|
1. Tsai, W.T., Human health risk on environmental exposure to Bisphenol-A: a review. Journal of Environmental Science and Health Part C Environmental Carcinogenesis & Ecotoxicology Reviews, 2006. 24(2): p. 225-55. 2. Fiege, H., et al., Phenol Derivatives, in Ullmann's Encyclopedia of Industrial Chemistry. 2000, Wiley-VCH Verlag GmbH & Co. KGaA. 3. Chen, J., et al., Recent progress in enhancing photocatalytic efficiency of TiO2-based materials. Applied Catalysis A: General, 2015. 495: p. 131-140. 4. Lin, S.-H. and R.-S. Juang, Adsorption of phenol and its derivatives from water using synthetic resins and low-cost natural adsorbents: A review. Journal of Environmental Management, 2009. 90(3): p. 1336-1349. 5. Wang, S. and Y. Peng, Natural zeolites as effective adsorbents in water and wastewater treatment. Chemical Engineering Journal, 2010. 156(1): p. 11-24. 6. Crimi, M. and S. Ko, Control of manganese dioxide particles resulting from in situ chemical oxidation using permanganate. Chemosphere, 2009. 74(6): p. 847-853. 7. Haritash, A.K. and C.P. Kaushik, Biodegradation aspects of Polycyclic Aromatic Hydrocarbons (PAHs): A review. Journal of Hazardous Materials, 2009. 169(1–3): p. 1-15. 8. Qi, L., J. Yu, and M. Jaroniec, Enhanced and suppressed effects of ionic liquid on the photocatalytic activity of TiO2. Adsorption, 2013. 19(2): p. 557-561. 9. Pelizzetti, E., et al., Photocatalytic degradation of atrazine and other s-triazine herbicides. Environmental Science & Technology, 1990. 24(10): p. 1559-1565. 10. Yap, P.-S. and T.-T. Lim, Effect of aqueous matrix species on synergistic removal of bisphenol-A under solar irradiation using nitrogen-doped TiO2/AC composite. Applied Catalysis B: Environmental, 2011. 101(3–4): p. 709-717. 11. Joo, J., et al., Large-Scale Synthesis of TiO2 Nanorods via Nonhydrolytic Sol−Gel Ester Elimination Reaction and Their Application to Photocatalytic Inactivation of E. coli. The Journal of Physical Chemistry B, 2005. 109(32): p. 15297-15302. 12. Carp, O., C.L. Huisman, and A. Reller, Photoinduced reactivity of titanium dioxide. Progress in Solid State Chemistry, 2004. 32(1–2): p. 33-177. 13. Tian, J., et al., Recent progress in design, synthesis, and applications of one-dimensional TiO2 nanostructured surface heterostructures: a review. Chemical Society Reviews, 2014. 43(20): p. 6920-37. 14. Zhou, M., et al., Enhancement of Visible-Light Photocatalytic Activity of Mesoporous Au-TiO2 Nanocomposites by Surface Plasmon Resonance. International Journal of Photoenergy, 2012. 2012: p. 1-10. 15. Chen, J., et al., Preparation of a visible light-driven Bi2O3–TiO2 composite photocatalyst by an ethylene glycol-assisted sol–gel method, and its photocatalytic properties. Research on Chemical Intermediates, 2014. 40(2): p. 637-648. 16. Yang, Z.-Y., et al., Preparation of TiO2/SiO2 composite oxide and its photocatalytic degradation of rhodamine B. Journal of Porous Materials, 2015. 23(3): p. 589-599. 17. Baker, D.R. and P.V. Kamat, Photosensitization of TiO2 Nanostructures with CdS Quantum Dots: Particulate versus Tubular Support Architectures. Advanced Functional Materials, 2009. 19(5): p. 805-811. 18. Fujishima, A. and K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 1972. 238(5358): p. 37-38. 19. Su, C., et al., Sol–hydrothermal preparation and photocatalysis of titanium dioxide. Thin Solid Films, 2006. 498(1–2): p. 259-265. 20. Fujishima, A., X. Zhang, and D. Tryk, TiO2 photocatalysis and related surface phenomena. Surface Science Reports, 2008. 63(12): p. 515-582. 21. Chatterjee, D. and S. Dasgupta, Visible light induced photocatalytic degradation of organic pollutants. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2005. 6(2–3): p. 186-205. 22. Hu, Y., H.L. Tsai, and C.L. Huang, Effect of brookite phase on the anatase–rutile transition in titania nanoparticles. Journal of the European Ceramic Society, 2003. 23(5): p. 691-696. 23. Chen, X. and S.S. Mao, Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications. Chemical Reviews, 2007. 107(7): p. 2891-2959. 24. Pan, X., et al., Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications. Nanoscale, 2013. 5(9): p. 3601-3614. 25. Niederberger, M. and G. Garnweitner, Organic Reaction Pathways in the Nonaqueous Synthesis of Metal Oxide Nanoparticles. Chemistry – A European Journal, 2006. 12(28): p. 7282-7302. 26. Bessekhouad, Y., D. Robert, and J.V. Weber, Synthesis of photocatalytic TiO2 nanoparticles: optimization of the preparation conditions. Journal of Photochemistry and Photobiology A: Chemistry, 2003. 157(1): p. 47-53. 27. Lafond, V., P.H. Mutin, and A. Vioux, Control of the Texture of Titania−Silica Mixed Oxides Prepared by Nonhydrolytic Sol−Gel. Chemistry of Materials, 2004. 16(25): p. 5380-5386. 28. Niederberger, M., M.H. Bartl, and G.D. Stucky, Benzyl Alcohol and Titanium TetrachlorideA Versatile Reaction System for the Nonaqueous and Low-Temperature Preparation of Crystalline and Luminescent Titania Nanoparticles. Chemistry of Materials, 2002. 14(10): p. 4364-4370. 29. Wu, B., et al., Nonaqueous Production of Nanostructured Anatase with High-Energy Facets. Journal of the American Chemical Society, 2008. 130(51): p. 17563-17567. 30. Horikoshi, S. and N. Serpone, Photochemistry with microwaves: Catalysts and environmental applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2009. 10(2): p. 96-110. 31. Pelaez, M., et al., A review on the visible light active titanium dioxide photocatalysts for environmental applications. Applied Catalysis B: Environmental, 2012. 125: p. 331-349. 32. Gomathi Devi, L. and R. Kavitha, A review on plasmonic metal–TiO2 composite for generation, trapping, storing and dynamic vectorial transfer of photogenerated electrons across the Schottky junction in a photocatalytic system. Applied Surface Science, 2016. 360: p. 601-622. 33. Hou, W. and S.B. Cronin, A Review of Surface Plasmon Resonance-Enhanced Photocatalysis. Advanced Functional Materials, 2013. 23(13): p. 1612-1619. 34. Bumajdad, A., et al., Nanostructured mesoporous Au/TiO2 for photocatalytic degradation of a textile dye: the effect of size similarity of the deposited Au with that of TiO2 pores. Journal of Materials Science, 2013. 49(4): p. 1743-1754. 35. Chen, Y., et al., Preparation of a Novel TiO2-Based p−n Junction Nanotube Photocatalyst. Environmental Science & Technology, 2005. 39(5): p. 1201-1208. 36. Zhu, J., et al., Synthesis and characterization of bamboo-like CdS/TiO2 nanotubes composites with enhanced visible-light photocatalytic activity. Journal of Nanoparticle Research, 2008. 10(5): p. 729-736. 37. Ratanatawanate, C., Y. Tao, and K.J. Balkus, Photocatalytic Activity of PbS Quantum Dot/TiO2 Nanotube Composites. The Journal of Physical Chemistry C, 2009. 113(24): p. 10755-10760. 38. Park, H., et al., Surface modification of TiO2 photocatalyst for environmental applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2013. 15: p. 1-20. 39. Yamashita, H., et al., Degradation of propanol diluted in water under visible light irradiation using metal ion-implanted titanium dioxide photocatalysts. Journal of Photochemistry and Photobiology A: Chemistry, 2002. 148(1–3): p. 257-261. 40. Wang, X.H., et al., Wavelength-Sensitive Photocatalytic Degradation of Methyl Orange in Aqueous Suspension over Iron(III)-doped TiO2 Nanopowders under UV and Visible Light Irradiation. The Journal of Physical Chemistry B, 2006. 110(13): p. 6804-6809. 41. Wang, Z., et al., Photocatalytic degradation of phenol in aqueous nitrogen-doped TiO2 suspensions with various light sources. Applied Catalysis B: Environmental, 2005. 57(3): p. 223-231. 42. Cong, Y., et al., Synthesis and Characterization of Nitrogen-Doped TiO2 Nanophotocatalyst with High Visible Light Activity. The Journal of Physical Chemistry C, 2007. 111(19): p. 6976-6982. 43. Oros-Ruiz, S., et al., Effect of Gold Particle Size and Deposition Method on the Photodegradation of 4-Chlorophenol by Au/TiO2. Topics in Catalysis, 2011. 54(8): p. 519-526. 44. Sarkar, A.K., et al., Efficient Removal of Toxic Dyes via Simultaneous Adsorption and Solar Light Driven Photodegradation Using Recyclable Functionalized Amylopectin–TiO2–Au Nanocomposite. ACS Sustainable Chemistry & Engineering, 2016. 4(3): p. 1679-1688. 45. Li, B., et al., Synthesis of hierarchically porous metal oxides and Au/TiO2 nanohybrids for photodegradation of organic dye and catalytic reduction of 4-nitrophenol. Journal of Catalysis, 2015. 329: p. 368-378. 46. Guzmán, C., et al., Degradation of the herbicide 2,4-dichlorophenoxyacetic acid over Au/TiO2–CeO2 photocatalysts: Effect of the CeO2 content on the photoactivity. Catalysis Today, 2011. 166(1): p. 146-151. 47. Zhang, P., et al., In situ assembly of well-dispersed Au nanoparticles on TiO2/ZnO nanofibers: A three-way synergistic heterostructure with enhanced photocatalytic activity. Journal of Hazardous Materials, 2012. 237–238: p. 331-338. 48. Dang, X., et al., Construction of Au@TiO2/graphene nanocomposites with plasmonic effect and super adsorption ability for enhanced visible-light-driven photocatalytic organic pollutant degradation. Journal of Nanoparticle Research, 2014. 16(2): p. 1-8. 49. Zhu, Y., et al., A facile synthesis of AgxAu1−x/TiO2 photocatalysts with tunable surface plasmon resonance (SPR) frequency used for RhB photodegradation. Materials Letters, 2015. 154: p. 163-166. 50. Gao, Y., et al., Enhanced photocatalytic degradation of methyl orange by Au/TiO2 nanotubes. Materials Letters, 2014. 130: p. 1-4. 51. Cai, J., et al., Synthesis of TiO2@WO3/Au Nanocomposite Hollow Spheres with Controllable Size and High Visible-Light-Driven Photocatalytic Activity. ACS Sustainable Chemistry & Engineering, 2016. 4(3): p. 1581-1590. 52. Dong, Y., et al., Adsorption of bisphenol A from water by surfactant-modified zeolite. Journal of Colloid and Interface Science, 2010. 348(2): p. 585-590. 53. Hoque, M.E., et al., Removal of selected pharmaceuticals, personal care products and artificial sweetener in an aerated sewage lagoon. Science of The Total Environment, 2014. 487: p. 801-812. 54. Frontistis, Z., et al., Electrochemical enhancement of solar photocatalysis: Degradation of endocrine disruptor bisphenol-A on Ti/TiO2 films. Water Research, 2011. 45(9): p. 2996-3004. 55. Chang, S.-m., P.-h. Lo, and C.-t. Chang, Photocatalytic behavior of TOPO-capped TiO2 nanocrystals for degradation of endocrine disrupting chemicals. Applied Catalysis B: Environmental, 2009. 91(3–4): p. 619-627. 56. Wang, R., et al., Photocatalytic degradation of Bisphenol A (BPA) using immobilized TiO2 and UV illumination in a horizontal circulating bed photocatalytic reactor (HCBPR). Journal of Hazardous Materials, 2009. 169(1–3): p. 926-932. 57. Kuo, C.-Y., et al., Synthesis and characterization of a phosphorus-doped TiO2 immobilized bed for the photodegradation of bisphenol A under UV and sunlight irradiation. Reaction Kinetics, Mechanisms and Catalysis, 2015. 114(2): p. 753-766. 58. Kuo, C.Y. and Y.H. Yang, Exploring the Photodegradation of Bisphenol A in a Sunlight/Immobilized N-TiO2 System. Polish Journal of Environmental Studies, 2014. 23(2): p. 379-384. 59. Chiang, L.-F. and R.-a. Doong, Cu–TiO2 nanorods with enhanced ultraviolet- and visible-light photoactivity for bisphenol A degradation. Journal of Hazardous Materials, 2014. 277: p. 84-92. 60. Raj, K.J.A. and B. Viswanathan, Effect of surface area, pore volume and particle size of P25 titania on the phase transformation of anatase to rutile. Indian Journal of Chemistry Section a-Inorganic Bio-Inorganic Physical Theoretical & Analytical Chemistry, 2009. 48(10): p. 1378-1382. 61. Yang, J., S. Shi, and J. Nie, Reasons for the yellowness of photocured samples by the benzophenone/1,3-benzodioxole photoinitiating system. New Journal of Chemistry, 2015. 39(7): p. 5453-5458. 62. Ere, F. and K. Krov, EPR Spectroscopy — A Valuable Tool to Study Photosynthesizing Organisms Exposed to Abiotic Stresses. 2013. 63. Li, R., et al., Achieving overall water splitting using titanium dioxide-based photocatalysts of different phases. Energy Environment Science, 2015. 8(8): p. 2377-2382. 64. Li, C.C., Y.P. Zheng, and T.H. Wang, Sulfated mesoporous Au/TiO2 spheres as a highly active and stable solid acid catalyst. Journal of Materials Chemistry, 2012. 22(26): p. 13216-13222. 65. Tan, L., J. Fu, and S. Liu, Growth of photoluminescent Ag2Se nanowires from a simple precursor solution. CrystEngComm, 2014. 16(46): p. 10534-10538. 66. Xiang, J., et al., l-Cysteine-Assisted Synthesis and Optical Properties of Ag2S Nanospheres. The Journal of Physical Chemistry C, 2008. 112(10): p. 3580-3584.
|