帳號:guest(18.226.186.202)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳聖元
作者(外文):Chen, Sheng Yuan
論文名稱(中文):TRITON/GenPMAXS/PARCS 計算序列應用於單純UOX與混合MOX燃料的簡易爐心模型
論文名稱(外文):Neutronic Simulations for Simple Core Models using TRITON/GenPMAXS/PARCS Sequence
指導教授(中文):許榮鈞
指導教授(外文):Sheu, Rong Jiun
口試委員(中文):薛燕婉
陳紹文
口試委員(外文):Hsueh, Yen Wan
Chen, Shao Wen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:核子工程與科學研究所
學號:103013511
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:85
中文關鍵詞:輕水式反應器晶格計算爐心計算
外文關鍵詞:light water reactorlattice calculationscore calculation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:63
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
TRITON/GenPMAXS/PARCS(TGP)計算序列是個由上游晶格計算和下游爐心模擬組成的程式集,使用TRITON程式中的控制序列T-NEWT或T-DEPL進行晶格計算以獲取所需的截面資料,GenPMAXS程式則是個介面程式,將TRITON產生的截面資料轉檔成PARCS程式所能讀取的PMAXS檔案,而爐心模擬程式PARCS是三維多群節點爐心計算程式,可解決穩態、暫態、多群中子擴散以及 SP3遷移方程等問題。本研究利用這個計算序列去模擬一個簡易的壓水式爐心,該爐心會先以TRITON進行全爐心的遷移計算得到此問題的參考答案,並以此為基礎來與TGP計算序列之結果相比較,藉由這些測試來增加使用經驗和分析此計算序列的優缺點。
測試的結果顯示TGP序列用於單純UOX爐心的模擬,無論是keff、燃料組件功率分布和燃料棒功率分布都有著相當的準確度,其中keff誤差只有18 pcm。另外本研究也發現PMAXS檔在吸收和散射截面的部分有稍做處理,使其數值異於TRITON直接產生的截面數值,另外也了解到產生節點截面的TRITON模型,尤其是邊界條件之設置,對於模擬結果影響的重要性。
不過TGP序列對混合MOX爐心的模擬結果就不如前個案例,因此依據文獻的建議,當考慮周遭環境條件的超晶格TRITON模型產生截面資料,雖然能獲得結果的改善卻也造成功率形狀函數選擇上的兩難,因而轉求使用燃料棒尺度的多能群爐心模擬計算,期望能以此方法解決問題,卻因為一些運行錯誤的緣故,未能產出模擬結果,所以先測試燃料組件尺度的多能群計算,在無限大爐心下有著還不錯的結果,但對於單純UOX爐心之結果就不如預期,目前只知道部分誤差源自於未考量up-scattering截面,剩餘部分就有待發掘與探討。希望藉由本研究的成果與經驗能讓未來開發本土的爐心節點程式時,有著更堅實的基礎。
TRITON/GenPMAXS/PARCS sequence is a set of programs which is composed of lattice calculation code and core simulator. TRITON provides cross section datas by lattice calculations. GenPMAXS is an interface program between lattice physics codes and the core simulator. PARCS is a 3-D reactor core simulator which solves the steady-state, transient and multi-group neutron diffusion and SP3 transport equations. First, this TGP sequence simulates a simple PWR core and gets the results. The results will compare with the reference which is calculated by full-core transport calculation. This study aims to increase the use of experience and explore the advantages and limitations of this TGP sequence and provides the information of developing a local nodal core simulator. The results show that the keff, fuel assembly relative power and pin power distribution agree with the reference for the case of pure UOX core. The error of keff is about 18pcm. During the calculation, the study also discover that the values of absorption and scattering cross sections in PMAXS file are different from TRITON output and the results also show the importantance that the configurations of TRITON model and the setting of boundary conditions for generating cross section datas will have the huge impact on the results. However, the results for the case of mixed MOX core don’t present such well as the case of pure UOX core. Therefore, based on the paper review, this study introduces an supercell TRITON model to improve the cross section datas used in the core calculation. Although the results become better, there is a dilemma of the selection of power form functions. The study continues simulating this case with the multi-group, pin-wise calculation. Unfortunately, due to the runtime error, the results can not be produced. And the results of multi-group calculation test still have some problems so that further investigations are ongoing to clarify the cruxes of the problem.
摘要 i
Abstract ii
致謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
縮寫表 x
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
第二章 計算工具程式介紹 5
2.1 SCALE/TRITON 5
2.1.1 T-NEWT 6
2.1.2 T-DEPL 6
2.1.3 預測-修正法 7
2.2 GenPMAXS 9
2.2.1 PMAXS的檔案結構 11
2.2.2 GenPMAXS的輸入檔 14
2.2.3 GenPMAXS的輸出檔 17
2.3 PARCS 20
2.3.1 PARCS的計算方法 22
2.3.2 PARCS輸入/輸出檔 23
第三章 簡易爐心模型 28
3.1 爐心配置 28
3.2 燃料元件規格 30
3.3 簡易爐心模型的遷移計算結果 36
第四章 案例探討 39
4.1 單純UOX燃料的爐心節點模型 39
4.1.1節點截面產生的模型 39
4.1.2 節點截面的選擇 42
4.1.3 晶格非連續因子(ADF) 45
4.1.4 燃料棒功率重建(Pin Power Reconstruction) 47
4.2 混合MOX燃料的爐心節點模型 51
4.2.1節點截面產生模型: 單一燃料束 51
4.2.2節點截面產生的模型: 全爐心 53
4.2.3節點截面產生的模型: 超晶格 56
4.2.4燃料棒功率重建 59
4.3 PARCS程式的爐心pin-wise計算測試 65
4.3.1 單純UOX燃料的全爐心pin-wise計算 66
4.3.2 混合MOX燃料的全爐心pin-wise計算 70
4.4 PARCS程式的多能群pin-wise爐心計算測試 74
4.4.1 多能群計算的方法選擇 76
4.4.2 全爐心的多能群pin-wise計算測試 78
第五章 結論與未來工作 81
5.1 結論 81
5.2 未來工作 83
參考文獻 84

1. Yamamoto, A. and E. Tomohiro “Overview of core simulation methodologies for light water reactor analysis.” (2011).
2. DeHart, Mark D., et al. “Assessment of TRITON and PARCS for full-core MOX fuel calculations.” American Nuclear Society 2005 Annual Meeting. (2005).
3. 張敏娟. “TRITON/GenPMAXS/PARCS/TRACE計算平台應用於沸水式反應器爐心計算.” 清華大學核子工程與科學研究所碩士學位論文 (2014): 1-6.
4. ORNL, “SCALE: A Comprehensive Modeling and Simulation Suite for Nuclear Safety Analysis and Design.” ORNL/TM-2005/39, Version 6.1. Oak Ridge National Laboratory, Oak Ridge, TN, USA. (2011)
5. Xu, Y. and T. Downar. “GenPMAXS code for generating the PARCS cross section interface file PMAXS.” Purdue University, School of Nuclear Engineering, West Lafayette, IN, USA (2012).
6. Downar, T. et al. “PARCS v3.0 U.S. NRC Core Neutronics Simulator User Manual.” University of Michigan (2012).
7. Downar, T. et al. “PARCS: Purdue Advanced Reactor Core Simulator.” Purdue University, School of Nuclear Engineering, West Lafayette, IN, USA (2002).
8. Lefebvre, J.C. et al. “Benchmark Calculation of Power Distribution within Assemblies.” NEACRP-L-336, Oct. 1991.
9. Kitada, T. et al. “Analysis of Benchmark Results for Reactor Physics of LWR Next Generation Fuels.” PHYSOR 2004-The Physics of Fuel Cycles and Advanced Nuclear Systems: Global Developments, Global Developments Chicago, Illinois, April 25-29, 2004.
10. Ade, B. J. et al. “SCALE/TRITON Primer: A Primer for Light Water Reactor Lattice Physics Calculations.” ORNL/TM-2011/21, Oak Ridge National Laboratory, Oak Ridge, TN, USA. (2012)
11. SMITH, K. S. “Assembly homogenization techniques for light water reactor analysis. ” Prooress in Nuclear Eneroy, Vol. 17, No. 3, pp. 303-335, 1986.
12. Downar, T. et al. “PARCS v3.0 U.S. NRC Core Neutronics Simulator Theory Manual.” University of Michigan (2012).
13. 林靖昇. “金山核一廠鈽鈾混合燃料設計與應用.” 清華大學核子工程與科學研究所碩士學位論文(2010): 4-14.
14. Palmtag, S. P. “Advanced Nodal Methods for MOX Fuel Analysis.” MIT, Ph.D Dissertation, 1997.
15. O’Connor, G. J. “Burn-up Credit Criticality Benchmark Phase IV-B: Results and Analysis of MOX Fuel Depletion Calculation.” ISBN 92-64-02124-8 (2003).
16. Hébert, A. “A Consistent Technique for the Pin-by-Pin Homogenization of a Pressurized Water Reactor Assembly.” Ecole Polytechnique de Montréal, Institut de Génie Energétique Montréal, Québec, Canada (1992).
17. Trkov, A. and M. Ravnik “Effective Diffusion Homogenization of Cross Sections for Pressurized Water Reactor Core Calculations.” Institute Jožef Stefan, Jamova 39, P.O. Box 100, 61111 Ljubljana, Slovenia (1993).
18. Zhang, B. et al. “LWR Homogenization Analysis in both Pin-Cell and Assembly Levels.” Xi’an Jiaotong University, RPHA15 Conference, China (2015).
19. Ghasabyan, L. K. “Use of Serpent Monte-Carlo code for development of 3D full-core models of Gen-IV fast-spectrum reactors and preparation of group constants for transient analyses with PARCS/TRACE coupled system.” Division of Nuclear and Reactor Physics, Royal Institute of Technology, Stockholm (2013).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *