帳號:guest(3.137.219.237)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):羅婕
作者(外文):Lo, Chieh
論文名稱(中文):開發具pH應答效果之SA-TAT修飾微胞系統進行細胞核標靶光熱治療
論文名稱(外文):Development of pH-Responsive SA-TAT Peptide-Conjugated Nanomicelles for Nuclear Targeting Photothermal Therapy
指導教授(中文):張建文
指導教授(外文):Chang,Chien-Wen
口試委員(中文):黃郁棻
施閔雄
口試委員(外文):Huang,Yu Fen
Shih, Min-Hsiung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學號:103012544
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:75
中文關鍵詞:細胞穿膜肽細胞核標靶光熱治療
外文關鍵詞:cell-penetrating peptidenuclear targetingphotothermal therapy
相關次數:
  • 推薦推薦:0
  • 點閱點閱:185
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
臨床局部熱治療有具侵入性的治療過程、無法對腫瘤均勻加熱以及對正常組織造成熱損傷等問題,以奈米載體配合近紅外光進行光熱治療除了可以降低治療過程的侵入性外,奈米載體能專一的累積在腫瘤處,實現對腫瘤細胞均勻熱治療。因此本研究開發了具pH應答能力的SATAT胜肽修飾奈米微胞,並希望藉由核標靶進一步提升光熱治療效果。此系統利用鍵結TAT胜肽的Poly(ethylene glycol) methyl ether-block-poly(lactide-co-glycolide),經由自組裝形成包覆光熱治療試劑IR780的奈米微胞─PPT@IR780。為了利用TAT的核標靶能力與避免因其非專一的穿膜效果造成正常細胞的攝取,因此在PPT@IR780上修飾succinic anhydride(SA),簡稱PPST/IR780。PPST/IR780之粒徑與表面電位分別為77.67±1.01 nm與 -11.3 mV。TEM影像顯示微胞分散性良好且粒徑均一,和DLS鑑定結果相符。以Fluorescamine assay測定TAT的鍵結效率及SA的修飾效率,分別為71.23%與85.3%。微胞在DI H2O、PBS與DMEM+10%CCS中展現良好的穩定性。而且於PBS環境下,24小時內的藥物洩漏量低於5%,微包內的IR780有80%以上吸收值沒有衰減,這說明微胞能穩定地包覆IR780並維持其光學活性。升溫效率測試證實micelle/IR780能經由雷射觸發升溫。另外,在初步的光熱治療實驗中micelle/IR780展現對腫瘤細胞的毒殺效果。在pH7.4環境下進行的細胞攝取實驗,驗證了(1)因修飾SA而降低TAT的穿膜能力,導致PPST/IR780比PPT/IR780有較低的攝取量 (2)經由PB (pH=5)前處理後,SA展現pH應答能力而脫落,回復TAT活性,進而使PPST/IR780和PPT/IR780有等量的細胞攝取。最後藉由DiI系統,給予細胞等量DiI的PPST/DiI與PPM/DiI攝取兩小時,再經過四小時作用後,以螢光顯微鏡觀察到PPST/DiI相較於PPM/DiI在細胞核有較高累積。綜合以上結果,PPST/IR780成功展現pH應答性,並具有能的對腫瘤進行核標靶光熱治療的潛力。
Combining nanocarriers and near infrared light for photothermal therapy could solve the difficulties in local hyperthermia, such as invasive procedure, non-uniform heating on tumor site and non-selectivity heating. Consequently, we developed the pH-responsive SATAT conjugated micelles via nuclear targeting for better photothermal therapy. (the nanocarriers were abbreviated in PPST/IR780) To take advantage of nuclear targeting and to prevent from non-specific penetrating, we modified TAT with succinic anhydride(SA) to make it respond to acidic pH. During blood circulation (pH 7.4) SA would inhibit nonspecific interactions of TAT, once inside the lysosomes(pH~5) SA would drop out from TAT. The unshielded TAT could help micelles escape from lysosomes and achieve nuclear targeting. Particle size and surface potential of PPST/IR780 were 77.67 nm and -11.3 mV, respectively. TEM images showed the micelles were dispersing and had uniform diameters, which was in accordance with DLS measurements. The TAT conjugation efficiency was 71.23% and SA modification efficiency was 85.3% by means of fluorescamine assay. The micelles displayed well stability in DI H2O, PBS and DMEM+10% CCS within 24-hour incubation. We found that the IR780 leakage percentage was less than 5% and only about 15% IR780 decayed in micelles after 24-hour PBS dispersing. Taken together, the micelles could not only stable encapsulate IR780 but also remain its activity. The heating efficiency test confirmed micelle/IR780 possesses heat generating triggered by laser. The preliminary in vitro experiment demonstrated the heat killing effect on cancer cells. Under pH 7.4 condition, PPST/IR780 had lower cellular uptake amount resulted from the inhibition of SA. After pretreated in pH5 PB, reactivated TAT would lead to PPST/IR780 had the same cellular uptake amount as PPT/IR780. Finally, we observed that PPST/DiI accumulated more than PPM/DiI in nucleus through fluorescence microscope. In summary, PPST/IR780 successfully demonstrated the pH-responsive ability and had the potential to be applied in nuclear targeting photothermal therapy.
摘要 1
目錄 4
圖目錄 7
表目錄 9
1. 緒論 10
1.1 前言 10
1.2研究背景與動機 10
第二章、文獻回顧 13
2.1 癌症治療近況 13
2.2癌症熱治療 13
2.2.1 癌症熱治療的生理機制 14
2.2.2 癌症熱治療的臨床應用 15
2.3 光熱治療 16
2.3.1光熱治療試劑-金屬奈米粒子 17
2.3.2光熱治療試劑-近紅外光染劑 19
2.4奈米載體傳遞系統 21
2.4.1 奈米載體 21
2.4.2奈米載體特性與優勢 23
2.5 奈米載體傳遞策略 24
2.5.1奈米載體的入胞機制 24
2.5.2主動標靶(active targeting) 26
2.5.3細胞胞器靶向(subcellular targeting) 30
2.5.4細胞核靶向 31
2.5.5細胞穿膜肽(cell penetrating peptides, CPPs)介導傳遞 33
第三章、載體製備與分析方法 39
3.1實驗材料 39
3.2載體製備與分析方法 40
3.2.1製備PLGA-PEG-TAT(PPT) 40
3.2.2微胞製備方法 40
3.2.3製備PPST/IR780 40
3.3基本物化性質分析 41
3.3.1 PLGA-PEG-TAT定性分析 41
3.3.2 PLGA-PEG-TAT定量分析 41
3.3.3 micelle/IR780粒徑大小、表面電位與穩定性測試 42
3.3.4 micelle/IR780光學性質分析 42
3.3.5 micelle/IR780型態與分散性分析 42
3.3.6 micelle/IR780之E.E、L.E與產率測定 42
3.3.7 micelle包覆IR780包覆穩定性測試 42
3.3.8 micelle/IR780光熱升溫性質測試 43
3.3.9 Succinic anhydride修飾效率分析 43
3.4藥物載體之體外細胞測試 43
3.4.1細胞培養 43
3.4.2細胞攝取藥物載體實驗 43
3.4.3藥物載體毒性實驗 44
3.4.4細胞攝取抑制劑毒性實驗 44
3.4.5 細胞攝取藥物載體機制探討 44
3.4.6 藥物載體光熱毒殺實驗 44
3.4.7 藥物載體經攝取後於細胞內之分布 45
第四章、實驗結果與討論 46
4.1 載體製備及物化特性分析 46
4.1.1 PLGA-PEG-TAT定性分析 46
4.1.2 PLGA-PEG-TAT定量分析 47
4.1.3 奈米微胞 (micelle)製備 47
4.1.4 Succinic anhydride 修飾效率測定 48
4.1.5 micelle/IR780粒徑大小、電位與分散性 49
4.1.6 micelle/IR780之光學特性分析 51
4.1.7 micelle/IR780之E.E、L.E與產率測定 52
4.1.8 micelle/IR780之光學穩定性測試 52
4.1.9 micelle/IR780穩定性測試 53
4.1.10 micelle包覆IR780包覆穩定性測試 55
4.1.11 micelle/IR780光熱升溫性質測試 55
4.2 體外細胞測試 57
4.2.1 TAT於微胞系統上活性確認實驗 57
4.2.2 細胞攝取機制探討 58
4.2.3 SA抑制TAT能力與pH應答性測試 61
4.2.4 初步光熱毒殺實驗 63
4.2.5 PPST/IR780攝取濃度調整實驗 64
4.2.6 藥物載體經攝取後於細胞內之分布 66
第五章、結論與未來展望 67
第六章、參考文獻 68
1. Coley, W.B., II. Contribution to the Knowledge of Sarcoma. Annals of Surgery, 1891. 14(3): p. 199-220.
2. Chatterjee, D.K., P. Diagaradjane, and S. Krishnan, Nanoparticle-mediated hyperthermia in cancer therapy. Therapeutic delivery, 2011. 2(8): p. 1001-1014.
3. Graham, E.G., C.M. Macneill, and N.H. Levi-Polyachenko, Review of Metal, Carbon and Polymer Nanoparticles for Infrared Photothermal Therapy. Nano LIFE, 2013. 03(03): p. 1330002.
4. Jaque, D., et al., Nanoparticles for photothermal therapies. Nanoscale, 2014. 6(16): p. 9494-9530.
5. Yuan, A., et al., Application of Near-Infrared Dyes for Tumor Imaging, Photothermal, and Photodynamic Therapies. Journal of Pharmaceutical Sciences, 2013. 102(1): p. 6-28.
6. Wainwright, M., Therapeutic applications of near-infrared dyes. Coloration Technology, 2010. 126(3): p. 115-126.
7. Chu, K.F. and D.E. Dupuy, Thermal ablation of tumours: biological mechanisms and advances in therapy. Nat Rev Cancer, 2014. 14(3): p. 199-208.
8. Gaucher, G., et al., Block copolymer micelles: preparation, characterization and application in drug delivery. Journal of Controlled Release, 2005. 109(1–3): p. 169-188.
9. Nick Frazier and Hamidreza Ghandehari, Hyperthermia Approaches for Enhanced Delivery of Nanomedicines to Solid Tumors. Biotechnol Bioeng, 2015. 112(10): p.1967-83
10. Brannon-Peppas,L. and J.O. Blanchette, Nanoparticle and targeted systems for cancer therapy. Advanced Drug Delivery Reviews, 2012.64: p. 206-212.
11. Byrne,J.D.,Betancourt, and L. Brannon-Peppas, Active targeting schemes for nanoparticle systems in cancer therapeutics. Advanced Drug Delivery Reviews, 2008. 60(15): p. 1615-1626.
12. Quintana, A., et.al, Design and function of a dendrimer-based therapeutic nanodevice targeted to tumor cells through the folate receptor. Pharmaceutical Reserch, 2002. 19(9): p. 1313-1316.
13. Branno-peppas,L. and J.O.Blanchette, Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev, 2004. 56(11): p. 1649-59.
14. Madea,H.,Tumor-selective delivery of macromolecular drugs via the EPR effect:background and future prospects. Bioconjugate Chem, 2010. 21(5): p. 797-802.
15. Torchilin VP., Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat Rev Drug Discov., 2014. 13(11): p. 813-27.
16. Mura, S., J.Nicolas and P.Couvreur, Stimuli-responsive nanocarriers for drug delivery. Nat Mater, 2013. 12(11):p.991-1003
17. Bae,Y., et al., Preparation and biological characterization of polymeric micelle drug carriers with intracellular pH-triggered drug release property:Tumor permeability, controlled subcellular drug distribution, and enhanced in vivo antitumor efficacy. Bioconjugate Chemistry, 2005. 16(1): p. 122-130.
18. Yavus,M.S., et al., Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nature Materials, 2009. 8(12): p.935-939.
19. Lee,S.M.,et al., Polymer-caged liposomes:A pH-Responsive delivery system with high stability. Journal of the American Chemical Society, 2007. 129(49): p.15096+
20. Huang,S.L. and R.C. MacDonald, Acoustically active liposomes for drug encapsulation and ultrasound-triggered release. Biochim Biophys Acta,2004. 1665(1-2):p.134-41
21. Rajendran, L., et al., Subcellular-targeting strategies for drug design and delivery. Nat Rev Drug Discovery, 2010. 9(1): p. 29–42.
22. Melani Soloman and Gerard G.M.D’Souza, Approaches to Achieving Sub-cellular Targeting of Bioactives Using Pharmaceutical Nanocarriers, Intracellular Delivery:Fundamentals and Applications. Fundamental Biomedical Technologies 5
23. Siegmund Reissmann, Cell penetration:Scope and limitations by the application of cell-penetrating peptides.J.Pept. Sci,2014;20:760-784
24. Khalil IA, Kogure K, Akita H, Harashima H. Uptake pathways and subsequent intracellular trafficking in nonviral gene delivery. Pharmacol Rev, 2006. 58(1) p: 32–45.
25. Sakhrani and Padh, Organelle targeting third level of drug targeting. Drug Des Devel Ther, 2013. 17(7) p: 585-99.
26. Kamiya, H., Tsuchiya, H., Yamazaki, J. & Harashima, H. Intracellular trafficking and transgene expression of viral and non-viral gene vectors. Adv. Drug Deliv. Rev, 52, 153–164 (2001).
27. Macara IG. Transport into and out of the nucleus. Microbiol Mol Biol Rev, 2001. 65(4) p: 570–594.
28. Xu, Z.P., et al., Subcellular compartment targeting of layered double hydroxide nanoparticles. J Control Release, 2008. 130(1): p. 86–94.
29. Torchilin, V.P., Nanotechnology for Intracellular Delivery and Targeting, in Nanotechnology in Drug Delivery, M.M. de Villiers, G.S. Kwon, and P. Aramwit, Editors.2009, Springer Publications: New York. p. 313–348.
30. Pollock, S., et al., Uptake and trafficking of liposomes to the endoplasmic reticulum. FASEB J, 2010. 24(6): p. 1866–78.
31. Zanta, M.A., P. Belguise-Valladier, and J.P. Behr, Gene delivery: a single nuclear localization signal peptide is sufficient to carry DNA to the cell nucleus. Proc Natl Acad Sci USA, 1999. 96(1): p. 91–6.
32. Tkachenko, A.G., et al., Cellular trajectories of peptide-modified gold particle complexes: comparison of nuclear localization signals and peptide transduction domains. Bioconjug Chem, 2004. 15(3): p. 482–90.
33. Huang, Y.; Curb challenges of the “Trojan Horse”approach: Smart strategies in achieving effective yet safe cell penetrating peptide-based drug delivery. Adv. Drug Delivery Rev, 2013. 65(10): p. 1299−1315.
34. Liu, B.R.; Lin, M.D.; Chiang, H.J.; Lee, H.J. Arginine-rich cell-penetrating peptides deliver gene into living human cells. Gene 2012, 505, 37–45.
35. Jin E1, Zhang B, Sun X, Zhou Z, Ma X, Sun Q, Tang J, Shen Y, Van Kirk E, Murdoch WJ, Radosz M., Acid-active cell-penetrating peptides for in vivo tumor-targeted drug delivery. J Am Chem Soc, 2013. 135(2): p. 933-40.
36. Shiraishi, T. and P.E. Nielsen, Enhanced delivery of cell-penetrating peptide-peptide nucleic acid conjugates by endosomal disruption. Nat Protoc, 2006. 1(2): p. 633–6.
37. Torchilin, V.P., et al., TAT peptide on the surface of liposomes affords their efficient intracellular delivery even at low temperature and in the presence of metabolic inhibitors. Proc Natl Acad Sci U S A, 2001. 98(15): p. 8786–91.
38. Longfa Kou a, Jin Sun a, Yinglei Zhai, Zhonggui He, The endocytosis and intracellular fate of nanomedicines:Implication for rational design. Asian Journal of Pharmaceutical Sciences, 2013.1(8): p.1–10
39. Soares PI, Ferreira IM, Igreja RA, Novo CM, Borges JP. , Application of hyperthermia for cancer treatment: recent patents review. Recent Pat Anticancer Drug Discov, 2012.7(1):p. 64-73.
40. Friedenthal E, Mendecki J, Botstein C, Sterzer F, Nowogrodzki M, Paglione R. Some practical considerations for the use of localized hyperthermia in the treatment of cancer. J Microw Power, 1981.16(2): p.199–204.
41. Lele PP. Induction of deep, local hyperthermia by ultrasound and electromagnetic fields: problems and choices. Radiat Environ Biophys, 1980. 17(3): p.205–217.
42. Magin RL, Johnson RK. Effects of local tumor hyperthermia on the growth of solid mouse tumors. Cancer Res, 1979.39(11): p.4534–4539.
43. Kim JH, Hahn EW, Ahmed SA. Combination hyperthermia and radiation therapy for malignant melanoma. Cancer, 1982. 50(3): p.478–482.
44. Luk KH, Francis ME, Perez CA, Johnson RJ. Combined radiation and hyperthermia: comparison of two treatment schedules based on data from a registry established by the Radiation Therapy Oncology Group (RTOG). Int J Radiat Oncol Biol Phys, 1984. 10(6): p.801–809.
45. Stewart JR, Gibbs FA Jr. Hyperthermia in the treatment of cancer. Perspectives on its promise and its problems. Cancer, 1984. 54(11 Suppl): p.2823–2830.
46. Thrall DE. Clinical requirements for localized hyperthermia in the patient. Radiat Environ Biophys, 1980. 17(3): p.229–232.
47. Doss JD, Mccabe CW. A technique for localized heating in tissue: an adjunct to tumor therapy. Med Instrum, 1976. 10(1): p.16–21.
48. Irish CE, Brown J, Galen WP, et al. Thermoradiotherapy for persistent cancer in previously irradiated fields. Cancer. 1986. 57(12): p.2275–2279.
49. Seegenschmiedt MH, Sauer R, Miyamoto C, Chalal JA, Brady LW. Clinical experience with interstitial thermoradiotherapy for localized implantable pelvic tumors. Am J Clin Oncol, 1993. 16(3): p.210–222.
50. Fuller KJ, Issels RD, Slosman DO, Guillet JG, Soussi T, Polla BS. Cancer and the heat-shock response. Eur J Cancer, 1994. 30A (12): p.1884–1891.
51. Harmon BV, Takano YS, Winterford CM, Gobe GC. The role of apoptosis in the response of cells and tumours to mild hyperthermia. Int J Radiat Biol, 1991. 59(2):p. 489–501.
52. Jilong Wang and Jingjing Qiu, A review of organic nanomaterials in photothermal cancer therapy. Cancer Research Frontiers. 2016.2(1): p. 67-84.
53. Menon JU, Jadeja P, Tambe P, Vu K, Yuan B, Nguyen KT, Nanomaterials for photobased diagnostic and therapeutic applications.Theranostics, 2013. 3(3): p.152-66.
54. W. Zhou, X. Liu and J. Ji, J., Nanopart. Res, 2012.(14): 1128
55. Letfullin RR, Rice CE, George TF, Recent Progress in Cancer Thermal Therapy Using Gold Nanoparticles. Ther Deliv, 2011. 2(10): p.1259-73.
56. Elizabeth G. Graham, Christopher M. macneill and Nicole H. Levi-polyachenko, Review of metal,carbon and polymer nanoparticles for infrared photothermal therapy. Nanotechnology, 2015.26(43): p.432001
57. Ding, H., Wang, X., Zhang, S. et al. Applications of polymeric micelles with tumor targeted in chemotherapy. J Nanopart Res, 2012. (14): 1254.
58. Yin H, Liao L, Fang J, Enhanced Permeability and Retention (EPR) Effect Based Tumor Targeting: The Concept, Application and Prospect. JSM Clin Oncol Res 2(1): 1010.
59. Robert Langer et al. Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnology 2, 751-760 (2007)
60. Julien Nicolas, Simona Mura, Davide Brambilla, Nicolas Mackiewicz and Patrick Couvreur, Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery. Chem. Soc. Rev.,2013,42, 1147-1235
61. SUN Xiao-yi, WEI Li-li, CHEN Hai-liang, LIANG Wen-quan, Acta Pharmaceutica Sinica, 2009. 44(8): p.838-844.
62. Luo Weidong, Wang Ye and Zhu Haiying, Advances in the Researches on Endocytosis and Cellular Localization of Nanomaterials and Associated Mechanisms. Chinese Journal of Cell Biology 2013, 35(12): 1826–1831
63. CHEN Wei, JIN Ming-ji, GAO Zhong-gao, WANG Li-ping, PIAO Hai-feng, Preparation and in vitro evaluation of pH-sensitive TAT peptide conjugated micelles. Acta Pharmaceutica Sinica, 2011. 46(5): p.599-604.
64. Ma Dong-xu, Qi Xian-rong, Comparison of mechanisms and cellular uptake of cell-penetrating peptide on different cell lines. Acta Pharmaceutica Sinica, 2010. 45(9): p.1165-1169
65. Zhang Li, Wei Gang, Lu Wei-yue, Application of activatable cell-penetrating peptide in the field of tumor therapy. Acta Pharmaceutica Sinica , 2014.49(12): p.1639 −1643
66. Lee ES, Gao Z, Kim D, et al. Super pH-sensitive multifunctional polymeric micelle for tumor pH(e) specific TAT exposure and multidrug resistance [J]. J Control Release, 2008, 129: 228−236.
67. Kale AA, Torchilin VP. Enhanced transfection of tumor cells in vivo using “smart” pH-sensitive TAT-modified pegylated liposomes [J]. J Drug Target, 2007, 15: 538 −545.
68. REN Jin, QIN Chuan-guang, XU Chun-lan, WANG Qiu-yu, ZUO Xiao-jia, Development of cell-penetrating peptides as vectors for drug delivery. Acta Pharmaceutica Sinica, 2010. 45(1): p.17-25.
69. Andy Wilson, Infrared cameras enhance diagnostic medical imaging.
70. Noble GT1, Stefanick JF1, Ashley JD1, Kiziltepe T2, Bilgicer B3., Ligand-targeted liposome design: challenges and fundamental considerations. Trends Biotechnol, 2014. 32(1): p.32-45.
71. Qianyu Zhang, Huile Gao, and Qin He, Taming Cell Penetrating Peptides: Never Too Old To Teach Old Dogs New Tricks. Mol. Pharmaceutics, 2015, 12, 3105−3118.
72. FeihuWang, YunWanga, Xiao Zhanga, Wenjun Zhanga, Shengrong Guo , Fang Jin, Recent progress of cell-penetrating peptides as new carriers for intracellular cargo delivery. Journal of Controlled Release 174 (2014) 126–136
73. Hua Li ,Tung Yu Tsui and Wenxue Ma, Intracellular Delivery of Molecular Cargo Using Cell-Penetrating Peptides and the Combination Strategies. Int. J. Mol. Sci., 2015, 16, 19518-19536.
74. Sara Trabulo ,Ana Luísa Cardoso,Miguel Mano and Maria C. Pedroso de Lima, Cell-Penetrating Peptides—Mechanisms of Cellular Uptake and Generation of Delivery Systems. Pharmaceuticals 2010, 3, 961-993.
75. Zhengrong Guo, Huanyan Peng, Jiwen Kang and Dianxing Sun, Cell-penetrating peptides: Possible transduction mechanisms and therapeutic applications. Biomedical Reports 4: 528-534, 2016
76. Kelly M. Stewart,b Kristin L. Hortonb and Shana O. Kelley, Cell-penetrating peptides as delivery vehicles for biology and medicine. Org. Biomol. Chem., 2008, 6, 2242–2255.
77. Xin Li, Qinghe Zhao, Liyan Qiu, Smart ligand: Aptamer-mediated targeted delivery of chemotherapeutic drugs and siRNA for cancer therapy. Journal of Controlled Release 171 (2013) 152–162.
78. Madduri Srinivasarao, Chris V. Galliford and Philip S. Low, Principles in the design of ligand-targeted cancer therapeutics and imaging agents. Nature Reviews Drug Discovery 14, 203–219 (2015)
79. Theresa M. Allen, Ligand-targeted therapeutics in anticancer therapy. Nature Reviews Cancer 2, 750-763 (October 2002)
80. Zhong Y1, Meng F, Deng C, Zhong Z., Ligand-directed active tumor-targeting polymeric nanoparticles for cancer chemotherapy. Biomacromolecules, 2014. 15(6): p.1955-69.
81. Yinan Zhong, Fenghua Meng, Chao Deng*, and Zhiyuan Zhong, Ligand-Directed Active Tumor-Targeting Polymeric Nanoparticles for Cancer Chemotherapy. Biomacromolecules, 2014. 15(6), p.1955–1969.
82. Kai Han,Wei-Yun Zhang,Jin Zhang,Qi Lei,Shi-Bo Wang,Jia-Wei Liu,Xian-Zheng Zhang,He-You Han, Acidity-Triggered Tumor-Targeted Chimeric Peptide for Enhanced Intra-Nuclear Photodynamic Therapy. Adv. Funct. Mater, 2016. 26, 4351–4361.
83. Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the human genome. Nature, 2001. 409(6822): p.860–921.
84. Venter JC, Adams MD, Myers EW, et al. The sequence of the human genome. Science, 2001. 291(5507): p.1304–1351.
85. Waterston RH, Lindblad-Toh K, Birney E, et al. Initial sequencing and comparative analysis of the mouse genome. Nature, 2002. 420(6915): p.520–562.
86. Peters MF, Nucifora FC Jr, Kushi J, et al.,Nuclear targeting of mutant Huntingtin increases toxicity. Mol Cell Neurosci, 1999. 14(2): p.121–128.
87. Yasuhara N, Takeda E, Inoue H, Kotera I, Yoneda Y. Importin alpha/beta-mediated nuclear protein import is regulated in a cell cycledependent manner. Exp Cell Res, 2004. 297(1): p.285–293.
88. Tammam SN1, Azzazy HM2, Lamprecht A, How successful is nuclear targeting by nanocarriers? J Control Release. 2016 May 10; 229:140-53.
89. Joseph L. Roti Roti,Harm H. Kampinga, Robert S. Malyapa, William D. Wright, Robert P. VanderWaal and Mai Xu, Nuclear matrix as a target for hyperthermic killing of cancer cells.Cell Stress Chaperones. 1998 Dec; 3(4): 245–255.
90. Mantso T, Goussetis G, Franco R, Botaitis S, Pappa A, Panayiotidis M, Effects of hyperthermia as a mitigation strategy in DNA damage-based cancer therapies. Semin Cancer Biol. 2016 Jun; 37-38:96-105.
91. Tsutomu Sugahara and Chang W. Song, Application of thermal stress for the improvement of health. Int J Hyperthermia. 2008 March; 24(2): 123–140.
92. Wang K, Zhang Y1, Wag J, Yuan A, Sun M, Wu J and Hu Y, Self-assembled IR780-loaded transferrin nanoparticles as an imaging, targeting and PDT/PTT agent for cancer therapy. Sci Rep. 2016 Jun 6;6:27421
93. Felix Kratz, Peter Senter, Henning Steinhagen, Drug Delivery in Oncology: From Basic Research to Cancer Therapy, 3 Volume Set
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *