帳號:guest(18.220.116.34)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):劉芳琹
作者(外文):Fang-Chin Liu
論文名稱(中文):池狀態下超音波對次冷沸騰熱傳的影響
論文名稱(外文):Experiment of Pool Subcooled Boiling Heat Transfer With and Without Ultrasonic Vibration
指導教授(中文):陳紹文
指導教授(外文):Chen, Shao-Wen
口試委員(中文):施純寬
王仲容
口試委員(外文):Shih, Chunkuan
Wang, Jong-Rong
學位類別:碩士
校院名稱:國立清華大學
系所名稱:核子工程與科學研究所
學號:103013505
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:95
中文關鍵詞:超音波池沸騰熱傳改善
外文關鍵詞:ultrasonic vibrationpool boilingheat transfer enhancement
相關次數:
  • 推薦推薦:0
  • 點閱點閱:59
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
在此研究中,以實驗方式研究超音波對熱傳現象的影響。實驗於水池中進行,研究條件設定於自然對流及次冷沸騰的狀態。在實驗中使用水平圓柱型加熱器,及兩個不同尺寸的水缸。第一組實驗在較小的超音波清洗器中進行,有三個超音波發射器貼於容器底部,其頻率為40kHz,而總功率為150W,在此小水缸中,進行小尺度的實驗,其實驗時的加熱器距超音波發射器的距離在一個超音波波長以內,實驗的熱通率範圍為7.7×〖10〗^3-7.1×〖10〗^4 W/m2。第二組實驗在另一較大的水缸中進行,其超音波發射器則是置於水缸底部之上,並使用兩種不同頻率的超音波發射器,分別為28kHz和40kHz,其用以進行加熱器高度在一個超音波波長以上的實驗。在實驗時的水溫設定上,為了模擬核電廠的用過燃料池,將水溫設定在40℃及50℃。熱通率範圍則為1.7×〖10〗^4-1.7×〖10〗^5 W/m2,使用較高的熱通率範圍,用於研究高熱通率的實驗條件。
在第一組的實驗中,得到最高的熱傳係數提升為1557W⁄m^2 ,而熱傳係數改善率則可達3(即為改善300%)。在第二組實驗中最高熱傳係數提升則為1867W⁄m^2 ,而熱傳係數改善率也可達3。
此論文提供了實驗上的證據,證明超音波對熱傳的改善有助益,更進一步認識超音波在池狀態下對熱傳表現的影響。並根據實驗數據結果提出經驗公式,使其可用於未來的反應器爐心和燃料貯存的安全設計之中。
In this study, experimental tests are carried out to investigate the heat transfer performance under pool natural convection and subcooled boiling conditions, and ultrasonic vibration is introduced to evaluate the possible enhancement performance. The heat flux of the heater set at 7.7×〖10〗^3-1.7×〖10〗^5 W/m2.Ultrasonic vibration operated with a frequency of 28 and 40 kHz and a power of 90-150W. The water temperature were set at 30, 40, and 50℃. Through this study, the height effect, water temperature effect, ultrasonic frequency effect, and ultrasonic effect were studied for the heat transfer enhancement under ultrasonic vibration. An experimental database of pool-subcooled heat transfer from single phase natural convection to sub-cooled nucleate boiling is established, and the heat transfer enhancement performance is identified and determined under with and without ultrasonic vibration conditions. In the present test conditions, the heat transfer enhancement ratio can be up to 3 (or enhancement of 300%). This study can provide clear experimental evidences and better understanding about the influences of ultrasonic waves on heat transfer performance in pool conditions, and the empirical correlation can be useful for future safety design of reactor core and fuel storage.
摘要 ii
Abstract iii
致謝 iv
目錄 v
圖目錄 vii
表目錄 xiv
符號說明 xv
第一章 緒論 1
1.1 前言 1
1.2 超音波簡介 2
1.2.1 超音波基本性質 2
1.2.2 超音波加熱現象(Heating) 3
1.2.3 音波空化現象(Acoustic cavitation) 3
1.2.4 聲流(acoustic streaming) 5
1.2.5 超音波應用 5
1.3 池狀態沸騰熱傳 9
1.3.1 基本沸騰模式 9
1.3.2 成核理論 10
1.4 研究目的與方法 12
第二章 文獻回顧 13
2.1 超音波對沸騰熱傳的影響 13
2.2 超音波在水池中的效應 23
2.3 池狀態熱傳 30
第三章 實驗系統與實驗步驟 34
3.1 實驗設備 34
3.2 溫度量測 39
3.3 計算方法 41
3.4 實驗程序 42
3.5 實驗範圍 43
第四章 結果與討論 45
4.1 準確度驗證 45
4.2 高度效應 55
4.3 溫度效應 66
4.4 頻率效應 71
4.5 超音波功率影響 77
4.6 分析與模式發展 81
第五章 結論 87
第六章 建議 89
參考文獻 90

[1] Mathieu Legay, Nicolas Gondrexon, Stéphane Le Person, Primius Boldo, and André Bontemps, Review Article: Enhancement of Heat Transfer by Ultrasound: Review and Recent Advances, International Journal of Chemical Engineering, 2011.
[2] E. A. Neppiras, Acoustic cavitation: an Introduction, Ultrasonics, Vol.22, 1984, pp. 25-28.
[3] H.Krupp,Particle adhesion theory and experiment, Advances in Colloid and Interface Sci, Vol.2, 1967, pp. 111-239.
[4] 賴耿陽,超音波工學理論實務,復漢出版社,2001.
[5] J.-L. Laborde , A. Hita, J.-P. Caltagirone, A. Gerard, Fluid dynamics phenomena induced by power ultrasounds, Ultrasonics, Vol.38, 2000, pp. 297–300.
[6] 鄭建華、陳興,工業技術研究院機械工業研究所技術報告,超音波清洗機構分析,1990.
[7] P. Boudjouk, Heterogeneous sonochemistry, in: K. S. Suslick(Ed.), Ultrasound — Its Chemical, Physical, and BiologicalEffects, VCH Publishers, New York, 1988.
[8] Galloway, W. J. An experimental study of acoustically induced cavitation in liquids. The Journal of the Acoustical Society of America, Vol.26, 1954, pp.849-857.
[9] Rayleigh, L., VIII. On the pressure developed in a liquid during the collapse of a spherical cavity. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, Vol.34, 1917, pp.94-98.
[10] BE. Noltingk and E.A. Neppiras, Cavitation produced by Ultrasonics , Proceedings of the Physical Society. Section B, Volume 63, 1950.
[11] E.A. Neppiras and BE. Noltingk, Cavitation Produced by Ultrasonics: Theoretical Conditions for the Onset of Cavitation, Proceedings of the Physical Society. Section B, Volume 64, 1951.
[12] S. Nukiyama, The maximum and minimum values of the heat Q transmitted from metal to boiling water under atmospheric pressure, J. Japan Sot. Mech Engrs , Vol.37, 1934.
[13] 潘欽,沸騰熱傳與雙相流,俊傑書局股份有公司,2001.
[14] M.B. Larson, A.L. London, A study of the effects of ultrasonic vibrations on convection heat transfer to liquids, ASME 62-HT-44, 1962, pp. 62–68.
[15] Fand, R. M., The Influence of Acoustical Vibrations on Heat Transfer by Natural Convection From a Horizontal Cylinder to Water, ASME J. Heat Transfer, Vol.87, 1965, pp. 309–310.
[16] Li, K. W., and Parker, J. D., Acoustical Effects on Free Convective Heat Transfer From a Horizontal Wire, ASME J. Heat Transfer, Vol.89, 1967, pp. 277–278.
[17] K.A.Park, and A.E. Bergles, Ultrasonic enhancement of saturated and subcooled pool boiling, Int. J. Heat Mass Transfer. Vol. 31. No. 3, 1988, pp. 664-667.
[18] Y. lida, K. Tsutsui , Effects of Ultrasonic Waves on Natural Convection, Nucleate Boiling, and Film Boiling Heat Transfer from a Wire to a Saturated Liquid, Experimental Thermal and Fluid Science, Vol.5, 1992; pp.108-115.
[19] D.W. Zhou, D.Y. Liu , X.G. Hu , C.F. Ma , Effect of acoustic cavitation on boiling heat transfer, Experimental Thermal and Fluid Science, Vol.26, 2002, pp.931–938.
[20] Ho-Young Kim, Yi Gu Kim, Byung Ha Kang , Enhancement of natural convection and pool boiling heat transfer via ultrasonic vibration, International Journal of Heat and Mass Transfer, Vol.47, 2004, pp.2831–2840.
[21] Federica Baffigi, Carlo Bartoli, Influence of the ultrasounds on the heat transfer in single phase free convection and in saturated pool boiling, Experimental Thermal and Fluid Science, Vol.36, 2012, pp.12–21.
[22] Carlo Bartoli, Federica Baffigi, Effects of ultrasonic waves on the heat transfer enhancement in subcooled boiling, Experimental Thermal and Fluid Science, Vol.35, 2011, pp.423–432.
[23] Federica Baffigi, Carlo Bartoli, Effects of Ultrasounds on the Heat Transfer Enhancement from a Circular Cylinder to Distilled Water in Subcooled Boiling, Journal of Thermal Science and Engineering Applications, Vol. 3, 2011.
[24] Carlo Bartoli, Federica Baffigi, Use of ultrasonic waves in sub-cooled boiling, Applied Thermal Engineering, Vol.47, 2012, pp.95-110.
[25] Masoud Rahimi, Maryam Dehbani, Mahdieh Abolhasani , Experimental study on the effects of acoustic streaming of high frequency ultrasonic waves on convective heat transfer: Effects of transducer position and wave interference, International Communications in Heat and Mass Transfer, Vol.39, 2012, pp.720–725.
[26] Hossein Kiani, Da-Wen Sun, Zhihang Zhang, The effect of ultrasound irradiation on the convective heat transfer rate during immersion cooling of a stationary sphere, Ultrasonics Sonochemistry, Vol.19, 2012, pp.1238–1245.
[27] Hossein Kiani, Da-Wen Sun, Zhihang Zhang, Effects of processing parameters on the convective heat transfer rate during, Journal of Food Engineering, Vol.115, 2013, pp.384–390.
[28] B. Tajik, A. Abbassi, M. Saffar-Avval, A. Abdullah, H. Mohammad-Abadi, Heat transfer enhancement by acoustic streaming in a closed cylindrical enclosure filled with water, International Journal of Heat and Mass Transfer, Vol.60, 2013, pp.230–235.
[29] Liyan Liu, Yang Yang, Penghong Liu, Wei Tan, The influence of air content in water on ultrasonic cavitation field, Ultrasonics Sonochemistry, Vol.21, 2014, pp.566–571.
[30] Y.P.L.Z. Cui, Y. Ge, et al., Bubble modulation using acoustic standing waves in a bubbling system, Chem. Eng. Sci., Vol.60, 2005, pp.5971–5981.
[31] Y.O.Y. Yamakoshi, M. Ida, et al., Effects of bjerknes forces on gas-filled microbubble trapping by ultrasonic waves, Jpn. J. Appl. Phys., Vol.40, 2001, pp.3852–3855.
[32] J-L. Laborde , C. Bouyer , J.-P. Caltagirone , A. Gerard, Acoustic cavitation field prediction at low and high frequency ultrasounds, Ultrasonics, Vol.36, 1998, pp.581-587.
[33] Bogdan Niemczewski, Observations of water cavitation intensity under practical ultrasonic cleaning conditions, Ultrasonics Sonochemistry, Vol.14, 2007, pp.13–18.
[34] Shinfuku Nomura, Masafumi Nakagawa, Shinobu Mukasa, Hiromichi Toyota,Koichi Murakami and Ryousuke Kobayashi, Ultrasonic Heat Transfer Enhancement with Obstacle in Front of Heating Surface, Japanese Journal of Applied Physics, Vol. 44, 2005, pp.4674–4677.
[35] Shinfuku Nomura, Koichi Murakami and Yuuichi Sasaki, Streaming Induced by Ultrasonic Vibration in a Water Vessel, Japanese Journal of Applied Physics, Vol. 39, 2000, pp. 3636–3640.
[36] W.H. Mc Adams, Heat Transmission, third ed. McGraw-Hill Book Company Inc., New York, 1954.
[37] S.W. Churchill, H.H.S. Chu, 1975, Correlating equations for laminar and turbulent free convection from a horizontal cylinder, Int. J. Heat Mass Transfer, vol.18, pp.1323-1329.
[38] Cornwell, K., and S. D. Houston. Nucleate pool boiling on horizontal tubes: a convection-based correlation, International journal of heat and mass transfer, Vol.37, 1994, pp.303-309.
[39] Lienhard, J.H., A Heat Transfer Textbook, 1981.
[40] Berenson, Paul Jerome, Transition boiling heat transfer from a horizontal surface. Massachusetts Institute of Technology, Division of Industrial Cooperation, 1960.
[41] Nishikawa Kaneyasu, Fujita Yasunobu, Uchida Satoru, Ohta Haruhiko, "Effect of surface configuration on nucleate boiling heat transfer." International Journal of Heat and Mass Transfer, Vol.27, 1984, pp.1559-1571.
[42] M.T. Cichelli, C.F. Bonilla, Heat transfer to liquids boiling under pressure, Trans. AIChE, Vol.41, 1945, pp. 755–787.
[43] Johannes Straub, The role of surface tension for two-phase heat and mass transfer in the absence of gravity, Experimental Thermal and Fluid Science, Vol. 9, 1994, pp. 253-273.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *