帳號:guest(18.191.154.174)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):盧怡靜
作者(外文):Lu, Yi Ching
論文名稱(中文):應用三層結構二氧化鈦奈米棒-金-硒化銀複合材料對雙酚A太陽光光催化研究
論文名稱(外文):Ternary TiO2-Au-Ag2Se nanorods for sunlight-responsive photodegradation of bisphenol A
指導教授(中文):董瑞安
指導教授(外文):Doong, Ruey An
口試委員(中文):吳劍侯
林芳新
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學號:103012523
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:108
中文關鍵詞:二氧化鈦奈米棒光催化劑三層奈米結構雙酚A
外文關鍵詞:TiO2 nanorodsternary structurephotodegradationbisphenol A
相關次數:
  • 推薦推薦:0
  • 點閱點閱:38
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近幾年,複合奈米材料為研究之大宗。二氧化鈦因為有便宜、無毒性、化學穩定性高等優點,常用於各種應用中,但由於其帶隙過寬(3.0-3.2 eV)且電子電洞再結合率過高,故在光催化應用上有所限制;許多研究試著延展二氧化鈦的光吸收範圍,其中一項便是加入奈米金粒子,其優點除了能夠降低電子電洞再結合率以外,亦能降低光催降解之活化能,使其在光催化應用上有更多的發展性,因此貴金屬半導體複合材料在光催化應用上扮演重要角色;此外,加入金屬硫族化物被證實能夠延展材料在可見光範圍的吸收,其中硒化銀為一具有前瞻性之材料。故本論文架構出一個簡易合成二氧化鈦-金-硒化銀三層奈米結構之方法,先使用油相方法於270 oC合成二氧化鈦奈米棒後,添加金銀合金晶種使其與二氧化鈦複合,再藉由加入硒粉將銀自合金中析出,進而形成二氧化鈦-金-硒化銀三層奈米結構。此材料之二氧化鈦奈米棒長度約為32 nm,長寬比約11-11.5,而金-硒化銀微型結構則為dumbbell形貌,大小介在8-15 nm,比表面積藉由UV-Vis儀器鑑定後證實三層結構在可見光吸收波段有強吸收,EPR則顯示其在照光後可產生氫氧自由基。本研究將其應用在太陽光光催化降解雙酚A,最佳條件可在照光1.5 h後降解97 % 雙酚A,反應常數為0.01745 min-1,為二氧化鈦奈米棒、二氧化鈦-金反應性的5倍,證實本實驗所合成出之三層結構複合材料為一具有前瞻性的光催化劑。
Over the past decades, the fabrication and application of hybrid composites that integrate two or more nanoscale components have received much attention. The combination of noble metal and semiconductor such as Au-TiO2 is one of the most popular heterostructures because of the low cost, nontoxicity, suitable optical property and chemical stability, which can be used in a wide variety of applications. More recently, the addition of metal calcogenides, has been shown to effectively enhance the harvest efficiency of visible light of TiO2-Au. Silver selenide (Ag2Se) is a metal calcogenide with narrow bang gap which has special electronic and optical properties to extend the absorption wavelength of Au-TiO2. In this study, we synthesized the ternary TiO2-Au-Ag2Se nanorods using a facile method. The 1-dimentional TiO2 nanorods were first fabricated in nonaqueous solution at 270 ºC , and were then mixed with AuAg alloy seeds to form TiO2-Au-Ag2Se nanorods in the presence of Se powder and 1-dodecanethiol. The morphology as well as microstructures of TiO2-Au-Ag2Se nanorods have been characterized. The TEM images and XRD patterns showed that the as-prepared TiO2 nanorods were mainly in anatase phase and the average dimension was 2.8  32 nm. In addition, the particle size of dumbbell-likeAu-Ag2Se was 8.5 nm, where Au was in fcc structure and Ag2Se was in alpha form. The TiO2-Au-Ag2Se exhibited a wide absorption wavelength range of 300-1500 nm. In addition, bisphenol A was found to be rapidly decomposed by TiO2-Au-Ag2Se under visible light, showing that the ternary TiO2-Au-Ag2Se nanorods are promising materials for potential applications in the fields of optoelectronics, water splitting and photodegradation.
摘要……………………………………………………………………………….......i
Abstract ……………………………………………………………………………….ii
目錄 ………………………………………………………………………………….iii
表目錄 ……………………………………………………………………………….vi
圖目錄 ………………………………………………………………………………vii


第一章 緒 論 1
1-1 前言 1
1-2 研究動機 2
1-3 研究目的 2
第二章 文獻回顧 3
2-1 光催化劑工作原理 3
2-2 二氧化鈦 3
2-2-1 二氧化鈦結構與性質 3
2-2-2 二氧化鈦合成方法 5
2-2-3 二氧化鈦修飾方法 9
2-3 合成不同結構之光催化劑 13
2-4 汙染物介紹─雙酚A 18
第三章 實驗方法與步驟 21
3-1 實驗藥品與器材 21
3-2 實驗架構 22
3-3 一層結構 (TiO2 nanorod) 23
3-4 二層結構 (TiO2-Au) 24
3-5 三層結構 (TiO2-Au-Ag2Se) 25
3-6 熱處理 27
3-7 光催化實驗架構圖 28
3-8 材料特性鑑定及汙染物測定 29
3-8-1 X光粉末繞射儀 (XRD) 29
3-8-2 比表面積分析儀 (BET) 29
3-8-3 穿透式電子顯微鏡 (TEM) 30
3-8-4 電子能譜儀 (XPS) 30
3-8-5 電子順磁共振光譜儀(EPR) 31
3-8-6 紫外光─可見光分光光譜儀(UV-Vis) 31
3-8-7 感應耦合電漿發射光譜儀(ICP-OES) 32
第四章 結果與討論 33
4-1 二氧化鈦合成與鑑定 33
4-1-1 TEM 33
4-1-2 XRD 36
4-1-3 FTIR 38
4-1-4 BET 39
4-1-5 TGA 40
4-2 二層結構複合材料:二氧化鈦-金 42
4-2-1 二層結構複合材料合成與鑑定 42
4-2-2 二層結構光催化反應表現 56
4-3 三層結構複合材料:二氧化鈦-金 61
4-3-1 Ternary(1.5wt%Au)合成與鑑定 61
4-3-2 Ternary(0.5wt%Au)合成與鑑定 74
4-3-3 三層結構複合材料光催化反應表現 89
第五章 結 論 101

1. Tsai, W.T., Human health risk on environmental exposure to Bisphenol-A: a review. Journal of Environmental Science and Health Part C Environmental Carcinogenesis & Ecotoxicology Reviews, 2006. 24(2): p. 225-55.
2. Fiege, H., et al., Phenol Derivatives, in Ullmann's Encyclopedia of Industrial Chemistry. 2000, Wiley-VCH Verlag GmbH & Co. KGaA.
3. Chen, J., et al., Recent progress in enhancing photocatalytic efficiency of TiO2-based materials. Applied Catalysis A: General, 2015. 495: p. 131-140.
4. Lin, S.-H. and R.-S. Juang, Adsorption of phenol and its derivatives from water using synthetic resins and low-cost natural adsorbents: A review. Journal of Environmental Management, 2009. 90(3): p. 1336-1349.
5. Wang, S. and Y. Peng, Natural zeolites as effective adsorbents in water and wastewater treatment. Chemical Engineering Journal, 2010. 156(1): p. 11-24.
6. Crimi, M. and S. Ko, Control of manganese dioxide particles resulting from in situ chemical oxidation using permanganate. Chemosphere, 2009. 74(6): p. 847-853.
7. Haritash, A.K. and C.P. Kaushik, Biodegradation aspects of Polycyclic Aromatic Hydrocarbons (PAHs): A review. Journal of Hazardous Materials, 2009. 169(1–3): p. 1-15.
8. Qi, L., J. Yu, and M. Jaroniec, Enhanced and suppressed effects of ionic liquid on the photocatalytic activity of TiO2. Adsorption, 2013. 19(2): p. 557-561.
9. Pelizzetti, E., et al., Photocatalytic degradation of atrazine and other s-triazine herbicides. Environmental Science & Technology, 1990. 24(10): p. 1559-1565.
10. Yap, P.-S. and T.-T. Lim, Effect of aqueous matrix species on synergistic removal of bisphenol-A under solar irradiation using nitrogen-doped TiO2/AC composite. Applied Catalysis B: Environmental, 2011. 101(3–4): p. 709-717.
11. Joo, J., et al., Large-Scale Synthesis of TiO2 Nanorods via Nonhydrolytic Sol−Gel Ester Elimination Reaction and Their Application to Photocatalytic Inactivation of E. coli. The Journal of Physical Chemistry B, 2005. 109(32): p. 15297-15302.
12. Carp, O., C.L. Huisman, and A. Reller, Photoinduced reactivity of titanium dioxide. Progress in Solid State Chemistry, 2004. 32(1–2): p. 33-177.
13. Tian, J., et al., Recent progress in design, synthesis, and applications of one-dimensional TiO2 nanostructured surface heterostructures: a review. Chemical Society Reviews, 2014. 43(20): p. 6920-37.
14. Zhou, M., et al., Enhancement of Visible-Light Photocatalytic Activity of Mesoporous Au-TiO2 Nanocomposites by Surface Plasmon Resonance. International Journal of Photoenergy, 2012. 2012: p. 1-10.
15. Chen, J., et al., Preparation of a visible light-driven Bi2O3–TiO2 composite photocatalyst by an ethylene glycol-assisted sol–gel method, and its photocatalytic properties. Research on Chemical Intermediates, 2014. 40(2): p. 637-648.
16. Yang, Z.-Y., et al., Preparation of TiO2/SiO2 composite oxide and its photocatalytic degradation of rhodamine B. Journal of Porous Materials, 2015. 23(3): p. 589-599.
17. Baker, D.R. and P.V. Kamat, Photosensitization of TiO2 Nanostructures with CdS Quantum Dots: Particulate versus Tubular Support Architectures. Advanced Functional Materials, 2009. 19(5): p. 805-811.
18. Fujishima, A. and K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 1972. 238(5358): p. 37-38.
19. Su, C., et al., Sol–hydrothermal preparation and photocatalysis of titanium dioxide. Thin Solid Films, 2006. 498(1–2): p. 259-265.
20. Fujishima, A., X. Zhang, and D. Tryk, TiO2 photocatalysis and related surface phenomena. Surface Science Reports, 2008. 63(12): p. 515-582.
21. Chatterjee, D. and S. Dasgupta, Visible light induced photocatalytic degradation of organic pollutants. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2005. 6(2–3): p. 186-205.
22. Hu, Y., H.L. Tsai, and C.L. Huang, Effect of brookite phase on the anatase–rutile transition in titania nanoparticles. Journal of the European Ceramic Society, 2003. 23(5): p. 691-696.
23. Chen, X. and S.S. Mao, Titanium Dioxide Nanomaterials:  Synthesis, Properties, Modifications, and Applications. Chemical Reviews, 2007. 107(7): p. 2891-2959.
24. Pan, X., et al., Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications. Nanoscale, 2013. 5(9): p. 3601-3614.
25. Niederberger, M. and G. Garnweitner, Organic Reaction Pathways in the Nonaqueous Synthesis of Metal Oxide Nanoparticles. Chemistry – A European Journal, 2006. 12(28): p. 7282-7302.
26. Bessekhouad, Y., D. Robert, and J.V. Weber, Synthesis of photocatalytic TiO2 nanoparticles: optimization of the preparation conditions. Journal of Photochemistry and Photobiology A: Chemistry, 2003. 157(1): p. 47-53.
27. Lafond, V., P.H. Mutin, and A. Vioux, Control of the Texture of Titania−Silica Mixed Oxides Prepared by Nonhydrolytic Sol−Gel. Chemistry of Materials, 2004. 16(25): p. 5380-5386.
28. Niederberger, M., M.H. Bartl, and G.D. Stucky, Benzyl Alcohol and Titanium TetrachlorideA Versatile Reaction System for the Nonaqueous and Low-Temperature Preparation of Crystalline and Luminescent Titania Nanoparticles. Chemistry of Materials, 2002. 14(10): p. 4364-4370.
29. Wu, B., et al., Nonaqueous Production of Nanostructured Anatase with High-Energy Facets. Journal of the American Chemical Society, 2008. 130(51): p. 17563-17567.
30. Horikoshi, S. and N. Serpone, Photochemistry with microwaves: Catalysts and environmental applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2009. 10(2): p. 96-110.
31. Pelaez, M., et al., A review on the visible light active titanium dioxide photocatalysts for environmental applications. Applied Catalysis B: Environmental, 2012. 125: p. 331-349.
32. Gomathi Devi, L. and R. Kavitha, A review on plasmonic metal–TiO2 composite for generation, trapping, storing and dynamic vectorial transfer of photogenerated electrons across the Schottky junction in a photocatalytic system. Applied Surface Science, 2016. 360: p. 601-622.
33. Hou, W. and S.B. Cronin, A Review of Surface Plasmon Resonance-Enhanced Photocatalysis. Advanced Functional Materials, 2013. 23(13): p. 1612-1619.
34. Bumajdad, A., et al., Nanostructured mesoporous Au/TiO2 for photocatalytic degradation of a textile dye: the effect of size similarity of the deposited Au with that of TiO2 pores. Journal of Materials Science, 2013. 49(4): p. 1743-1754.
35. Chen, Y., et al., Preparation of a Novel TiO2-Based p−n Junction Nanotube Photocatalyst. Environmental Science & Technology, 2005. 39(5): p. 1201-1208.
36. Zhu, J., et al., Synthesis and characterization of bamboo-like CdS/TiO2 nanotubes composites with enhanced visible-light photocatalytic activity. Journal of Nanoparticle Research, 2008. 10(5): p. 729-736.
37. Ratanatawanate, C., Y. Tao, and K.J. Balkus, Photocatalytic Activity of PbS Quantum Dot/TiO2 Nanotube Composites. The Journal of Physical Chemistry C, 2009. 113(24): p. 10755-10760.
38. Park, H., et al., Surface modification of TiO2 photocatalyst for environmental applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2013. 15: p. 1-20.
39. Yamashita, H., et al., Degradation of propanol diluted in water under visible light irradiation using metal ion-implanted titanium dioxide photocatalysts. Journal of Photochemistry and Photobiology A: Chemistry, 2002. 148(1–3): p. 257-261.
40. Wang, X.H., et al., Wavelength-Sensitive Photocatalytic Degradation of Methyl Orange in Aqueous Suspension over Iron(III)-doped TiO2 Nanopowders under UV and Visible Light Irradiation. The Journal of Physical Chemistry B, 2006. 110(13): p. 6804-6809.
41. Wang, Z., et al., Photocatalytic degradation of phenol in aqueous nitrogen-doped TiO2 suspensions with various light sources. Applied Catalysis B: Environmental, 2005. 57(3): p. 223-231.
42. Cong, Y., et al., Synthesis and Characterization of Nitrogen-Doped TiO2 Nanophotocatalyst with High Visible Light Activity. The Journal of Physical Chemistry C, 2007. 111(19): p. 6976-6982.
43. Oros-Ruiz, S., et al., Effect of Gold Particle Size and Deposition Method on the Photodegradation of 4-Chlorophenol by Au/TiO2. Topics in Catalysis, 2011. 54(8): p. 519-526.
44. Sarkar, A.K., et al., Efficient Removal of Toxic Dyes via Simultaneous Adsorption and Solar Light Driven Photodegradation Using Recyclable Functionalized Amylopectin–TiO2–Au Nanocomposite. ACS Sustainable Chemistry & Engineering, 2016. 4(3): p. 1679-1688.
45. Li, B., et al., Synthesis of hierarchically porous metal oxides and Au/TiO2 nanohybrids for photodegradation of organic dye and catalytic reduction of 4-nitrophenol. Journal of Catalysis, 2015. 329: p. 368-378.
46. Guzmán, C., et al., Degradation of the herbicide 2,4-dichlorophenoxyacetic acid over Au/TiO2–CeO2 photocatalysts: Effect of the CeO2 content on the photoactivity. Catalysis Today, 2011. 166(1): p. 146-151.
47. Zhang, P., et al., In situ assembly of well-dispersed Au nanoparticles on TiO2/ZnO nanofibers: A three-way synergistic heterostructure with enhanced photocatalytic activity. Journal of Hazardous Materials, 2012. 237–238: p. 331-338.
48. Dang, X., et al., Construction of Au@TiO2/graphene nanocomposites with plasmonic effect and super adsorption ability for enhanced visible-light-driven photocatalytic organic pollutant degradation. Journal of Nanoparticle Research, 2014. 16(2): p. 1-8.
49. Zhu, Y., et al., A facile synthesis of AgxAu1−x/TiO2 photocatalysts with tunable surface plasmon resonance (SPR) frequency used for RhB photodegradation. Materials Letters, 2015. 154: p. 163-166.
50. Gao, Y., et al., Enhanced photocatalytic degradation of methyl orange by Au/TiO2 nanotubes. Materials Letters, 2014. 130: p. 1-4.
51. Cai, J., et al., Synthesis of TiO2@WO3/Au Nanocomposite Hollow Spheres with Controllable Size and High Visible-Light-Driven Photocatalytic Activity. ACS Sustainable Chemistry & Engineering, 2016. 4(3): p. 1581-1590.
52. Dong, Y., et al., Adsorption of bisphenol A from water by surfactant-modified zeolite. Journal of Colloid and Interface Science, 2010. 348(2): p. 585-590.
53. Hoque, M.E., et al., Removal of selected pharmaceuticals, personal care products and artificial sweetener in an aerated sewage lagoon. Science of The Total Environment, 2014. 487: p. 801-812.
54. Frontistis, Z., et al., Electrochemical enhancement of solar photocatalysis: Degradation of endocrine disruptor bisphenol-A on Ti/TiO2 films. Water Research, 2011. 45(9): p. 2996-3004.
55. Chang, S.-m., P.-h. Lo, and C.-t. Chang, Photocatalytic behavior of TOPO-capped TiO2 nanocrystals for degradation of endocrine disrupting chemicals. Applied Catalysis B: Environmental, 2009. 91(3–4): p. 619-627.
56. Wang, R., et al., Photocatalytic degradation of Bisphenol A (BPA) using immobilized TiO2 and UV illumination in a horizontal circulating bed photocatalytic reactor (HCBPR). Journal of Hazardous Materials, 2009. 169(1–3): p. 926-932.
57. Kuo, C.-Y., et al., Synthesis and characterization of a phosphorus-doped TiO2 immobilized bed for the photodegradation of bisphenol A under UV and sunlight irradiation. Reaction Kinetics, Mechanisms and Catalysis, 2015. 114(2): p. 753-766.
58. Kuo, C.Y. and Y.H. Yang, Exploring the Photodegradation of Bisphenol A in a Sunlight/Immobilized N-TiO2 System. Polish Journal of Environmental Studies, 2014. 23(2): p. 379-384.
59. Chiang, L.-F. and R.-a. Doong, Cu–TiO2 nanorods with enhanced ultraviolet- and visible-light photoactivity for bisphenol A degradation. Journal of Hazardous Materials, 2014. 277: p. 84-92.
60. Raj, K.J.A. and B. Viswanathan, Effect of surface area, pore volume and particle size of P25 titania on the phase transformation of anatase to rutile. Indian Journal of Chemistry Section a-Inorganic Bio-Inorganic Physical Theoretical & Analytical Chemistry, 2009. 48(10): p. 1378-1382.
61. Yang, J., S. Shi, and J. Nie, Reasons for the yellowness of photocured samples by the benzophenone/1,3-benzodioxole photoinitiating system. New Journal of Chemistry, 2015. 39(7): p. 5453-5458.
62. Ere, F. and K. Krov, EPR Spectroscopy — A Valuable Tool to Study Photosynthesizing Organisms Exposed to Abiotic Stresses. 2013.
63. Li, R., et al., Achieving overall water splitting using titanium dioxide-based photocatalysts of different phases. Energy Environment Science, 2015. 8(8): p. 2377-2382.
64. Li, C.C., Y.P. Zheng, and T.H. Wang, Sulfated mesoporous Au/TiO2 spheres as a highly active and stable solid acid catalyst. Journal of Materials Chemistry, 2012. 22(26): p. 13216-13222.
65. Tan, L., J. Fu, and S. Liu, Growth of photoluminescent Ag2Se nanowires from a simple precursor solution. CrystEngComm, 2014. 16(46): p. 10534-10538.
66. Xiang, J., et al., l-Cysteine-Assisted Synthesis and Optical Properties of Ag2S Nanospheres. The Journal of Physical Chemistry C, 2008. 112(10): p. 3580-3584.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *