|
1. Rosenberg, B.; Van Camp, L.; Krigas, T., Inhibition of Cell Division in Escherichia Coli by Electrolysis Products from a Platinum Electrode. Nature 1965, 205 (4972), 698-699. 2. Rosenberg, B.; Vancamp, L., Platinum Compounds: a New Class of Potent Antitumour Agents. Nature 1969, 222, 385-386. 3. Oberoi, H. S.; Nukolova, N. V.; Kabanov, A. V.; Bronich, T. K., Nanocarriers for Delivery of Platinum Anticancer Drugs. Advanced drug delivery reviews 2013, 65 (13), 1667-1685. 4. Wani, W. A.; Prashar, S.; Shreaz, S.; Gómez-Ruiz, S., Nanostructured materials Functionalized with Metal Complexes: In Search of Alternatives for Administering Anticancer Metallodrugs. Coordination Chemistry Reviews 2016, 312, 67-98. 5. Johnstone, T. C.; Suntharalingam, K.; Lippard, S. J., The Next Generation of Platinum Drugs: Targeted Pt (II) Agents, Nanoparticle Delivery, and Pt (IV) Prodrugs. Chemical reviews 2016, 116 (5), 3436-3486. 6. Ozols, R. F., Ovarian Cancer: New Clinical Approaches. Cancer treatment reviews 1991, 18, 77-83. 7. Ferreira, C. G.; Tolis, C.; Span, S. W.; Peters, G. J.; van Lopik, T.; Kummer, A. J.; Pinedo, H. M.; Giaccone, G., Drug-induced Apoptosis in Lung Cancer Cells is not Mediated by the Fas/FasL (CD95/APO1) Signaling Pathway. Clinical cancer research 2000, 6 (1), 203-212. 8. Mjos, K. D.; Orvig, C., Metallodrugs in Medicinal Inorganic Chemistry. Chemical reviews 2014, 114 (8), 4540-4563. 9. Mirabelli, C. K.; Johnson, R. K.; Sung, C. M.; Faucette, L.; Muirhead, K.; Crooke, S. T., Evaluation of the In Vivo Antitumor Activity and In Vitro Cytotoxic Properties of Auranofin, a Coordinated Gold Compound, In Murine Tumor Models. Cancer research 1985, 45 (1), 32-39. 10. Wang, Y.; He, Q. Y.; Che, C. M.; Chiu, J. F., Proteomic Characterization of the Cytotoxic Mechanism of Gold(III) porphyrin 1a, a Potential Anticancer Drug. Proteomics 2006, 6 (1), 131-142. 11. Mirabelli, C. K.; Sung, C.-M.; Zimmerman, J. P.; Hill, D. T.; Mong, S.; Crooke, S. T., Interactions of Gold Coordination Complexes with DNA. Biochemical pharmacology 1986, 35 (9), 1427-1433. 12. Messori, L.; Orioli, P.; Tempi, C.; Marcon, G., Interactions of Selected Gold (III) Complexes with Calf Thymus DNA. Biochemical and biophysical research communications 2001, 281 (2), 352-360. 13. Berners-Price, S. J.; Filipovska, A., Gold Compounds as Therapeutic Agents for Human Diseases. Metallomics 2011, 3 (9), 863-873. 14. Fricker, S. P., Cysteine Proteases as Targets for Metal-based Drugs. Metallomics 2010, 2 (6), 366-377. 15. Krishnamurthy, D.; Karver, M. R.; Fiorillo, E.; Orru, V.; Stanford, S. M.; Bottini, N.; Barrios, A. M., Gold (I)-mediated Inhibition of Protein Tyrosine Phosphatases: A Detailed in Vitro and Cellular Study. Journal of medicinal chemistry 2008, 51 (15), 4790-4795. 16. Markman, J. L.; Rekechenetskiy, A.; Holler, E.; Ljubimova, J. Y., Nanomedicine Therapeutic Approaches to Overcome Cancer Drug Resistance. Advanced drug delivery reviews 2013, 65 (13), 1866-1879. 17. Cheng, Z.; Dai, Y.; Kang, X.; Li, C.; Huang, S.; Lian, H.; Hou, Z.; Ma, P.; Lin, J., Gelatin-encapsulated Iron Oxide Nanoparticles for Platinum(IV) Prodrug Delivery, Enzyme-stimulated Release and MRI. Biomaterials 2014, 35 (24), 6359-6368. 18. Lin, Y.-X.; Gao, Y.-J.; Wang, Y.; Qiao, Z.-Y.; Fan, G.; Qiao, S.-L.; Zhang, R.-X.; Wang, L.; Wang, H., pH-Sensitive Polymeric Nanoparticles with Gold (I) Compound Payloads Synergistically Induce Cancer Cell Death Through Modulation of Autophagy. Molecular pharmaceutics 2015, 12 (8), 2869-2878. 19. Kasai, H.; Murakami, T.; Ikuta, Y.; Koseki, Y.; Baba, K.; Oikawa, H.; Nakanishi, H.; Okada, M.; Shoji, M.; Ueda, M., Creation of Pure Nanodrugs and Their Anticancer Properties. Angewandte Chemie International Edition 2012, 51 (41), 10315-10318. 20. Chen, F.; Zhao, Y.; Pan, Y.; Xue, X.; Zhang, X.; Kumar, A.; Liang, X.-J., Synergistically Enhanced Therapeutic Effect of a Carrier-Free HCPT/DOX Nanodrug on Breast Cancer Cells through Improved Cellular Drug Accumulation. Molecular pharmaceutics 2015, 12 (7), 2237-2244. 21. Shen, G.; Xing, R.; Zhang, N.; Chen, C.; Ma, G.; Yan, X., Interfacial Cohesion and Assembly of Bioadhesive Molecules for Design of Long-Term Stable Hydrophobic Nanodrugs toward Effective Anticancer Therapy. ACS nano 2016. 22. Oh, M.; Mirkin, C. A., Chemically Tailorable Colloidal Particles from Infinite Coordination Polymers. Nature 2005, 438 (7068), 651-654. 23. Imaz, I.; Rubio-Martínez, M.; An, J.; Sole-Font, I.; Rosi, N. L.; Maspoch, D., Metal–biomolecule frameworks (MBioFs). Chemical communications 2011, 47 (26), 7287-7302. 24. Gould, J. A.; Jones, J. T.; Bacsa, J.; Khimyak, Y. Z.; Rosseinsky, M. J., A Homochiral Three-dimensional Zinc Aspartate Framework That Displays Multiple Coordination Modes and Geometries. Chemical communications 2010, 46 (16), 2793-2795. 25. Liu, Y.; Xuan, W.; Cui, Y., Engineering Homochiral Metal‐Organic Frameworks for Heterogeneous Asymmetric Catalysis and Enantioselective Separation. Advanced Materials 2010, 22 (37), 4112-4135. 26. Salgado, E. N.; Radford, R. J.; Tezcan, F. A., Metal-directed Protein Self-assembly. Accounts of chemical research 2010, 43 (5), 661-672. 27. Wei, H.; Li, B.; Du, Y.; Dong, S.; Wang, E., Nucleobase-metal hybrid materials: Preparation of Submicrometer-scale, Spherical Colloidal Particles of Adenine-gold (III) via a Supramolecular Hierarchical Self-assembly Approach. Chemistry of materials 2007, 19 (12), 2987-2993. 28. Nishiyabu, R.; Hashimoto, N.; Cho, T.; Watanabe, K.; Yasunaga, T.; Endo, A.; Kaneko, K.; Niidome, T.; Murata, M.; Adachi, C., Nanoparticles of Adaptive Supramolecular Networks Self-assembled from Nucleotides and Lanthanide Ions. Journal of the American Chemical Society 2009, 131 (6), 2151-2158. 29. Zhang, X.; Deng, J.; Xue, Y.; Shi, G.; Zhou, T., Stimulus Response of Au-NPs@ GMP-Tb Core–Shell Nanoparticles: Toward Colorimetric and Fluorescent Dual-Mode Sensing of Alkaline Phosphatase Activity in Algal Blooms of a Freshwater Lake. Environmental science & technology 2015, 50 (2), 847-855. 30. Zhou, P.; Shi, R.; Yao, J.-f.; Sheng, C.-f.; Li, H., Supramolecular Self-assembly of Nucleotide–Metal Coordination Complexes: From Simple Molecules to Nanomaterials. Coordination Chemistry Reviews 2015, 292, 107-143. 31. Mathlouthi, M.; Seuvre, A.-M.; Koenig, J. L., Ft-ir and laser-Raman Spectra of Adenine and Adenosine. Carbohydrate research 1984, 131 (1), 1-15. 32. Sahu, R. K.; Mordechai, S., Chemometrics of Cells and Tissues Using IR Spectroscopy-Relevance in Biomedical Research. INTECH Open Access Publisher: 2012. 33. Castillo, P. M.; de la Mata, M.; Casula, M. F.; Sánchez-Alcázar, J. A.; Zaderenko, A. P., PEGylated versus non-PEGylated Magnetic Nanoparticles as Camptothecin Delivery System. Beilstein journal of nanotechnology 2014, 5 (1), 1312-1319. 34. Wu, G.; Fang, Y.-Z.; Yang, S.; Lupton, J. R.; Turner, N. D., Glutathione Metabolism and Its Implications for Health. The Journal of nutrition 2004, 134 (3), 489-492. 35. Wang, Y. C.; Li, Y.; Sun, T. M.; Xiong, M. H.; Wu, J.; Yang, Y. Y.; Wang, J., Core–Shell–Corona Micelle Stabilized by Reversible Cross‐Linkage for Intracellular Drug Delivery. Macromolecular rapid communications 2010, 31 (13), 1201-1206. 36. Armstrong, J.; Steinauer, K.; Hornung, B.; Irish, J.; Lecane, P.; Birrell, G.; Peehl, D.; Knox, S., Role of Glutathione Depletion and Reactive Oxygen Species Generation in Apoptotic Signaling in A Human B Lymphoma Cell Line. Cell death and differentiation 2002, 9 (3), 252-263. 37. Fan, H.; Yan, G.; Zhao, Z.; Hu, X.; Zhang, W.; Liu, H.; Fu, X.; Fu, T.; Zhang, X. B.; Tan, W., A Smart Photosensitizer–Manganese Dioxide Nanosystem for Enhanced Photodynamic Therapy by Reducing Glutathione Levels in Cancer Cells. Angewandte Chemie 2016, 128 (18), 5567-5572.
|