帳號:guest(18.220.53.93)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳冠廷
作者(外文):Chen. Kuan Ting
論文名稱(中文):磷脂質修飾多孔碳矽複合奈米片經磁刺激 用於加強類神經細胞分化和腫瘤治療
論文名稱(外文):Lipids-Capping Porous Carbon/Silica/Graphene Oxide Nanosheets with Magnetic Stimulation for Enhanced Neural-like Cell Differentiation and Cancer Therapy
指導教授(中文):胡尚秀
指導教授(外文):Hu. Shang-Hsiu
口試委員(中文):王潔
黃郁棻
陳之碩
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學號:103012527
出版年(民國):105
畢業學年度:104
語文別:英文中文
論文頁數:74
中文關鍵詞:氧化石墨烯神經分化腫瘤治療磁刺激藥物傳遞多孔二氧化矽
外文關鍵詞:graphene oxide,neural differentiationcancer therapymagnetic stimulationdrug deliverymesoporous silica
相關次數:
  • 推薦推薦:0
  • 點閱點閱:262
  • 評分評分:*****
  • 下載下載:13
  • 收藏收藏:0
近年來非侵入性治療越來越被接受且提倡,相對於侵入性治療來說有著較安全、副作用少、恢復快等優點。現今在治療如深腦刺激治療、腫瘤治療等等還難以達到功效,其原因當中有藥物傳遞不足、治療強度不足或是沒有達到患部位置等等。因此在此論文研究中以非侵入型療法為出發點,設計出結合藥物治療、標靶治療、能量傳遞的多功能載體。為了達到以上的目標,設計出多孔碳矽複合奈米片修飾脂雙層(lipid bilayer)作為傳導和高附載的載藥平台。功能性脂質DOPC (1,2-dioleoyl–sn-glycero-3-phosphocholine)和DPPC 1,2-dipalmitoyl-sn-glycero- 3-phosphocholine)包覆在多孔碳矽複合奈米片上,利用脂雙層的包覆提升細胞的相容性和攝取量。然而一但施加高頻磁場(HFMF),此載體可透過冷次定律、厄斯特定律等電磁感應來產生感應電流用以刺激釋放藥物。
在此研究的第一部分,脂雙層修飾過的多孔碳矽複合奈米片包覆神經成長因子被應用在加強神經分化上,在高頻磁場刺激下此載體產生感應電流改變表面電位用以刺激釋放神經成長因子,此方法結合了電刺激和藥物治療。在結果的呈現上細胞分化百分比和神經突觸長度都有明顯的增加。在兩天內,神經突觸已成長到約90微米,約為對照組(未施加高頻磁場)的四倍。因此,有電磁感應的脂雙層多孔碳矽複合奈米片可被用來非侵入性的神經再生和組織工程修復上的應用。

研究的第二部分,將上述的載體應用在A549(肺癌細胞)的腫瘤治療上,透過封裝親水藥物Doxorubicin (Dox)和疏水藥物Docetaxel (DTX)兩種藥物來達到協同治療的效果。然而為了提升對腫瘤的針對性,標靶性蛋白藥物Erbitux被修飾在脂雙層表面,此複合性標靶-脂雙層-多孔碳矽複合奈米片被此腫瘤細胞的攝取有顯著的增加。接著施加高頻磁場誘導藥物釋放,在結果顯示確實有毒殺細胞和腫瘤抑制上的效果且在腫瘤以外器官沒有更一步的傷害。此具有標靶性的脂雙層多孔碳矽奈米片可做為一個優秀的藥物傳遞平台,結合了電磁感應控制釋放和搭載藥物可應用於腫瘤治療和其他生物上的應用。
Non-invasive treatment possessing the property of relatively safe, low side effect and rapid recovery has been increasingly advocated. However, many current treatments such as deep brain stimulus or tumor treatment are still difficult to achieve this goal because they suffer from the insufficient delivery of therapeutic molecules and weak energy transfer at the targeted site. In this thesis, therefore, the non-invasive therapy integrated local energy transfer, therapeutic agents, targeting and chemotherapy into a functional carrier was designed and fabricated. To meet these goals, the porous silica/carbon nanosheets (PSC) supported lipid bilayers with biocompatibility that doubles as a conducting and high cargo payload platforms were developed. The functional lipids (1,2-dioleoyl–sn-glycero-3-phosphocholine,DOPC+1,2-dipalmitoyl-sn-glycero-3-phosphocholine, DPPC) coated on PSC (lipo-PSC) through lipid fusion not only improve the cell viability but also enhance the cell uptake. Furthermore, once applying high-frequency magnetic field (HFMF) to PSC, the electromagnetic induction is performed on the electrical conductor, i.e., PSC, through the production of an electromotive force or voltage across, which is also known as Oersted’s law and Lenz's law.
In our first project, the lipo-PSC encapsulating nerve growth factor (NGF) was developed to enhance neural-like cell (PC12) differentiation. During HFMF stimulus, the lipo-PSC as electroactive NGF-releasing electrodes that stimulate the differentiation of PC12 cells through the combination of electrically stimulated cellular differentiation and electrically controlled NGF release. Once electrical treatment is applied, NGF release and electrically enhanced cellular differentiation lead to an obvious increase both in the percentage of cells with neurites and in the neurite length. In the result, the neurite length of cells can reach nearly 90 µm within 2 days. The average neurite length is significantly increased (four-fold) compared with untreated group. The electromagnetic activate lipo-PSC may be used as potential protein carriers for neural regeneration and neural prosthetics in tissue engineering applications.
In the second project, by encapsulating both hydrophilic and hydrophobic drugs, Doxorubicin (Dox) and Docetaxel (DTX), cocktail therapy of PSC was achieved synergistic therapeutic effects. Further conjugating targeting protein, Erbitux, on lipo-PSC leads to significantly enhanced cancer cell uptake of nanocarriers. Intracellular drug release triggered by external HFMF has also been achieved to kill cancer cells efficiently. Furthermore, a combination of therapeutic agents (DOX and DTX) delivered by the transcytosis of lipo-PSC into tumors was released through electromagnetic induction and successfully suppressed xenograft tumors in 16 days without distal harm. This sophisticated lipo-PSC is an excellent delivery platform for electromagnetic-responsive, and combined cocktail chemotherapy to facilitate tumor treatment and for use in other biological applications.
中文摘要 i
Abstract iii
致謝 v
Contents vi
LIST OF SCHEMES viii
LIST OF FIGURE ix
Chapter 1 Literature Review and Theory 1
1.1 Nowadays brain stimulation approach 1
1.1.1 Introduction of several brain stimulation therapy 1
1.1.2 Repetitive trans-cranial magnetic stimulation (rTMS) 3
1.1.3 Nanoparticles in brain 4
1.2 Nanoparticles for cancer therapy 6
1.2.1 Nanoparticle size 7
1.2.2 Nanoparticle surface chemistry 8
1.2.3 Graphene oxide & mesoporous on cancer therapy 9
1.2.4 Liposome 11
1.3 Graphene-based nanocomposites for drugs and genes delivery 15
1.4 Carbon-based for magnetic stimulation therapy 17
Chapter 2 Materials and Methods 20
2.1 Material 20
2.2 Apparatus 23
2.3 Method 25
2.3.1 Synthesis of graphene oxide 25
2.3.2 Synthesis of porous Lipids@Silica/Carbon nanosheet 25
2.3.3 Characterization 27
2.3.4 Magnetic thermal heating effect of PSC 28
2.3.5 Drug loading and drug encapsulation efficiency 28
2.3.6 The Bradford method for nerve growth factor (NGF) quantitation 29
2.3.7 In vitro release 29
2.3.8 Cell culture 30
2.3.9 Cell vability assay 30
2.3.10 Cellular uptake of nanopea capsules 31
2.3.11 Targeting ability of the Erbitux-PLSC was quantified by flow cytometry 32
2.3.12 In vitro experiments – PC12 differentiate 32
2.3.13 In vivo experiments 32
Chapter 3 Results and Discussions 34
3.1 Synthesis and characterization of PSC and PLSC 34
3.2 PLSC is used in PC-12 cells differentiation 42
3.2.1 Drug loading capacity and HFMF-triggered drug release of PLSC/NGF 43
3.2.2 Cytotoxicity and cell uptake of PLSC 45
3.2.3 Neuronal changes of PC-12 cells cultured on NGF-loaded PLSC following magnetic stimulation 48
3.2.4 In vivo study- biocompatibility test in brain 51
3.3 Targeting PLSC is used in anticancer therapy 53
3.3.1 Property of Er-PLSC 54
3.3.2 Drug loading capacity and HFMF-triggered drug release of DOX and DTX 57
3.3.3 In vitro magnetic chemotherapy 59
3.3.4 In vivo study 60
Chapter 4 Conclusions 67
Reference 68
1. Corthout, E.; Barker, A. T.; Cowey, A., Transcranial magnetic stimulation. Which
part of the current waveform causes the stimulation? Exp Brain Res 2001, 141 (1),
128-32.
2. Chen, R.; Romero, G.; Christiansen, M. G.; Mohr, A.; Anikeeva, P., Wireless
magnetothermal deep brain stimulation. Science 2015, 347 (6229), 1261821.
3. Yue, K.; Guduru, R.; Hong, J.; Liang, P.; Nair, M.; Khizroev, S., Magneto-electric
nano-particles for non-invasive brain stimulation. PloS one 2012, 7 (9).
4. Chou, L. Y.; Ming, K.; Chan, W. C., Strategies for the intracellular delivery of
nanoparticles. Chem Soc Rev 2011, 40 (1), 233-45.
5. Hillaireau, H.; Couvreur, P., Nanocarriers' entry into the cell: relevance to drug
delivery. Cell Mol Life Sci 2009, 66 (17), 2873-96.
6. Petros, R. A.; DeSimone, J. M., Strategies in the design of nanoparticles for
therapeutic applications. Nat Rev Drug Discov 2010, 9 (8), 615-27.
7. Conner, S. D.; Schmid, S. L., Regulated portals of entry into the cell. Nature 2003,
422 (6927), 37-44.
8. Schädlich, A.; Caysa, H.; Mueller, T.; Tenambergen, F.; Rose, C.; Göpferich, A.;
Kuntsche, J.; Mäder, K., Tumor Accumulation of NIR Fluorescent PEG–PLA Nanoparticles: Impact of Particle Size and Human Xenograft Tumor Model. ACS Nano 2011, 5 (11), 8710-8720.
9. Ekkapongpisit, M.; Giovia, A.; Follo, C.; Caputo, G.; Isidoro, C., Biocompatibility, endocytosis, and intracellular trafficking of mesoporous silica and polystyrene nanoparticles in ovarian cancer cells: effects of size and surface charge groups. Int J Nanomedicine 2012, 7, 4147-4158.
10. Cedervall, T.; Lynch, I.; Foy, M.; Berggad, T.; Donnelly, S. C.; Cagney, G.; Linse, S.; Dawson, K. A., Detailed identification of plasma proteins adsorbed on copolymer nanoparticles. Angewandte Chemie-International Edition 2007, 46 (30), 5754-5756.
11. Lundqvist, M.; Stigler, J.; Elia, G.; Lynch, I.; Cedervall, T.; Dawson, K. A., Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proceedings of the National Academy of Sciences of the United States of America 2008, 105 (38), 14265-14270.
12. Choi, H. S.; Liu, W.; Misra, P.; Tanaka, E.; Zimmer, J. P.; Ipe, B. I.; Bawendi, M. G.; Frangioni, J. V., Renal clearance of quantum dots. Nature Biotechnology 2007, 25 (10), 1165-1170.
13. Jiang, W.; Kim, B. Y. S.; Rutka, J. T.; Chan, W. C. W., Nanoparticle-mediated cellular response is size-dependent. Nature Nanotechnology 2008, 3 (3), 145-150.
14. Zhang, K.; Fang, H.; Chen, Z.; Taylor, J.-S. A.; Wooley, K. L., Shape Effects of Nanoparticles Conjugated with Cell-Penetrating Peptides (HIV Tat PTD) on CHO Cell Uptake. Bioconjugate Chemistry 2008, 19 (9), 1880-1887.
15. Yoo, J.-W.; Doshi, N.; Mitragotri, S., Endocytosis and Intracellular Distribution of PLGA Particles in Endothelial Cells: Effect of Particle Geometry. Macromolecular Rapid Communications 2010, 31 (2), 142-148.
16. Tabata, Y.; Ikada, Y., EFFECT OF THE SIZE AND SURFACE-CHARGE OF POLYMER MICROSPHERES ON THEIR PHAGOCYTOSIS BY MACROPHAGE. Biomaterials 1988, 9 (4), 356-362.
17. Landel, R. F.; Nielsen, L. E., Mechanical properties of polymers and composites. Mechanical properties of polymers and composites 1993.
18. Schneider, M.; Lamy, B., Process for the dehydration of a colloidal dispersion of lipsomes. US Patent 4 1980.
19. Gonçalves, G.; Vila, M.; Portolés, M. T., Nano‐Graphene Oxide: A Potential Multifunctional Platform for Cancer Therapy. Advanced Healthcare Materials 2013.
20. Argyo, C.; Weiss, V.; Bräuchle, C.; Bein, T., Multifunctional Mesoporous Silica Nanoparticles as a Universal Platform for Drug Delivery. Chemistry of Materials 2014, 26 (1), 435-451.
21. Chen, Y.; Chen, P.; Hu, S.; Chen, W. I.; Chen, S., NIR Triggered Synergic Photo chemothermal Therapy Delivered by Reduced Graphene Oxide/Carbon/Mesoporous Silica Nanocookies. Advanced Functional Materials 2014, 24 (4), 451-459.
22. Noble, G. T.; Stefanick, J. F.; Ashley, J. D.; Kiziltepe, T.; Bilgicer, B., Ligand-targeted liposome design: challenges and fundamental considerations. Trends in Biotechnology 2014, 32 (1), 32-45.
23. Blattman, J. N.; Greenberg, P. D., Cancer Immunotherapy: A Treatment for the Masses. Science 2004, 305 (5681), 200-205.
24. June, C. H., Principles of adoptive T cell cancer therapy. The Journal of Clinical Investigation 117 (5), 1204-1212.
25. Weiner, L. M.; Surana, R.; Wang, S., Monoclonal antibodies: versatile platforms for cancer immunotherapy. Nat Rev Immunol 2010, 10 (5), 317-327.
26. Cheng, Y.-s.; Xu, F., Anticancer function of polyinosinic-polycytidylic acid. Cancer Biology & Therapy 2010, 10 (12), 1219-1223.
27. Colapicchioni, V.; Palchetti, S.; Pozzi, D.; Marini, E. S.; Riccioli, A.; Ziparo, E.; Papi, M.; Amenitsch, H.; Caracciolo, G., Killing cancer cells using nanotechnology: novel poly(I:C) loaded liposome-silica hybrid nanoparticles. Journal of Materials Chemistry B 2015, 3 (37), 7408-7416.
28. Ashley, C. E.; Carnes, E. C.; Phillips, G. K.; Padilla, D.; Durfee, P. N.; Brown, P. A.; Hanna, T. N.; Liu, J.; Phillips, B.; Carter, M. B., The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers. Nature materials 2011, 10 (5), 389-397.
29. Chen, I. A.; Walde, P., From self-assembled vesicles to protocells. Cold Spring Harbor perspectives in biology 2010, 2 (7).
30. Garwood, R., Patterns in Palaeontology: The first 3 billion years of evolution. Palaeontology [online] 2012.
31. Meulen, S. A. J.; Leunissen, M. E., Solid colloids with surface-mobile DNA linkers. Journal of the American Chemical Society 2013, 135 (40), 15129-15134.
32. Ashley, C. E.; Carnes, E. C.; Phillips, G. K.; Padilla, D.; Durfee, P. N.; Brown, P. A.; Hanna, T. N.; Liu, J.; Phillips, B.; Carter, M. B.; Carroll, N. J.; Jiang, X.; Dunphy, D. R.; Willman, C. L.; Petsev, D. N.; Evans, D. G.; Parikh, A. N.; Chackerian, B.; Wharton, W.; Peabody, D. S.; Brinker, C. J., The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers. Nat Mater 2011, 10 (5), 389-397.
33. Yang, Y.; Asiri, A. M.; Tang, Z.; Du, D.; Lin, Y., Graphene based materials for biomedical applications. Materials Today 2013, 16 (10), 365-373.
34. Yang, K.; Feng, L.; Liu, Z., The advancing uses of nano-graphene in drug delivery. Expert Opinion on Drug Delivery 2015, 12 (4), 601-612.
35. Zhang, L.; Zheng, Y.; Jagadeeswaran, G.; Li, Y.; Gowdu, K.; Sunkar, R., Identification and temporal expression analysis of conserved and novel microRNAs in Sorghum. Genomics 2011, 98 (6), 460-468.
36. Frost, R.; Svedhem, S.; Langhammer, C.; Kasemo, B., Graphene Oxide and Lipid Membranes: Size-Dependent Interactions. Langmuir 2016, 32 (11), 2708-2717.
37. Yu, J.; Huang, D.-Y.; Muhammad Zubair, Y.; Hou, Y.-L.; Gao, S., Magnetic nanoparticle-based cancer therapy. Chinese Physics B 2013, 22 (2), 027506.
38. Wu, C.-H.; Cao, C.; Kim, J. H.; Hsu, C.-H.; Wanebo, H. J.; Bowen, W. D.; Xu, J.; Marshall, J., Trojan-Horse Nanotube On-Command Intracellular Drug Delivery. Nano Letters 2012, 12 (11), 5475-5480.
39. Basu, B. N., Electromagnetic theory and applications in beam-wave electronics. Electromagnetic theory and applications in beam-wave electronics 1996.
40. Vagner, I. D.; Lembrikov, B. I.; Wyder, P. R., Electrodynamics of magnetoactive media. Electrodynamics of magnetoactive media 2013.
41. Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M., Improved synthesis of graphene oxide. ACS nano 2010, 4 (8), 4806-4814.
42. Ulrich, A. S.; Sami, M.; Watts, A., Hydration of DOPC bilayers by differential scanning calorimetry. Biochimica et Biophysica Acta (BBA) - Biomembranes 1994, 1191 (1), 225-230.
43. Biltonen, R. L.; Lichtenberg, D., The use of differential scanning calorimetry as a tool to characterize liposome preparations. Chemistry and Physics of Lipids 1993, 64 (1), 129-142.
44. Davis, J. H.; Clair, J. J.; Juhasz, J., Phase Equilibria in DOPC/DPPC-d62/Cholesterol Mixtures. Biophysical Journal 2009, 96 (2), 521-539.
45. Sun, X.; Liu, Z.; Welsher, K.; Robinson, J.; Goodwin, A.; Zaric, S.; Dai, H., Nano-graphene oxide for cellular imaging and drug delivery. Nano research 2008, 1 (3), 203-212.
46. Shen, B.; Zhai, W.; Lu, D.; Wang, J.; Zheng, W., Ultrasonication-assisted direct functionalization of graphene with macromolecules. RSC Advances 2012, 2 (11), 4713-4719.
47. Zeng, X.; Tao, W.; Mei, L.; Huang, L.; Tan, C.; Feng, S.-S., Cholic acid-functionalized nanoparticles of star-shaped PLGA-vitamin E TPGS copolymer for docetaxel delivery to cervical cancer. Biomaterials 2013, 34 (25), 6058-6067.
48. Kruger, N. J., The Bradford method for protein quantitation. Basic protein and peptide protocols 1994, 9-15.
49. Liu, H.; Chen, D.; Li, L.; Liu, T.; Tan, L.; Wu, X.; Tang, F., Multifunctional gold nanoshells on silica nanorattles: a platform for the combination of photothermal therapy and chemotherapy with low systemic toxicity. Angewandte Chemie 2011, 123 (4), 921-925.
50. Kudin, K. N.; Ozbas, B.; Schniepp, H. C.; Prud'Homme, R. K.; Aksay, I. A.; Car, R., Raman spectra of graphite oxide and functionalized graphene sheets. Nano letters 2008, 8 (1), 36-41.
51. Calizo, I.; Balandin, A.; Bao, W.; Miao, F.; Lau, C., Temperature dependence of the Raman spectra of graphene and graphene multilayers. Nano letters 2007, 7 (9), 2645-2649.
52. Graf, D.; Molitor, F.; Ensslin, K.; Stampfer, C.; Jungen, A.; Hierold, C.; Wirtz, L., Spatially resolved Raman spectroscopy of single-and few-layer graphene. Nano letters 2007, 7 (2), 238-242.
53. Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D., Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. science 1998, 279 (5350), 548-552.
54. Barrett, E. P.; Joyner, L. G.; Halenda, P. P., The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. Journal of the American Chemical Society 1951, 73 (1), 373-380.
55. Zarrin, H.; Higgins, D.; Jun, Y.; Chen, Z.; Fowler, M., Functionalized graphene oxide nanocomposite membrane for low humidity and high temperature proton exchange membrane fuel cells. The Journal of Physical Chemistry C 2011, 115 (42), 20774-20781.
56. Liu, H. W.; Huang, W. C.; Chiang, C. S.; Hu, S. H., Arrayed rGOSH/PMASH Microcapsule Platform Integrating Surface Topography, Chemical Cues, and Electrical Stimulation for Three-Dimensional Neuron-Like Cell Growth and Neurite Sprouting. Adv. Funct. Mater 2014, 24, 3715–3724.
57. Youngnam, C.; Riyi, S.; Albena, I.; Richard Ben, B., A mesoporous silica nanosphere-based drug delivery system using an electrically conducting polymer. Nanotechnology 2009, 20 (27), 275102.
58. Some, S.; Gwon, A. R.; Hwang, E.; Bahn, G.-h.; Yoon, Y.; Kim, Y.; Kim, S.-H.; Bak, S.; Yang, J.; Jo, D.-G.; Lee, H., Cancer Therapy Using Ultrahigh Hydrophobic Drug-Loaded Graphene Derivatives. Scientific Reports 2014, 4, 6314.
59. Kikuchi, A.; Okano, T., Pulsatile drug release control using hydrogels. Advanced Drug Delivery Reviews 2002, 54 (1), 53-77.
60. Kimura, K.; Yanagida, Y.; Haruyama, T.; Kobatake, E.; Aizawa, M., Electrically induced neurite outgrowth of PC12 cells on the electrode surface. Medical and Biological Engineering and Computing 1998, 36 (4), 493-498.
61. Jaffe, L. F.; Poo, M. M., Neurites grow faster towards the cathode than the anode in a steady field. Journal of Experimental Zoology 1979, 209(1), 115-28.
62. Erskine, L.; McCaig, C. D., Growth Cone Neurotransmitter Receptor Activation Modulates Electric Field-Guided Nerve Growth. Developmental Biology 1995, 171 (2), 330-339.
63. McCaig, C. D.; Sangster, L.; Stewart, R., Neurotrophins enhance electric field-directed growth cone guidance and directed nerve branching. Developmental Dynamics 2000, 217 (3), 299-308.
64. Bueno, F. R.; Shah, S. B., Implications of Tensile Loading for the Tissue Engineering of Nerves. Tissue Engineering Part B: Reviews 2008, 14 (3), 219-233.
65. Dittmann, K.; Mayer, C.; Rodemann, H.-P., Inhibition of radiation-induced EGFR nuclear import by C225 (Cetuximab) suppresses DNA-PK activity. Radiotherapy and Oncology 2005, 76 (2), 157-161.
66. Wild, R.; Fager, K.; Flefleh, C.; Kan, D.; Inigo, I.; Castaneda, S.; Luo, F.; Camuso, A.; McGlinchey, K.; Rose, W. C., Cetuximab preclinical antitumor activity (monotherapy and combination based) is not predicted by relative total or activated epidermal growth factor receptor tumor expression levels. American Association for Cancer Research 2006, 5 (1), 104-113.
67. Mukohara, T.; Engelman, J. A.; Hanna, N. H.; Yeap, B. Y.; Kobayashi, S.; Lindeman, N.; Halmos, B.; Pearlberg, J.; Tsuchihashi, Z.; Cantley, L. C.; Tenen, D. G.; Johnson, B. E.; Jänne, P. A., Differential Effects of Gefitinib and Cetuximab on Non–small-cell Lung Cancers Bearing Epidermal Growth Factor Receptor Mutations. Journal of the National Cancer Institute 2005, 97 (16), 1185-1194.
68. Raben, D.; Helfrich, B.; Chan, D. C.; Ciardiello, F.; Zhao, L.; Franklin, W.; Barón, A. E.; Zeng, C.; Johnson, T. K.; Bunn, P. A., The Effects of Cetuximab Alone and in Combination With Radiation and/or Chemotherapy in Lung Cancer. American Association for Cancer Research 2005, 11 (2), 795-805.
69. Fang, J.; Nakamura, H.; Maeda, H., The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Advanced Drug Delivery Reviews 2011, 63 (3), 136-151.
70. Torchilin, V., Tumor delivery of macromolecular drugs based on the EPR effect. Advanced Drug Delivery Reviews 2011, 63 (3), 131-135.
71. Chittasupho, C.; Lirdprapamongkol, K.; Kewsuwan, P.; Sarisuta, N., Targeted delivery of doxorubicin to A549 lung cancer cells by CXCR4 antagonist conjugated PLGA nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics 2014, 88 (2), 529-538.
72. Zhao, M.; Lei, C.; Yang, Y.; Bu, X.; Ma, H.; Gong, H.; Liu, J.; Fang, X.; Hu, Z.; Fang, Q., Abraxane, the Nanoparticle Formulation of Paclitaxel Can Induce Drug Resistance by Up-Regulation of P-gp. PLoS ONE 2015, 10 (7), e0131429.
73. Lee, S. J.; Min, H. S.; Ku, S. H.; Son, S.; Kwon, I. C.; Kim, S. H.; Kim, K., Tumor-targeting glycol chitosan nanoparticles as a platform delivery carrier in cancer diagnosis and therapy. Nanomedicine 2014, 9 (11), 1697-1713.
74. Wang, W.; Qin, S.; Zhao, L., Docetaxel enhances CD3+ CD56+ cytokine-induced killer cells-mediated killing through inducing tumor cells phenotype modulation. Biomedicine & Pharmacotherapy 2015, 69, 18-23.
75. Pan, X.; Wu, G.; Yang, W.; Barth, R. F.; Tjarks, W.; Lee, R. J., Synthesis of Cetuximab-Immunoliposomes via a Cholesterol-Based Membrane Anchor for Targeting of EGFR. Bioconjugate Chemistry 2007, 18 (1), 101-108.
76. Chen, L.; Merzlyakov, M.; Cohen, T.; Shai, Y.; Hristova, K., Energetics of ErbB1 Transmembrane Domain Dimerization in Lipid Bilayers. Biophysical Journal 2009, 96 (11), 4622-4630.
77. Liao, H.-J.; Carpenter, G., Cetuximab/C225-Induced Intracellular Trafficking of Epidermal Growth Factor Receptor. Cancer Research 2009, 69 (15), 6179-6183.
78. Kutty, R. V.; Feng, S.-S., Cetuximab conjugated vitamin E TPGS micelles for targeted delivery of docetaxel for treatment of triple negative breast cancers. Biomaterials 2013, 34 (38), 10160-10171.
79. Andersson, J.; Rosenholm, J.; Areva, S.; Lindén, M., Influences of Material Characteristics on Ibuprofen Drug Loading and Release Profiles from Ordered Micro- and Mesoporous Silica Matrices. Chemistry of Materials 2004, 16 (21), 4160-4167.
80. Meng, H.; Xue, M.; Xia, T.; Zhao, Y.-L.; Tamanoi, F.; Stoddart, J. F.; Zink, J. I.; Nel, A. E., Autonomous in Vitro Anticancer Drug Release from Mesoporous Silica Nanoparticles by pH-Sensitive Nanovalves. Journal of the American Chemical Society 2010, 132 (36), 12690-12697.
81. Muñoz, B.; Rámila, A.; Pérez-Pariente, J.; Díaz, I.; Vallet-Regí, M., MCM-41 Organic Modification as Drug Delivery Rate Regulator. Chemistry of Materials 2003, 15 (2), 500-503.
82. Chung, T.-H.; Wu, S.-H.; Yao, M.; Lu, C.-W.; Lin, Y.-S.; Hung, Y.; Mou, C.-Y.; Chen, Y.-C.; Huang, D.-M., The effect of surface charge on the uptake and biological function of mesoporous silica nanoparticles in 3T3-L1 cells and human mesenchymal stem cells. Biomaterials 2007, 28 (19), 2959-2966.
83. Barth, R. F.; Kaur, B., Rat brain tumor models in experimental neuro-oncology: the C6, 9L, T9, RG2, F98, BT4C, RT-2 and CNS-1 gliomas. Journal of neuro-oncology 2009, 94 (3), 299-312.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 利用腫瘤趨向性單核球傳輸功能性高分子奈米粒子以增進腫瘤缺氧區之治療效果
2. 發展新穎治療型奈米藥物平台:核殼結構之白蛋白質/金奈米棒奈米劑型於癌症應用
3. 環境應答性複合型奈米微胞及其在癌症治療之應用
4. 具雙重敏感性之自我聚合透明質酸載體應用於卵巢癌主動標靶治療與診斷
5. 利用聚多巴胺修飾之星形金奈米粒子作為標靶性光熱/藥物傳遞載體應用於抗腫瘤及抗血管新生結合性治療
6. 新穎釋氫奈米複合材料於癌症治療之研究
7. 具光熱應答性乳鐵蛋白修飾奈米豌豆應用於雷射刺激藥物釋放、腫瘤標靶與光熱/化學協同治療
8. 磁性奈米殼核膠囊特性改質應用於疏水性藥物控制釋放與增強腫瘤治療
9. 具標靶功能紅血球膜包覆介孔性二氧化矽奈米粒子應用於藥物輸送與光熱治療
10. 具藥物再填充之可注射型磁性多孔隙複合奈米載體應於腫瘤治療
11. 仿紅血球多孔磁性奈米粒子用於增強阿黴素- 高分子粒子釋放應用於轉移肺腫瘤治療
12. 多孔碳球/氧化石墨烯複合材料應用於高靈敏性偵測循環腫瘤細胞
13. 具自發性多重階段標靶與穿透的磁製藥物傳輸系統應用於腫瘤深處的協同治療
14. 3D列印應用於具階段性藥物控制釋放磁性微針製備於雄性禿治療
15. 具磁電操控表面電性之金奈米腦攜帶可穿透次級藥物載體應用於腦瘤深度治療
 
* *