Time Extension of Reactor Pressure Vessels, Kiev, Ukraine, (2002).
20. T. L. Dickson, P. T. Williams, and S. Yin, “Fracture Analysis of Vessels-Oak Ridge FAVOR, v04.1, Computer Code: Theory and Implementation of Algorithms, Methods, and Correlations,” NUREG/CR-6854, (2004).
21. Sundararajan, C., “Probabilic Assessment of Pressure Vessel and Piping and Design, Vol. I, John Wiley &Sons, Inc., New Yok, 1975.
22. A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel, D. Banks, A. Heckert, J. Dray, S. Vo, “A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications.” NIST Special Publication, 800-22, (2001).
23. T. L. Dickson, P. T. Williams, and S. Yin, “Fracture Analysis of Vessels-Oak Ridge FAVOR, v04.1, Computer Code: User’s Guide”
24. H. W. Chou, C. C. Huang, 2014, “Structural Reliability Evaluation on the Pressurized Water Reactor Pressure Vessel Under Pressurized Thermal Shock Events,” Proceedings of the ASME 2014 Pressure Vessels & Piping Conference, PVP2014-28350.
25. M. EricksonKirk, B.R. Bass, T. Dickson, C. Pugh, T. Santos, and P. Williams, “Probabilistic Fracture Mechanics – Models, Parameters, and Uncertainty Treatment Used in FAVOR version 04.1,” NUREG-1807.
26. W. C. Arcieri, R. M. Beaton, C. D. Fletcher and D. E. Bessette, 2004, “RELAP5 Thermal Hydraulic Analysis to Support PTS Evaluations for the Oconee-1, Beaver Valley-1, and Palisades Nuclear Power Plants.” NUREG/CR-6858, U. S. NRC, USA.
27. T. L. Dickson, S. Yin and P. T. Williams, 2007, “Electronic Archive of the Results of Pressurized Thermal Shock Analysis for Beaver Valley, Oconee, and Palisades Reactor Pressure Vessels Generated with the 06.1 version of FAVOR.” ORNL/NRC/LTR-07/04, Oak Ridge National Laboratory, USA.
28. D. L. Whitehead, et al., 2004, “Beaver Valley Pressurized Thermal Shock (PTS) Probabilistic Risk Assessment (PRA),” ADAMS #ML042880454, U. S. NRC, USA.
29. M. T. EricksonKirk et al., “Technical Basis for Revision of the Pressurized Thermal Shock (PTS) Screening Limit in the PTS Rule (10 CFR 50.61).” NUREG-1806, U. S. NRC, August, 2007.
30. C Y. Chen, et al., 1999, “Analysis of Capsule W from the Taiwan Power Company Maanshan Unit 1 Reactor Vessel Radiation Surveillance Program.” INER-T2583, Institute of Nuclear Energy Research, Taiwan, R.O.C.
31. M. Erickson Kirk et al., 2007, “Technical Basis for Revision of the Pressured Thermal Shock (PTS) Screening Limit in the PTS Rule (10 CFR 50.61),” NUREG-1806, U.S.NRC, USA.
32. M. Erickson Kirk et al., 2010, “Recommended Screening Limits for Pressurized Thermal Shock (PTS),” NUREG-1874, U.S.NRC, USA.
33. IAEA-TECDOC-1627, “Pressurized Thermal Shock in Nuclear Power Plants: Good Practices for Assessment”
34. S. Kliem, T. Sühnel, U. Rohde, T. Höhne, H.-M. Prasser, F.-P. Weiss “ Experiments at the mixing test facility rocom for menchmarking of cfd-codes,” Forschungszentrum Rossendorf, Institute of Safety Research P.O.B. 510119, D-01314 Dresden, Germany
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *