帳號:guest(3.17.76.5)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):謝長霖
作者(外文):Hsieh, Chang Lin
論文名稱(中文):離子束合成法於二氧化矽基板合成金奈米粒子之光學性質研究
論文名稱(外文):Optical properties of ion-beam-synthesized Au nanoparticles in SiO2 matrix
指導教授(中文):梁正宏
趙得勝
指導教授(外文):Liang, Jenq Horng
Chao, Der Sheng
口試委員(中文):宋大崙
歐陽汎怡
學位類別:碩士
校院名稱:國立清華大學
系所名稱:核子工程與科學研究所
學號:103013503
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:91
中文關鍵詞:金奈米粒子表面電漿子共振離子束合成法
外文關鍵詞:Au nanoparticlesSurface plasmon resonanceIon beam synthesis
相關次數:
  • 推薦推薦:0
  • 點閱點閱:49
  • 評分評分:*****
  • 下載下載:2
  • 收藏收藏:0
近年來,金奈米粒子的表面電漿子共振特性(Surface Plasmon Resonance,簡稱SPR),在訊號增強及生物檢測上,有著極大的應用潛力。此特性最明顯的表徵為在可見光波段具一強烈吸收區,並會將入射光侷限於奈米粒子周圍,並強化奈米粒子局域的電磁場,因而具有放大原有信號的效果,進而期望能增強材料光致發光(Photoluminescence,簡稱PL)的發光效率。在本論文中,透過離子束合成法於二氧化矽薄膜中合成金奈米粒子,輔以熱退火氣體及退火溫度等參數調變,形成不同尺寸及分佈的金奈米粒子,並於吸收光譜520 nm處觀察到金奈米粒子的特定吸收峰,同時觀察不同退火條件下,材料光致發光特性的變化。在PL圖譜中,出現多處明顯尖峰值,分別為310 nm、380 nm、450 nm及600 nm,分別代表類型不同類型之發光中心,而該類發光中心係源自於金奈米佈植二氧化矽基板所產生的氧缺陷中心(Oxygen Deficiency Centers,簡稱ODC)及未橋接氧空穴中心(Non-Bridging Oxygen Hole Centers,簡稱NBOHC)。研究結果顯示,不同退火氣體對於缺陷修復、金奈米粒子尺寸以及其分佈具有顯著的影響。發光中心等缺陷結構隨退火溫度的升高而逐漸修復,然PL強度卻隨之而上升,此乃因為金奈米粒子的SPR效應,對PL強度產生顯著的增幅作用,此外,在使用氮氣退火的狀況下,其缺陷的修復較使用空氣退火者緩慢,保留較多的發光缺陷結構,因此其PL強度較空氣退火者為強,值得一提的是,在使用氮氣退火的狀況下,形成較密集的金奈米粒子陣列,由SPR所貢獻的電場增幅效應亦較明顯,在此雙重效應的影響之下,使用氮氣退火較使用空氣退火者出現較為明顯的PL強度。總而言之,透過離子佈植並輔以適當的退火處理,金奈米粒子的SPR效應會增強局域性電磁場,並將原有信號放大作用,使得PL強度呈現明顯的增幅。
In recent years, gold (Au) nanoparticles have been synthesized by means of various methods and have received promising potential in optical and biomedical detection. Au nanoparticles contain some remarkable dimension-dependent optical properties due to surface plasmon resonance (SPR) in Au nanoparticles which causes strong absorption of the incident light in visible light regions. Since SPR in well-crystallized Au nanoparticles can enhance the local electromagnetic field, it is thus expected that a greater efficiency in the photoluminescence (PL), originating from oxygen deficiency centers (ODC), can be achieved in Au-implanted SiO2 matrix. In order to demonstrate the enhancement of PL, in this story, Au nanoparticles were formed in SiO2 film using ion beam synthesis and their optical and microstructural properties were also investigated as well. The results revealed that a clear absorption peak at approximately 520 nm was identified in the UV-Vis spectra and was attributed to SPR induced by Au nanoparticles in SiO2 film. The SPR of Au nanoparticles is also dependent on thermal treatment conditions, such as annealing gas, annealing temperature and annealing time. The Au nanoparticle-containing SiO2 film also displayed several distinctive peaks at approximately 310, 380, 450, and 600 nm in the PL spectra and were found to be associated with ODC-related defects and non-bridging oxygen hole centers (NBOHC) in SiO2 film. In addition, the PL peak intensities increase as annealing temperature increase, a finding contradictory to the defect recovery. The greatest PL emission was achieved when the Au-implanted SiO2 film was annealed at 1100 oC for 1 h under the nitrogen ambient. Therefore, the existence of Au nanoparticles in SiO2 film can induce SPR effects and enhance PL emission which was mainly due to defect dependent luminescence centers.
摘要 i
Abstract ii
誌謝 iii
表目錄 vii
圖目錄 viii
第一章 前言 1
第二章 文獻回顧 4
2.1 矽發光材料的發展歷史 4
2.2 金奈米粒子之發展歷史 6
2.3 金奈米粒子合成法 7
2.3.1 化學合成法 7
2.3.2 物理合成法 8
2.3.3 離子束合成法 9
2.4 金奈米粒子光學特性 10
2.4.1 表面電漿子共振特性 10
2.4.2 表面電漿子共振之應用實例 14
2.5 奈米結構之缺陷 17
2.6 退火熱處理的影響 20
第三章 實驗原理與方法 22
3.1 基質材料製備及離子佈植 22
3.2 SRIM電腦模擬計算程式 24
3.3 退火熱處理 26
3.4 FDTD Solution 模擬分析 28
3.5 特性分析 30
3.5.1 紫外-可見光光譜 30
3.5.2 螢光光譜儀 34
3.5.3 X射線繞射分析儀 37
3.5.4 X射線光電子能譜儀 42
3.5.5 二次離子質譜儀 46
3.5.6 穿透式電子顯微鏡 49
第四章 結果與討論 53
4.1 離子佈植元素縱深模擬與分析 54
4.1.1 SRIM模擬分析 54
4.1.2 SIMS金元素縱深分析 57
4.2 吸收光譜量測 59
4.3 微結構分析 62
4.3.1 XRD分析 62
4.3.2 XPS分析 66
4.3.3 TEM微結構分析 68
4.4 PL特性分析 71
4.5 FDTD電場分析 79
第五章 結論與未來建議 83
5.1 結論 83
5.2 未來建議 84
參考文獻 87

[1] Y. Jiang, X.J. Wu, Q. Li, J. Li, D. Xu, “Facile synthesis of gold nanoflowers with high surface-enhanced Raman scattering activity,” Nanotechnology 22, 385601 (2011).
[2] G. Herrera, A. Padilla, S. Hernandez-Rivera, “Surface enhanced Raman scattering (SERS) studies of gold and silver nanoparticles prepared by laser ablation,” Nanomaterials 3, 158 (2013).
[3] S. Hong, X. Li, “Optimal size of gold nanoparticles for surface-enhanced Raman spectroscopy under different conditions,” Journal of Nanomaterials 2013, 1 (2013).
[4] H. Liao, W. Wen, G. K. Wong, “Photoluminescence from Au nanoparticles embedded in Au: oxide composite films,” Journal of the Optical Society of America B 23, 2518 (2006).
[5] Y.H. Su, S.L. Tu, S.W. Tseng, Y.C. Chang, S.H. Chang, W.M. Zhang, “Influence of surface plasmon resonance on the emission intermittency of photoluminescence from gold nano-sea-urchins,” Nanoscale 2, 2639 (2010).
[6] P. Yang, K. Kawasaki, M. Ando, N. Murase, “Au/SiO2/QD core/shell/shell nanostructures with plasmonic-enhanced photoluminescence,” Journal of Nanoparticle Research 14, 1 (2012).
[7] H. Luo, R. Wang, Y. Chen, D. Fox, R. O’Connell, J. J. Wang, H. Zhang, “Enhanced photoluminescence from SiOx–Au nanostructures,” CrystEngComm 15, 10116 (2013).
[8] T. Zhang, G. Lu, H. Shen, K. Shi, Y. Jiang, D. Xu, Q. Gong, “Photoluminescence of a single complex plasmonic nanoparticle,” Scientific Reports 4, 1 (2014).
[9] T. Singh, D.K. Pandya, R. Singh, “Surface plasmon enhanced bandgap emission of electrochemically grown ZnO nanorods using Au nanoparticles,” Thin Solid Films 520, 4646 (2012).
[10] N. Zhang, W. Tang, P. Wang, X. Zhang, Z. Zhao, “In situ enhancement of NBE emission of Au–ZnO composite nanowires by SPR,” CrystEngComm 15, 3301 (2013).
[11] S. Park, S. An, H. Ko, C. Lee, “Effects of annealing on the photoluminescence of ZnSe nanorods coated with Au,” Materials Chemistry and Physics 143, 735 (2014).
[12] S. Majumder, S. K. Jana, K. Bagani, B. Satpati, S. Kumar, S. Banerjee, “Fluorescence resonance energy transfer and surface plasmon resonance induced enhanced photoluminescence and photoconductivity property of Au–TiO2 metal–semiconductor nanocomposite,” Optical Materials 40, 97 (2015).
[13] L.T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Applied Physics Letters 57, 1046 (1990).
[14] L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzò, F. Priolo, “Optical gain in silicon nanocrystals,” Nature 408, 440 (2000).
[15] M.A. Green, J. Zhao, A. Wang, P.J. Reece, M. Gal, “Efficient silicon light-emitting diodes,” Nature 412, 805 (2001).
[16] G. Mattei, A. Miotello, G. De Marchi, P. Mazzoldi, C. Sada, “Clustering of gold atoms in ion-implanted silica after thermal annealing in different atmospheres,” Physical Review B 63, 75409 (2001).
[17] G. De Marchi, G. Mattei, P. Mazzoldi, C. Sada, A. Miotello, “Two stages in the kinetics of gold cluster growth in ion-implanted silica during isothermal annealing in oxidizing atmosphere,” Journal of Applied Physics 92, 4249 (2002).
[18] N. Arai, H. Tsuji, K. Ueno, T. Matsumoto, Y. Gotoh, K. Adachi, H. Kotaki, J. Ishikawa, “Evaluation of nanoparticles embedded in thin silicon dioxide film by optical reflection property,” Surface and Coatings Technology 196, 44 (2005).
[19] R. Salh, L. Fitting Kourkoutis, B. Schmidt, H. J. Fitting, “Luminescence of isoelectronically ion-implanted SiO2 layers,” Physica Status Solidi (a) 204, 3132 (2007).
[20] M. Dubiel, H. Hofmeister, E. Wendler, “Formation of nanoparticles in soda-lime glasses by single and double ion implantation,” Journal of Non-Crystalline Solids 354, 607 (2008).
[21] R. Salh, L. Fitting Kourkoutis, M.V. Zamoryanskaya, B. Schmidt, H.J. Fitting, “Ion implantation and cluster formation in silica,” Superlattices and Microstructures 45, 362 (2009).
[22] J. Bornacelli, J.A. Reyes Esqueda, L. Rodríguez Fernández, A. Oliver, “Improving passivation process of Si nanocrystals embedded in SiO2 using metal ion implantation,” Journal of Nanotechnology 2013, 1 (2013).
[23] M.C. Ridgway, F. Djurabekova, K. Nordlund, “Ion–solid interactions at the extremes of electronic energy loss: Examples for amorphous semiconductors and embedded nanostructures,” Current Opinion in Solid State and Materials Science 19, 29 (2015).
[24] L. Guczi, G. Petö, A. Beck, K. Frey, O. Geszti, G. Molnár, C. Daróczi, “Gold nanoparticles deposited on SiO2/Si(100): Correlation between size, electron structure, and activity in CO oxidation,” Journal of the American Chemical Society 125, 4332 (2003).
[25] U.B. Singh, D.C. Agarwal, S.A. Khan, S. Mohapatra, H. Amekura, D.P. Datta, A. Kumar, R.K. Choudhury, T.K. Chan, T. Osipowicz, D.K. Avasthi, “Synthesis of embedded Au nanostructures by ion irradiation: Influence of ion induced viscous flow and sputtering,” Beilstein Journal of Nanotechnology 5, 105 (2014).
[26] T. Sakai, P. Alexandridis, “Mechanism of gold metal ion reduction, nanoparticle growth and size control in aqueous amphiphilic block copolymer solutions at ambient conditions,” The Journal of Physical Chemistry B 109, 7766 (2005).
[27] D. Ray, V. K. Aswal, J. Kohlbrecher, “Synthesis and characterization of high concentration block Copolymer-Mediated gold Nanoparticles,” Langmuir 27, 4048 (2011).
[28] X.J. Li, Y.H. Zhang, “Quantum confinement in porous silicon,” Physical Review B 61, 12605 (2000).
[29] S.K. Shaikhutdinov, R. Meyer, M. Naschitzki, M. Bäumer, H.J. Freund, “Size and support effects for CO adsorption on gold model catalysts,” Catalysis Letters 86, 211 (2003).
[30] S. Lee, C. Fan, T. Wu, S.L. Anderson, “Cluster size effects on CO oxidation activity, adsorbate affinity, and temporal behavior of model Aun/TiO2 catalysts,” The Journal of Chemical Physics 123, 124710 (2005).
[31] M. Faraday, “The Bakerian lecture: Experimental relations of gold (and other metals) to light,” Philosophical Transactions of the Royal Society of London 147, 145 (1857).
[32] M.H. Jung, M.G. Kang, “Enhanced photo-conversion efficiency of CdSe-ZnS core-shell quantum dots with Aunanoparticles on TiO2 electrodes,” Journal of Materials Chemistry 21, 2694 (2011).
[33] N.A. Harun, M.J. Benning, B.R. Horrocks, D.A. Fulton, “Gold nanoparticle-enhanced luminescence of silicon quantum dots co-encapsulated in polymer nanoparticles,” Nanoscale 5, 3817 (2013).
[34] S. Link, M.A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” The Journal of Physical Chemistry B 103, 8410 (1999).
[35] H. Kuwata, H. Tamaru, K. Esumi, K. Miyano, “Resonant light scattering from metal nanoparticles: Practical analysis beyond Rayleigh approximation,” Applied Physics Letters 83, 4625 (2003).
[36] C.F. Chen, S.D. Tzeng, H.Y. Chen, K J. Lin, S. Gwo, “Tunable plasmonic response from alkanethiolate-Stabilized gold nanoparticle superlattices: Evidence of near-field coupling,” Journal of the American Chemical Society 130, 824 (2008).
[37] J. Kottmann, O. Martin, “Plasmon resonant coupling in metallic nanowires,” Optics Express 8, 655 (2001).
[38] J.P. Kottmann, O.J.F. Martin, “Retardation-induced plasmon resonances in coupled nanoparticles,” Optics Letters 26, 1096 (2001).
[39] 吳民耀、劉威志,表面電漿子理論與模擬,物理雙月刊 廿八卷二期 (2006)
[40] H.A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Materials 9, 205 (2010).
[41] C.E. Talley, J.B. Jackson, C. Oubre, N.K. Grady, C.W. Hollars, S.M. Lane, T.R. Huser, P. Nordlander, N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Letters 5, 1569 (2005).
[42] P.K. Jain, M.A. El-Sayed, “Noble metal nanoparticle pairs: Effect of medium for enhanced nanosensing,” Nano Letters 8, 4347 (2008).
[43] Y.P. Hsieh, C.T. Liang, Y.F. Chen, C.W. Lai, P.T. Chou, “Mechanism of giant enhancement of light emission from Au/CdSe nanocomposites,” Nanotechnology 18, 415707 (2007).
[44] L. Rebohle, J.V. Borany, W. Skorupa, K.H. Heinig, “Blue light emission from ion beam synthesized semiconductor nanoclusters in SiO2 films,” IEEE Conference Proceeding 1, 62 (1999).
[45] A.N. Trukhin, “Radiation processes in oxygen-deficient silica glasses: Is ODC(I) a precursor of E'-center?,” Journal of Non-Crystalline Solids 352, 3002 (2006).
[46] R. Salh, L. Kourkoutis, M.V. Zamoryanskaya, B. Schmidt, H.J. Fitting, “Ion implantation, luminescence, and cluster growth in silica layers,” Journal of Non-Crystalline Solids 355, 1107 (2009).
[47] K.S. Seol, Y. Ohki, H. Nishikawa, M. Takiyama, Y. Hama, “Effect of implanted ion species on the decay kinetics of 2.7 eV photoluminescence in thermal SiO2 films,” Journal of Applied Physics 80, 6444 (1996).
[48] X.D. Zhou, F. Ren, X.H. Xiao, G.X. Cai, C.Z. Jiang, “Influence of annealing temperatures and time on the photoluminescence properties of Si nanocrystals embedded in SiO2,” Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 267, 3437 (2009).
[49] R. Salh, “Defect related luminescence in silicon dioxide network: A review.” In Crystalline Silicon: Properties and Uses, ed. S. Basu, InTech, 135 (2011).
[50] R. Abbaschian, 物理冶金 / R .Abbaschian, L. Abbaschian, E. Robert, Reed-Hill原著; 劉偉隆等編譯,臺北市:新加坡商聖智學習 (2010).
[51] J.F. Ziegler, M.D. Ziegler, J.P. Biersack, “SRIM – the stopping and range of ions in matter (2010),” Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 268, 1818 (2010).
[52] 錢其琛,氫分子離子佈植於不同晶向之鍺靶材內部所引起表面發泡與發泡破裂行為研究,國立清華大學,碩士論文 (2014).
[53] H. Kunkely, A. Vogler, “Photooxidation of N, N′-bis(3, 5-di-tert.-butylsalicylidene)-1, 2-diamino hexane-manganese(III) chloride (Jacobsen catalyst) in chloroform,” Inorganic Chemistry Communications 4, 692 (2001).
[54] A. JABŁOŃSKI, “Efficiency of Anti-Stokes fluorescence in dyes,” Nature 131, 839 (1933).
[55] J.M. Shieh, Y.C. Lin, J.Y. Fang, “Photoluminescence: principles, structure, and applications”, 奈米通訊,十二卷二期 (2005).
[56] P. Aruna, A.A. Begum, X-ray photoelectron spectroscopy: a review, International Journal of Universal Pharmacy and Bio Sciences, (2014).
[57] Handbook of the elements and native oxides, XPS International, Inc. (1999).
[58] A. Benninghoven, F.G. Rudenauer, H.W. Werner, Secondary ion mass spectrometry: basic concepts, instrumental aspects, applications and trends, John Wiley & Sons, 950 (1987).
[59] 陳力俊、張立、梁鉅銘、林文台、楊哲人、鄭晃忠,材料電子顯微鏡學,科儀叢書三,國家科學委員會精密儀器發展中心 (1994).
[60] F. Ruffino, C. Bongiorno, F. Giannazzo, F. Roccaforte, V. Raineri, and M. G. Grimaldi, “Effect of surrounding environment on atomic structure and equilibrium shape of growing nanocrystals: Gold in/on SiO2,” Nanoscale Research Letters 2, 240 (2007).
[61] Y.Y. Chen, D.S. Chao, H.S. Tsai, J.H. Liang, “Effects of thermal annealing on photoluminescence of Si+/C+ implanted SiO2 films,” Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 372, 114 (2016).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *