帳號:guest(3.22.248.177)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳弘恩
作者(外文):Chen, Hong En
論文名稱(中文):利用同步輻射異常X光散射研究鐵摻雜釔錳氧磊晶薄膜之結構
論文名稱(外文):Synchrotron radiation anomalous x-ray scattering study on the structure of Fe-doped YMnO3 epitaxial films
指導教授(中文):李志浩
指導教授(外文):Lee, Chih Hao
口試委員(中文):歐陽汎怡
李信義
口試委員(外文):Ouyang, Fan Yi
Lee, Hsin Yi
學位類別:碩士
校院名稱:國立清華大學
系所名稱:核子工程與科學研究所
學號:103013515
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:81
中文關鍵詞:多鐵材料同步輻射光源異常X光散射磊晶結構
外文關鍵詞:MultiferroicSynchrotron Radiation Light SourceAnomalous x-ray scatteringEpitaxial structure
相關次數:
  • 推薦推薦:0
  • 點閱點閱:271
  • 評分評分:*****
  • 下載下載:8
  • 收藏收藏:0
本論文為利用X光繞射、X光反射率、X光吸收光譜與異常X光繞射量測鐵摻雜之釔錳氧薄膜,以了解其晶體結構,實驗薄膜試樣為脈衝雷射系統成長鐵摻雜之釔錳氧薄膜。
X光繞射與X光反射率實驗是使用國家同步輻射研究中心光束線07A、13A與17B進行實驗,由於同步輻射光源具有高強度、高準直性與光源截面積小等特性,適合來進行結構分析與φ-scan的軸向定位去了解薄膜之成長,X光反射率配合GenX分析軟體來模擬薄膜厚度、粗糙度與結構排列之資訊。
由於錳原子與鐵原子的散射因子相當接近,一般X光繞射無法分辨這兩個原子在結構特定位置對繞射峰強度產生的影響,運用異常繞射可以由禁制峰獲得本樣品具有雙鈣鈦結構之序化情形。本實驗利用同步輻射光源之能量可調性,在光束線17B把能量調至Mn的K吸收邊(6.539 keV)與Fe的K吸收邊(7.112 keV)改變入射能量,做異常X光繞射量測光強度,並與X光繞射和X光吸收光譜(光束線16A)比較,經由Kramers-Kronig 關係式求得散射因子,並與繞射峰強度變化做比較。發現半鐵摻雜的釔錳鐵氧YMFO薄膜有兩相存在,兩晶胞單位體積一樣,調變能量在錳與鐵吸收邊緣時,繞射光強度皆有明顯下降之趨勢,兩者下降趨勢相同,其成分比例皆為YMn0.5Fe0.5O3,然而YMFO(010)禁制峰沒有繞射光強度,為非有序結構。另一個樣品是YMFO舊樣品為單一相,調變能量在錳與鐵吸收邊緣時,YMFO(010)禁制峰繞射光強度有顯著變化,其光強度變化約有15至20倍,為有序結構。
In this work, the crystal structure and electronic property of the orthorhombic YMnO3 epitaxial film on YAlO3(010) substrate and Fe-doped YMnO_3 epitaxial film were studied by using X-ray diffraction (XRD), X-ray reflectivity (XRR), X-ray absorption spectroscopy (XAS) and anomalous X-ray diffraction.
X-ray diffraction and X-ray reflectivity were measured at beamline BL07A, BL13A and BL17B in National Synchrotron Radiation Research Center (NSRRC). Due to the synchrotron radiation source has high intensity, excellent collimation and low emittance, those are suitable for analyzing the crystal structure and growth of the films. The thickness, roughness and arrangement of the films from X-ray reflectivity were analyzed by using GenX program.
Because of the very similar scattering factors of Mn and Fe atoms, it is hard to distinguish these two atoms at specific sites of the structure from the change of diffraction peak intensity. Anomalous X-ray scattering was used to study the problem of the diffraction peak splitting of Fe-doped YMnO3 epitaxial film in (020) plane. The anomalous X-ray diffraction was performed at BL17B and XAS at BL16A. We change the incident X-ray energy to Mn K-edge (6.539 keV) and Fe K-edge (7.112 keV), then measure the (020) diffraction peak intensity. By comparing the anomalous X-ray diffraction with XAS, we calculate the scattering factor by using Kramers-Kronig relation. We found that the YMFO new sample had two phase and disorder structure. Another sample was YMFO old sample which was single phase. When we change the incident X-ray energy to Mn K-edge and Fe K-edge, the YMFO(010) forbidden diffraction intensity was enhanced 15 times to 20 times. The YMFO old sample was order structure.
目錄
摘要 i
誌謝 iii
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧與探討 2
1.3 研究動機 8
第二章 實驗樣品製備 9
2.1 樣品材料介紹 9
2.1.1 多鐵材料的基本特性 9
2.1.2 釔錳氧化物YMnO3之基本特性 10
2.1.3 磁致冷材料之基本特性 12
2.2 薄膜的製備 13
2.2.1 脈衝雷射蒸鍍 (Pulse Laser Deposition,PLD) 13
2.2.2 直流磁控濺鍍 (DC Magnetron Sputtering) 14
第三章 實驗設置及量測設備 15
3.1 光源、實驗量測儀器介紹 15
3.1.1 同步輻射光源 (Synchrotron Radiation Light Source) 15
3.1.2 X光繞射與φ-scan 16
3.1.3 X光反射率(X-ray Reflectivity) 18
3.1.4 X光吸收光譜 (X-ray Absorption Spectroscopy) 20
3.1.5 異常繞射精細結構 (Diffraction Anomalous Fine Structure) 23
3.1.6 X光螢光原理 (X-ray Fluorescence) 25
3.1.7 掃描式電子顯微鏡 (Scanning Electron Microscope) 26
3.1.8 原子力顯微鏡 (Atomic Force Microscope) 28
3.2 實驗步驟與方法 29
3.2.1 X光繞射實驗步驟與方法 29
3.2.2 X光反射率實驗步驟與方法 38
3.2.3 X光吸收光譜實驗步驟與方法 39
第四章 結果與討論 42
4.1 螢光定量分析 42
4.2 薄膜晶相結構分析 47
4.2.1 X光繞射分析晶體結構 47
4.2.2 X光反射率對薄膜分析與模擬 60
4.2.3 Williamson Hall plot (W-H plot)分析內應變 66
4.3 異常X光繞射實驗與X光吸收光譜 68
第五章 總結 73
第六章 未來展望 74
文獻參考 75
附錄 79
1. W. Prellier, M. P. Singh, and P. Murugavel, "The single-phase multiferroic oxides: from bulk to thin film," Journal of Physics: Condensed Matter 17 (30), R803 (2005).

2. M. Fiebig, Th Lottermoser, D. Frohlich, A. V. Goltsev, and R. V. Pisarev, "Observation of coupled magnetic and electric domains," Nature 419 (6909), 818 (2002).

3. N. Hur, S. Park, P. A. Sharma, J. S. Ahn, S. Guha, and S. W. Cheong, "Electric polarization reversal and memory in a multiferroic material induced by magnetic fields," Nature 429 (6990), 392 (2004).

4. T. Goto, T. Kimura, G. Lawes, A. P. Ramirez, and Y. Tokura, "Ferroelectricity and Giant Magnetocapacitance in Perovskite Rare-Earth Manganites," Physical Review Letters 92 (25), 257201 (2004).

5. Makoto Tachibana, Tomotaka Shimoyama, Hitoshi Kawaji, Tooru Atake, and Eiji Takayama-Muromachi, "Jahn-Teller distortion and magnetic transitions in perovskite RMnO3 (R=Ho, Er, Tm, Yb, and Lu)," Physical Review B 75 (14), 144425 (2007).

6. T. Kimura, S. Ishihara, H. Shintani, T. Arima, K. T. Takahashi, K. Ishizaka, and Y. Tokura, "Distorted perovskite with eg configuration as a frustrated spin system," Physical Review B 68 (6), 060403 (2003).

7. S. X. Lin, X. G. Fang, A. H. Zhang, X. B. Lu, J. W. Gao, X. S. Gao, M. Zeng, and J.-M. Liu, "Uniaxial strain-induced magnetic order transition from E-type to A-type in orthorhombic YMnO3 from first-principles," Journal of Applied Physics 116 (16), 163705 (2014).

8. Masao Nakamura, Yusuke Tokunaga, Masashi Kawasaki, and Yoshinori Tokura, "Multiferroicity in an orthorhombic YMnO3 single-crystal film," Applied Physics Letters 98 (8), 082902 (2011).

9. Shu-Chih Haw, Jenn-Min Lee, Shin-Ann Chen, Kueih-Tzu Lu, Ming-Tao Lee, Tun-Wen Pi, Chih-Hao Lee, Zhiwei Hu, and Jin-Ming Chen, "Influence of Fe substitution on the Jahn-Teller distortion and orbital anisotropy in orthorhombic Y(Mn(1-x)Fex)O3 epitaxial films," Dalton Transactions (2016). DOI : 10.1039/C6DT01633B

10. Lei Bi, Alexander R. Taussig, Hyun-Suk Kim, Lei Wang, Gerald F. Dionne, D. Bono, K. Persson, Gerbrand Ceder, and C. A. Ross, "Structural, magnetic, and optical properties of BiFeO3 and Bi2FeMnO6 epitaxial thin films: An experimental and first-principles study," Physical Review B 78 (10), 104106 (2008).

11. K. Yoshimatsu, K. Nogami, K. Watarai, K. Horiba, H. Kumigashira, O. Sakata, T. Oshima, and A. Ohtomo, "Synthesis and magnetic properties of double-perovskite oxide La2MnFeO6 thin films," Physical Review B 91 (5), 054421 (2015).

12. Alessio Filippetti and Nicola A. Hill, "Coexistence of magnetism and ferroelectricity in perovskites," Physical Review B 65 (19), 195120 (2002).

13. Alex Frano, "Spin Spirals and Charge Textures in Transition-Metal-Oxide Heterostructures," Springer, 4 (2014).

14. P. Debye, "Einige Bemerkungen zur Magnetisierung bei tiefer Temperatur," Annalen der Physik 386 (25), 1154 (1926).

15. W. F. Giauque and D. P. MacDougall, "Attainment of Temperatures Below 1° Absolute by Demagnetization of Gd2 〖(SO4)〗3∙8H2O," Physical Review 43 (9), 768 (1933).

16. 蔡坤昇, "Study of FeRh Thin Film by Sputtering Method." , 國立清華大學碩士論文 (2015)

17. 陳昱帆, "Synchrotron radiation research in lithium-ion battery with advanced silicon anode material." , 國立清華大學碩士論文 (2015)

18. http://amptek.com/xrf/

19. http://web1.knvs.tp.edu.tw/AFM/ch4.htm

20. Miho Yasaka, "X-ray reflectivity measurement," The Rigaku Journal 26, 2 (2010).

21. https://en.wikipedia.org/wiki/Crystal_structure

22. Mingyu Shang, Chenyang Zhang, Tingsong Zhang, Lin Yuan, Lei Ge, Hongming Yuan, and Shouhua Feng, "The multiferroic perovskite YFeO3," Applied Physics Letters 102 (6), 062903 (2013).

23. L. Hao, H. B. Cai, X. N. Xie, H. R. Wang, G. K. Lin, X. P. Wang, and H. Zhu, "Multiferroicity in half-Cr-doped YMnO3 epitaxial films with compressive strain," Applied Physics Letters 108 (17), 172904 (2016).

24. VD Mote, Y. Purushotham, and BN Dole, "Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles," Journal of Theoretical and Applied Physics 6 (1), 2 (2012).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *