帳號:guest(18.189.178.132)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蔡佳君
作者(外文):Tsai, Chia Chun
論文名稱(中文):六角柱型高溫氣冷式反應器爐心功率分佈計算與爐心溫度分佈熱流計算耦合模式之建立
論文名稱(外文):Establishment of Coupling Model between Core Calculations and Thermal-Hydraulic Calculations for Prismatic-Type High Temperature Gas-Cooled Reactor
指導教授(中文):薛燕婉
馮玉明
指導教授(外文):Liu Hsueh, Yen Wan
Ferng, Yuh Ming
口試委員(中文):許榮鈞
陳紹文
口試委員(外文):Sheu, Rong Jiun
Chen, Shao Wen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:核子工程與科學研究所
學號:103013506
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:103
中文關鍵詞:高溫氣冷式反應器爐心耦合計算模式建立
外文關鍵詞:high temperature gas-cooled reactorcoupling model for core calculation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:151
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究之目標為初步建立高溫氣冷式反應器中子物理與熱流耦合計算的平台。首先以JAEA設計的六角柱型高溫氣冷式反應器原型機(GTHTR300)為對象,以全爐心中子物理計算所得的功率分佈導入熱流計算模擬爐心的溫度分佈,再將其代回爐心計算程式得到一組新的功率分佈,反覆疊代以得到收斂的溫度分佈與功率分佈,進行初步的高溫氣冷式反應器中子物理與熱流耦合計算。其中中子物理計算部分,本研究以中子截面處理程式產生溫度相依的連續點能量截面與熱散射截面資料庫提供給蒙地卡羅程式使用,以蒙地卡羅方法進行全爐心的臨界計算,給定一組初始溫度,計算爐心中子通率分佈及功率分佈。熱流計算部分,則以簡易的二維計算模型進行初步的耦合計算。
本研究再以JAEA設計的高溫工學試驗研究爐(HTTR)為對象,採相同方法,以蒙地卡羅程式進行功率分佈計算,溫度分佈除使用簡易二維計算模型外,亦使用計算流體力學程式建立單根燃料棒、單個燃料柱與多個燃料柱的模型進行計算,結果與文獻上爐心溫度分佈數據均相差約100K左右。待將來改善建立之三維計算模型,將旁通流納入考慮,即能與蒙地卡羅程式進行爐心計算的耦合,以得到收斂的功率分佈與溫度分佈。
本研究在燃料塊的溫度分佈計算上,以多孔介質近似來簡化HTTR複雜的爐心幾何,比較不同的多孔介質模型區域選取的差異性,初步探討引入多孔介質模型的可行性,提供將來進行暫態案例的溫度計算使用。
The purpose of this study is to establish the preliminary coupling model between core calculations and thermal-hydraulic calculations for high temperature gas-cooled reactor. In the GTHTR300 calculation, a simplified 2D model was established for the thermal-hydraulic calculation for coupling with the Monte Carlo neutronic calculation.
The same method was also applied on HTTR calculation. In addition, temperature calculation was also performed using the thermal-hydraulic code through single fuel rod model, single fuel column model and fuel columns model. The results show that there was about 100K difference between calculated results and the data in the related article. It was decided to defer the iteration between neutronic and thermal-hydraulic calculation until by-pass model be included in the model.
This study also investigated the feasibility of using porous media approximation for constructing the whole core temperature calculation model, which may be useful in the transient core analysis.
第一章 緒論 1
第二章 計算工具介紹 9
第三章 計算工具之理論模式 15
第四章 GTHTR300爐心模型建立與計算 24
第五章 HTTR 30MW爐心模型建立與計算 50
第六章 結論與未來工作建議 98
參考文獻 101
1. T. Takizuka, “Reactor Technology Development Under the HTTR Project,” Nuclear Energy, 47, 283–291, 2005G. Ilas, D. Ilas, R. P. Kelly, and E. E. Sunny, “Validation of SCALE for High Temperature Gas-Cooled Reactors Analysis,” Oak Ridge National Laboratory, Tech. Rep. NUREG/CR-7107, Jul. 2012.
2. K. Kunitomi, S.Katanishi, S. Takada, X. Yan, and N. Tsuji, “Reactor core design of Gas Turbine High Temperature Reactor 300”, Nuclear Engineering and Design, 230, 349–366, 2004.
3. Lin TW, “The Establishment and Verification of Neutron Cross Section Processing Procedure for High Temperature Gas Cooled Reactor Core Calculation,” Master thesis, National Tsing Hua University, 2014.
4. Chiang MH, “Prismatic High Temperature Gas Cooled Reactor Core Benchmark Calculation and Fuel Assembly Calculation,” Master thesis, National Tsing Hua University, 2013.
5. 田揚仟,「由六角柱型高溫氣冷式反應器爐心功率分佈計算看燃料組件設計」,國立清華大學核子工程與科學研究所,碩士論文,中華民國一百零三年。
6. K. Kunitomi, S.Katanishi, S. Takada, T. Takizuka, and X. Yan, “Japan’s future HTR—the GTHTR300”, Nuclear Engineering and Design, 233, 309–327, 2004.
7. T. Nakata, S.Katanishi, S. Takada, X. Yan, and K. Kunitomi, “Detailed Analysis for a Control Rod Worth of The Gas Turbine High Temperature Reactor (GTHTR300)”, JAERI-Tech 2002-087, Japan Atomic Energy Research Institute, Nov. 2002.
8. Folsom CP, Effective Thermal Conductivity of Tri-Isotropic (TRISO) Fuel Compacts, All Graduate Theses and Dissertations, Paper 1448, Utah State University, 2012.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *