帳號:guest(3.147.48.186)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):葉文嘉
作者(外文):Yeh, Wen Chia
論文名稱(中文):製備鹼基/核苷酸-金離子配位奈米粒子於癌症治療之應用
論文名稱(外文):Nucleobase and Nucleotide Coordinated Au(I/III) Nanoparticles for Anticancer Therapeutics
指導教授(中文):黃郁棻
指導教授(外文):Huang, Yu-Fen
口試委員(中文):林宗宏
張建文
口試委員(外文):Lin, Zong-Hong
Chang, Chien-Wen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學號:103012526
出版年(民國):105
畢業學年度:105
語文別:中文
論文頁數:53
中文關鍵詞:配位聚合癌症治療
外文關鍵詞:coordinatied nanoparticlecancer therapy
相關次數:
  • 推薦推薦:0
  • 點閱點閱:53
  • 評分評分:*****
  • 下載下載:1
  • 收藏收藏:0
金錯合物在癌症治療的應用上,展現良好的腫瘤抑制效果。本研究藉由加入腺嘌呤 (Adenine, A)和金離子 (Au3+)自組裝,同時摻雜三磷酸腺苷 (ATP)及硫醇-聚乙二醇 (HSPEG),合成水和粒徑約89 ± 17 nm 的配位奈米金粒子。摻雜ATP後未影響Au:A的配位情形,其含量~8%且ATP多在奈米粒子表面,提供奈米粒子表面負電排斥力獲得良好的分散性。摻雜HSPEG後,增加鹽類穩定性及降低水和粒徑。HSPEG-(Au:A/ATP)奈米粒子具有穀胱甘肽 (Glutathione, GSH)應答性,在高濃度GSH環境下,奈米粒子會被破壞並釋出內部金離子。使用配位奈米金粒子對Tramp-C1細胞株進行細胞毒性測試,得到24小時IC50~48 μM ,優於金離子 (IC50~51 μM),且有促使細胞凋亡的情形發生。藉由添加GSH 抑制劑,亦可提升HSPEG-(Au:A/ATP)的作用能力,證實開發奈米藥物與細胞內GSH濃度具一定關聯性。最後,藉由配位聚合物能容納客體 (guest molecules)的特性包覆光敏劑Protoporphyrin IX (PpIX),藉由奈米粒子與細胞內GSH作用,促進PpIX的光照效果以降低6小時之IC50~55 μM。此配位金奈米粒子可經由觸發應答性釋放內部金離子,與細胞內GSH作用特性及包覆藥物特性於生醫領域應用上展現良好的前瞻性,在未來,期望使用配位金奈米粒子克服順鉑 (Cisplatin)之抗藥性問題。
Stable Au (III) and Au (I) complexes, including cyclometallated gold complex, are promising candidates for anticancer drugs that exhibit potent in vitro and in vivo antitumor activities against human carcinoma xenografts tumors. Herein, a supramolecular synthesis route was presented for hierarchical self-assembly of coordinated adenine-Au (III) complexes into colloidal nanoparticles. During the polymerization process, the addition of adenosine triphosphate (ATP) and thiolated poly(ethylene glycol) was found to greatly improve the particle size control as well as the colloidal stability to against demetallation in physiological conditions. ATP taken up about 8% of coordinated Au-nanoparticles and mostly on the surface . However, the as-prepared colloidal Au-nanoparticles could be easily decomposed in high glutathione (GSH) levels, leading to a fast release inside living tumor cells. When incubated with cancer cells, the coordinated Au-nanoparticles displayed a significant in vitro antitumor effect with low IC50 value (~48 uM). Apoptosis analysis also confirmed that the nanoparticulate formulation promoted a higher cell dead rate of cancer cells than Au ions with the same dose. The relation of intracellular GSH concentration to Au-nanoparticles was found by pretreatment of GSH inhibitor. Photosensitizer were furthermore incorporated into the supramolecular assemblies and an increased Au-based therapeutic efficacy for prostate cancers treatment was successfully achieved . Overall, these nanoparticulate Au-bearing complexes represent an attractive alternative to overcome the failure of cisplatin resistance in traditional chemotherapy.
摘要 1
Abstract 2
致謝 3
總目錄 4
圖目錄 6
表目錄 7
第一章:緒論 8
1.1 癌症及臨床藥物治療 8
1.1.1金屬錯合物簡介及分類 8
1.1.2 鉑錯合物介紹與作用機制 10
1.1.3 金錯合物介紹與作用機制 12
1.2 奈米藥物 16
1.2.1奈米藥物載體 16
1.2.2 有機奈米藥物 17
1.2.3 無機配位奈米藥物 18
1.3 研究動機與目的 21
第二章:實驗材料與方法 23
2.1 實驗藥品與儀器 23
2.1.1 實驗藥品 23
2.1.2 緩衝溶液配製 24
2.1.3 細胞培養與操作 25
2.1.4 儀器 25
2.2 奈米藥物的合成 26
2.2.1 腺嘌呤衍生物摻雜腺嘌呤/金配位奈米粒子的合成 26
2.2.2 硫醇-聚乙二醇摻雜(腺嘌呤-三磷酸腺苷)/金配位奈米粒子的合成 26
2.2.3 包覆染劑之硫醇-聚乙二醇-(腺嘌呤-三磷酸腺苷)/金配位奈米粒子的合成 27
2.2.4 奈米藥物之穀胱甘肽 (Glutathione, GSH)應答性 27
2.3 奈米藥物對細胞Tramp-C1的作用 27
2.3.1細胞存活率分析 27
2.3.2 流式細胞儀分析細胞凋亡情形 28
第三章:結果與討論 29
3.1 奈米藥物的合成與鑑定 29
3.1.1 不同腺嘌呤衍生物摻雜對腺嘌呤/金配位奈米粒子影響探討 29
3.1.2 硫醇-聚乙二醇參雜(腺嘌呤-三磷酸腺苷)/金配位奈米粒子探討 30
3.1.3 高解析X光電子能譜儀 (HRXPS)鑑定奈米藥物 31
3.1.4 傅立葉轉換紅外光譜儀鑑定奈米藥物 32
3.1.5 X光吸收光譜儀 (XAS)鑑定奈米藥物 33
3.1.6 小角度X光散射儀 (SAXS)鑑定奈米藥物 33
3.1.7 X光射線繞射儀 (XRD) 33
3.2 奈米藥物之穀胱甘肽 (Glutathione, GSH)應答性 33
3.3 奈米藥物對細胞Tramp-C1的作用 35
3.3.1奈米藥物在Tramp-C1細胞內的釋放 35
3.3.2 細胞測試分析 35
3.3.3細胞毒性機制探討 36
3.3.4 包覆光敏劑PpIX對奈米藥物之影響 37
圖表說明 39
參考文獻 57
1. Rosenberg, B.; Van Camp, L.; Krigas, T., Inhibition of Cell Division in Escherichia Coli by Electrolysis Products from a Platinum Electrode. Nature 1965, 205 (4972), 698-699.
2. Rosenberg, B.; Vancamp, L., Platinum Compounds: a New Class of Potent Antitumour Agents. Nature 1969, 222, 385-386.
3. Oberoi, H. S.; Nukolova, N. V.; Kabanov, A. V.; Bronich, T. K., Nanocarriers for Delivery of Platinum Anticancer Drugs. Advanced drug delivery reviews 2013, 65 (13), 1667-1685.
4. Wani, W. A.; Prashar, S.; Shreaz, S.; Gómez-Ruiz, S., Nanostructured materials Functionalized with Metal Complexes: In Search of Alternatives for Administering Anticancer Metallodrugs. Coordination Chemistry Reviews 2016, 312, 67-98.
5. Johnstone, T. C.; Suntharalingam, K.; Lippard, S. J., The Next Generation of Platinum Drugs: Targeted Pt (II) Agents, Nanoparticle Delivery, and Pt (IV) Prodrugs. Chemical reviews 2016, 116 (5), 3436-3486.
6. Ozols, R. F., Ovarian Cancer: New Clinical Approaches. Cancer treatment reviews 1991, 18, 77-83.
7. Ferreira, C. G.; Tolis, C.; Span, S. W.; Peters, G. J.; van Lopik, T.; Kummer, A. J.; Pinedo, H. M.; Giaccone, G., Drug-induced Apoptosis in Lung Cancer Cells is not Mediated by the Fas/FasL (CD95/APO1) Signaling Pathway. Clinical cancer research 2000, 6 (1), 203-212.
8. Mjos, K. D.; Orvig, C., Metallodrugs in Medicinal Inorganic Chemistry. Chemical reviews 2014, 114 (8), 4540-4563.
9. Mirabelli, C. K.; Johnson, R. K.; Sung, C. M.; Faucette, L.; Muirhead, K.; Crooke, S. T., Evaluation of the In Vivo Antitumor Activity and In Vitro Cytotoxic Properties of Auranofin, a Coordinated Gold Compound, In Murine Tumor Models. Cancer research 1985, 45 (1), 32-39.
10. Wang, Y.; He, Q. Y.; Che, C. M.; Chiu, J. F., Proteomic Characterization of the Cytotoxic Mechanism of Gold(III) porphyrin 1a, a Potential Anticancer Drug. Proteomics 2006, 6 (1), 131-142.
11. Mirabelli, C. K.; Sung, C.-M.; Zimmerman, J. P.; Hill, D. T.; Mong, S.; Crooke, S. T., Interactions of Gold Coordination Complexes with DNA. Biochemical pharmacology 1986, 35 (9), 1427-1433.
12. Messori, L.; Orioli, P.; Tempi, C.; Marcon, G., Interactions of Selected Gold (III) Complexes with Calf Thymus DNA. Biochemical and biophysical research communications 2001, 281 (2), 352-360.
13. Berners-Price, S. J.; Filipovska, A., Gold Compounds as Therapeutic Agents for Human Diseases. Metallomics 2011, 3 (9), 863-873.
14. Fricker, S. P., Cysteine Proteases as Targets for Metal-based Drugs. Metallomics 2010, 2 (6), 366-377.
15. Krishnamurthy, D.; Karver, M. R.; Fiorillo, E.; Orru, V.; Stanford, S. M.; Bottini, N.; Barrios, A. M., Gold (I)-mediated Inhibition of Protein Tyrosine Phosphatases: A Detailed in Vitro and Cellular Study. Journal of medicinal chemistry 2008, 51 (15), 4790-4795.
16. Markman, J. L.; Rekechenetskiy, A.; Holler, E.; Ljubimova, J. Y., Nanomedicine Therapeutic Approaches to Overcome Cancer Drug Resistance. Advanced drug delivery reviews 2013, 65 (13), 1866-1879.
17. Cheng, Z.; Dai, Y.; Kang, X.; Li, C.; Huang, S.; Lian, H.; Hou, Z.; Ma, P.; Lin, J., Gelatin-encapsulated Iron Oxide Nanoparticles for Platinum(IV) Prodrug Delivery, Enzyme-stimulated Release and MRI. Biomaterials 2014, 35 (24), 6359-6368.
18. Lin, Y.-X.; Gao, Y.-J.; Wang, Y.; Qiao, Z.-Y.; Fan, G.; Qiao, S.-L.; Zhang, R.-X.; Wang, L.; Wang, H., pH-Sensitive Polymeric Nanoparticles with Gold (I) Compound Payloads Synergistically Induce Cancer Cell Death Through Modulation of Autophagy. Molecular pharmaceutics 2015, 12 (8), 2869-2878.
19. Kasai, H.; Murakami, T.; Ikuta, Y.; Koseki, Y.; Baba, K.; Oikawa, H.; Nakanishi, H.; Okada, M.; Shoji, M.; Ueda, M., Creation of Pure Nanodrugs and Their Anticancer Properties. Angewandte Chemie International Edition 2012, 51 (41), 10315-10318.
20. Chen, F.; Zhao, Y.; Pan, Y.; Xue, X.; Zhang, X.; Kumar, A.; Liang, X.-J., Synergistically Enhanced Therapeutic Effect of a Carrier-Free HCPT/DOX Nanodrug on Breast Cancer Cells through Improved Cellular Drug Accumulation. Molecular pharmaceutics 2015, 12 (7), 2237-2244.
21. Shen, G.; Xing, R.; Zhang, N.; Chen, C.; Ma, G.; Yan, X., Interfacial Cohesion and Assembly of Bioadhesive Molecules for Design of Long-Term Stable Hydrophobic Nanodrugs toward Effective Anticancer Therapy. ACS nano 2016.
22. Oh, M.; Mirkin, C. A., Chemically Tailorable Colloidal Particles from Infinite Coordination Polymers. Nature 2005, 438 (7068), 651-654.
23. Imaz, I.; Rubio-Martínez, M.; An, J.; Sole-Font, I.; Rosi, N. L.; Maspoch, D., Metal–biomolecule frameworks (MBioFs). Chemical communications 2011, 47 (26), 7287-7302.
24. Gould, J. A.; Jones, J. T.; Bacsa, J.; Khimyak, Y. Z.; Rosseinsky, M. J., A Homochiral Three-dimensional Zinc Aspartate Framework That Displays Multiple Coordination Modes and Geometries. Chemical communications 2010, 46 (16), 2793-2795.
25. Liu, Y.; Xuan, W.; Cui, Y., Engineering Homochiral Metal‐Organic Frameworks for Heterogeneous Asymmetric Catalysis and Enantioselective Separation. Advanced Materials 2010, 22 (37), 4112-4135.
26. Salgado, E. N.; Radford, R. J.; Tezcan, F. A., Metal-directed Protein Self-assembly. Accounts of chemical research 2010, 43 (5), 661-672.
27. Wei, H.; Li, B.; Du, Y.; Dong, S.; Wang, E., Nucleobase-metal hybrid materials: Preparation of Submicrometer-scale, Spherical Colloidal Particles of Adenine-gold (III) via a Supramolecular Hierarchical Self-assembly Approach. Chemistry of materials 2007, 19 (12), 2987-2993.
28. Nishiyabu, R.; Hashimoto, N.; Cho, T.; Watanabe, K.; Yasunaga, T.; Endo, A.; Kaneko, K.; Niidome, T.; Murata, M.; Adachi, C., Nanoparticles of Adaptive Supramolecular Networks Self-assembled from Nucleotides and Lanthanide Ions. Journal of the American Chemical Society 2009, 131 (6), 2151-2158.
29. Zhang, X.; Deng, J.; Xue, Y.; Shi, G.; Zhou, T., Stimulus Response of Au-NPs@ GMP-Tb Core–Shell Nanoparticles: Toward Colorimetric and Fluorescent Dual-Mode Sensing of Alkaline Phosphatase Activity in Algal Blooms of a Freshwater Lake. Environmental science & technology 2015, 50 (2), 847-855.
30. Zhou, P.; Shi, R.; Yao, J.-f.; Sheng, C.-f.; Li, H., Supramolecular Self-assembly of Nucleotide–Metal Coordination Complexes: From Simple Molecules to Nanomaterials. Coordination Chemistry Reviews 2015, 292, 107-143.
31. Mathlouthi, M.; Seuvre, A.-M.; Koenig, J. L., Ft-ir and laser-Raman Spectra of Adenine and Adenosine. Carbohydrate research 1984, 131 (1), 1-15.
32. Sahu, R. K.; Mordechai, S., Chemometrics of Cells and Tissues Using IR Spectroscopy-Relevance in Biomedical Research. INTECH Open Access Publisher: 2012.
33. Castillo, P. M.; de la Mata, M.; Casula, M. F.; Sánchez-Alcázar, J. A.; Zaderenko, A. P., PEGylated versus non-PEGylated Magnetic Nanoparticles as Camptothecin Delivery System. Beilstein journal of nanotechnology 2014, 5 (1), 1312-1319.
34. Wu, G.; Fang, Y.-Z.; Yang, S.; Lupton, J. R.; Turner, N. D., Glutathione Metabolism and Its Implications for Health. The Journal of nutrition 2004, 134 (3), 489-492.
35. Wang, Y. C.; Li, Y.; Sun, T. M.; Xiong, M. H.; Wu, J.; Yang, Y. Y.; Wang, J., Core–Shell–Corona Micelle Stabilized by Reversible Cross‐Linkage for Intracellular Drug Delivery. Macromolecular rapid communications 2010, 31 (13), 1201-1206.
36. Armstrong, J.; Steinauer, K.; Hornung, B.; Irish, J.; Lecane, P.; Birrell, G.; Peehl, D.; Knox, S., Role of Glutathione Depletion and Reactive Oxygen Species Generation in Apoptotic Signaling in A Human B Lymphoma Cell Line. Cell death and differentiation 2002, 9 (3), 252-263.
37. Fan, H.; Yan, G.; Zhao, Z.; Hu, X.; Zhang, W.; Liu, H.; Fu, X.; Fu, T.; Zhang, X. B.; Tan, W., A Smart Photosensitizer–Manganese Dioxide Nanosystem for Enhanced Photodynamic Therapy by Reducing Glutathione Levels in Cancer Cells. Angewandte Chemie 2016, 128 (18), 5567-5572.

(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *