帳號:guest(3.22.249.89)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):楊大朋
作者(外文):Da-Peng Yang
論文名稱(中文):外食青壯年體內重金屬濃度對於核受體基因表現與發炎指標C反應蛋白分泌之相關性研究
論文名稱(外文):Study on exposure to heavy metals correlated with gene expression of nuclear receptors and secretion of inflammatory biomarker C-reactive protein in dining-out young adults
指導教授(中文):莊淳宇
指導教授(外文):Chun-Yu Chuang
口試委員(中文):吳劍侯
黃鈺軫
吳錦景
口試委員(外文):Chien-Hou Wu
Yuh-Jeen Huang
Chin-Ching Wu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學號:103012521
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:145
中文關鍵詞:外食青壯年重金屬核受體基因發炎反應C-反應蛋白心血管疾病
外文關鍵詞:dining-out young adultsheavy metalsnuclear receptorsinflammatory responseC-reactive proteincardiovascular disease
相關次數:
  • 推薦推薦:0
  • 點閱點閱:77
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
重金屬在生活環境中無所不在,人類經由飲食、空氣和水源暴露到重金屬後累積在人體內不易排出。近年來,台灣食安問題層出不窮,其中有不肖業者回收廚餘與地溝廢油,精煉後低價出售給攤販和餐廳,劣質油經重複回收和提煉後,會殘留重金屬砷、鎘和鉛,增加外食族群暴露到重金屬的機會。已有研究指出砷、鎘和鉛會與發炎和免疫反應相關的核受體(nuclear receptor)結合,干擾正常受體生理功能,可能會誘發發炎反應,引起急性發炎指標C-反應蛋白(C-reactive protein; CRP)分泌,導致心血管疾病(cardiovascular disease; CVD)發生。近十年來青壯年CVD死亡率有明顯增加,因此本研究探討外食青壯年暴露重金屬與生理數值和生活習慣之相關性,以及是否影響核受體基因表現,誘發發炎反應分泌CRP,進而促使CVD發生之可能性。
本研究招募100位18-45歲一天有兩餐正餐以上外食青壯年之尿液、血液樣本和問卷資料,以感應耦合電漿質譜分析儀(inductively coupled plasma mass spectrometry; ICP-MS)偵測尿液中砷、鎘和鉛濃度。以定量即時聚合酶鏈鎖反應法(quantitative real time polymerase chain reaction; qPCR)偵測血液中核受體基因表現,包含性激素受體基因(雄激素受體(androgen receptor; AR)、雌激素受體α (estrogen receptor α; ESR1)、ESR2和G蛋白偶聯雌激素受體(G protein-coupled estrogen receptor 1; GPER1))、脂肪代謝受體基因(過氧化物酶體增殖物活化受體α (peroxisome proliferator activated receptor α; PPARA)和PPARG),以及外來物質代謝受體基因(類酯醇X受體(pregnane X receptor; NR1I2)及芳香基碳氫化合物受體(aryl hydrocarbon receptor; AHR))。利用酵素免疫分析法(enzyme-linked immunosorbent assay; ELISA)分析血液中CRP濃度。
研究結果發現尿液中砷與鎘、砷與鉛濃度有正相關性。常使用化妝品、吃海鮮、油炸食物者,尿液中砷濃度顯著較高;常使用線香、吃罐頭食品者,尿液中鎘濃度顯著較高;飲用飲水機水者,尿液中鉛濃度顯著較高。進一步依砷(29.72 μg/g cr)、鎘(0.29 μg/g cr)、鉛(2.60 μg/g cr)和CRP (268.0 µg/L)中位數濃度分為高和低兩組,以邏輯式迴歸分析結果顯示高砷暴露者GPER1、PPARG和NR1I2基因表現較低;高鎘暴露者AR、ESR2、GPER1和PPARG基因表現較高;高鉛暴露者AR基因表現較低,AHR基因表現較高;年齡較大或BMI較高者,CRP濃度較高;重金屬濃度與CRP則無相關性。此外,最小平方法-結構方程模型分析結果顯示,生理數值(年齡、臂圍、臀圍、BMI與血壓)較高者,CRP濃度較高(路徑係數0.485);重金屬砷鎘鉛同時暴露較高者,AHR和NR1I2基因表現較高(路徑係數0.335)。TIA (transient ischemic attack)問卷與Rose問卷中有兩項以上CVD症狀者,有較高之尿液中鎘濃度及較低PPARA和NR1I2基因表現。
  本研究發現不同生活與飲食習慣可能會暴露到不同之重金屬,外食青壯年暴露重金屬可能影響性激素受體(AR、ESR1、ESR2與GPER1)、脂肪代謝受體(PPARA與PPARG)及外來物質代謝受體(NR1I2與AHR)之基因表現,促使內皮細胞增生、改變脂肪分化及外來物質代謝之能力,導致發炎反應。雖然外食青壯年重金屬暴露與發炎指標CRP未達統計相關性,但體內鎘濃度較高者出現CVD症狀比率較高,推測鎘暴露可能降低PPARA基因表現,影響脂肪代謝能力,啟動發炎反應誘發CVD。因此應留意日常生活中可能之重金屬來源,減少暴露機會,避免健康危害。
Heavy metals exist ubiquitously in the living environment, and are very stable to accumulate in the food chain. Human are exposed to heavy metals by means of food, air and water. In recent years, there happened food safety scandals in Taiwan. The kitchen waste or gutter oil were recovered and refined by unscrupulous vendors, and sold to food stalls and restaurants. Diner-out has more chances to expose the heavy metals remained in the inferior oil after repetitive refining. Arsenic (As), cadmium (Cd) and lead (Pb) have been known as endocrine disrupting chemicals, which can bind with nuclear receptors to influence normal biological functions, and potentially induce inflammatory response to secret C-reactive protein (CRP) as a result of cardiovascular disease (CVD). In the decade, growth rate of CVD mortality of young adults has obviously increased. Therefore, this study aimed to investigate the correlation of urinary concentrations of heavy metals between physiological index and lifestyle, and whether heavy metals exposure affected gene expression of nuclear receptors genes to give rise to inflammatory response and trigger CRP secretion in dining-out young adults potentially for CVD development.
One hundred dining-out young adults aged 18-45 were recruited in this study, and informed consent to provide their urine and blood samples and questionnaire information. Inductively coupled plasma mass spectrometry (ICP-MS) was used to determine the urinary concentrations of As, Cd and Pb. Quantitative real time polymerase chain reaction was used to detect the gene expressions of nuclear receptors genes, including hormone-related receptors (androgen receptor (AR), estrogen receptor α (ESR1), ESR2, G protein-coupled estrogen receptor 1 (GPER1)), lipometabolism-related receptors (peroxisome proliferator activated receptor α (PPARA), PPARG), and xenobiotic detoxification-related receptors (NR1I2 and AHR)). Plasma CRP was determined using enzyme-linked immunosorbent assay.
This study found that there were correlations between As with Cd or Pb, and the young adults with higher frequency of cosmetics usage, seafood or fried food consumption had significant higher urinary arsenic levels. Study subjects who burned incense or consumed canned food more frequently were observed to have higher urinary Cd levels. Drinking water from water dispenser presented higher urinary Pb levels. Furthermore, urinary levels of heavy metals were divided by medians (As 29.72 μg/g cr, Cd 0.29 μg/g cr, Pb 2.60 μg/g cr), after logistic regression analysis, subjects with higher As exposure had the lower gene expressions of GPER1, PPARA and NR1I2. The higher Cd group had the higher gene expressions of AR, ESR2, GPER1 and PPARG. The higher Pb group had higher AHR and lower AR expressions. The CRP level was positively relevant to age and BMI. In addition, the results of partial least squares-structural equation modeling (PLS-SEM) indicated that young adults with higher levels of physiological indexes (age, arm, hip, BMI, and blood pressure) had higher CRP (path coefficient 0.485), and co-exposure of As, Cd and Pb presented higher gene expression of AHR and NR1I2 (path coefficient 0.335). Furthermore, the subjects with at least two potential CVD development syndromes inquired by TIA (transient ischemic attack) questionnaire and Rose questionaire had higher urinary Cd levels and decreased PPARA and NR1I2 expression.
The findings of this study suggested that exposure to heavy metals relied on various types of dietary and living habit. Exposure to As, Cd and Pb might affect gene expression of hormone-related receptors (AR, ESR1, ESR2 and GPER1), lipometabolism-related receptors (PPARA and PPARG), and xenobiotic detoxification-related receptors (NR1I2 and AHR) to induce inflammatory response. Even though there was no correlation between exposure levels of heavy metals and CRP levels, subjects with CVD syndromes were observed to have higher urinary Cd levels and lower PPARA expression, indicating that Cd exposure might reduce PPARA expression to cause inflammation for CVD development. Therefore, it is necessary to reduce the chance of heavy metal exposure to avoid adverse health effect.
摘要 VIII
Abstract X
第一章 緒論 1
第二章 文獻回顧 2
第一節 重金屬之物化特性與環境流佈 2
2.1.1 砷之特性與用途 2
2.1.2 鎘之特性與用途 3
2.1.3 鉛之特性與用途 4
第二節 重金屬相關食安事件與限量標準 5
第三節 砷之毒性與生物效應 8
第四節 鎘之毒性與生物效應 10
第五節 鉛之毒性與生物效應 11
第六節 重金屬之人體暴露 12
第七節 尿液重金屬的代表性 14
2.7.1 砷在生物樣本中的代表性 15
2.7.2 鎘在生物樣本中的代表性 15
2.7.3 鉛在生物樣本中的代表性 15
第八節 核受體種類與功能 16
2.8.1 雌激素受體 16
2.8.2 G蛋白偶聯雌激素受體1 19
2.8.3 雄激素受體 21
2.8.4 過氧化物酶體增殖物活化受體 22
2.8.5 類酯醇X受體與芳香基碳氫化合物受體 24
第九節 重金屬暴露與核受體之關聯性 27
2.9.1 砷暴露與核受體之關聯性 27
2.9.2 鎘暴露與核受體之關聯性 28
2.9.3 鉛暴露與核受體之關聯性 29
第十節 C反應蛋白簡介 29
第十一節 重金屬暴露與C反應蛋白濃度之關聯性 31
第三章 研究目的 33
第四章 研究材料與方法 35
第一節 化學藥品 35
第二節 研究對象 35
第三節 血液、尿液樣本收取與保存 36
第四節 尿液中重金屬分析 36
第五節 基因表現分析 41
第六節 以酵素結合免疫吸附法偵測C反應蛋白 43
第七節 統計分析 43
第五章 結果 45
第一節 ICP-MS檢測重金屬之品質管理 45
第二節 基本人口學資料、重金屬濃度及基因表現量 48
第三節 人口學資料與重金屬暴露之相關性 50
第四節 生活習慣對於重金屬暴露之勝算比 61
第五節 重金屬濃度與核受體基因表現之相關性 64
第六節 重金屬濃度對於核受體基因表現之勝算比 68
第七節 綜合探討重金屬對核受體基因表現之影響 79
第八節 生理數值與血液中CRP的相關性 82
第九節 重金屬濃度及核受體基因表現與CRP濃度之相關性 91
第十節 生理變項、重金屬濃度與核受體基因對CRP的勝算比 93
第十一節 探討所有變項間之相關性與預測模型建立 96
第十二節 重金屬濃度、核受體基因與CRP對於CVD症狀的影響 99
第六章 討論 103
第一節 各國尿液中重金屬濃度情形 103
第二節 生活習慣對於尿液中重金屬濃度之影響 104
6.2.1 砷暴露與化妝品使用習慣、海鮮類和油炸類食物食用頻率有關 104
6.2.2 鎘暴露與線香使用習慣、每日飲水量、罐頭食品食用頻率有關 107
6.2.3 鉛暴露與每日飲水量、飲用水來源有關 108
第三節 尿液中重金屬砷與鎘和鉛濃度間有正相關性 109
第四節 尿中砷濃度影響GPER1、PPARG和NR1I2基因表現量 109
第五節 尿中鎘濃度影響AR、ESR2、GPER1和PPARG表現量 113
第六節 尿中鉛濃度影響AR和AHR基因表現量 116
第七節 砷與鎘共暴露影響ESR1和ESR2基因表現量 118
第八節 尿中重金屬濃度影響CRP濃度及CVD症狀 118
6.8.1 重金屬暴露濃度與CRP濃度無相關性 118
6.8.2 鎘暴露導致CVD症狀出現 120
第七章 結論 122
參考文獻 123
1. Iavicoli, I., Fontana, L., and Bergamaschi, A., The effects of metals as endocrine disruptors. J Toxicol Environ Health B Crit Rev, 2009. 12(3): p. 206-23.
2. Jarup, L., Hazards of heavy metal contamination. Br Med Bull, 2003. 68: p. 167-82.
3. Stejskal, V., Ockert, K., and Bjorklund, G., Metal-induced inflammation triggers fibromyalgia in metal-allergic patients. Neuro Endocrinol Lett, 2013. 34(6): p. 559-65.
4. Navas-Acien, A., Guallar, E., Silbergeld, E. K. et al., Lead Exposure and Cardiovascular Disease—A Systematic Review. Environ Health Perspect, 2007. 115(3): p. 472-82.
5. Navas-Acien, A., Silbergeld, E. K., Sharrett, R. et al., Metals in urine and peripheral arterial disease. Environ Health Perspect, 2005. 113(2): p. 164-9.
6. Barregard, L., Sallsten, G., Fagerberg, B. et al., Blood Cadmium Levels and Incident Cardiovascular Events during Follow-up in a Population-Based Cohort of Swedish Adults: The Malmo Diet and Cancer Study. Environ Health Perspect, 2016. 124(5): p. 594-600.
7. Waalkes, M. P., Liu, J., Chen, H. et al., Estrogen signaling in livers of male mice with hepatocellular carcinoma induced by exposure to arsenic in utero. J Natl Cancer Inst, 2004. 96(6): p. 466-74.
8. Takiguchi, M. and Yoshihara, S., New aspects of cadmium as endocrine disruptor. Environ Sci, 2006. 13(2): p. 107-16.
9. Garcia-Morales, P., Saceda, M., Kenney, N. et al., Effect of cadmium on estrogen receptor levels and estrogen-induced responses in human breast cancer cells. J Biol Chem, 1994. 269(24): p. 16896-901.
10. Yadav, S., Anbalagan, M., Shi, Y. et al., Arsenic inhibits the adipogenic differentiation of mesenchymal stem cells by down-regulating peroxisome proliferator-activated receptor gamma and CCAAT enhancer-binding proteins. Toxicol In Vitro, 2013. 27(1): p. 211-9.
11. Chen, Q. L., Gong, Y., Luo, Z. et al., Differential effect of waterborne cadmium exposure on lipid metabolism in liver and muscle of yellow catfish Pelteobagrus fulvidraco. Aquat Toxicol, 2013. 142-143: p. 380-6.
12. Beier, E. E., Maher, J. R., Sheu, T. J. et al., Heavy metal lead exposure, osteoporotic-like phenotype in an animal model, and depression of Wnt signaling. Environ Health Perspect, 2013. 121(1): p. 97-104.
13. Elbekai, R. H. and El-Kadi, A. O., Modulation of aryl hydrocarbon receptor-regulated gene expression by arsenite, cadmium, and chromium. Toxicology, 2004. 202(3): p. 249-69.
14. Ansari, M. A., Maayah, Z. H., Bakheet, S. A. et al., The role of aryl hydrocarbon receptor signaling pathway in cardiotoxicity of acute lead intoxication in vivo and in vitro rat model. Toxicology, 2013. 306: p. 40-49.
15. Inoue, K. I., Heavy Metal Toxicity. J Clinic Toxicol, 2013. S3(007).
16. Aronson, S. M., Arsenic and old myths. R I Med, 1994. 77(7): p. 233-4.
17. Liang, C. P., Wang, S. W., Kao, Y. H. et al., Health risk assessment of groundwater arsenic pollution in southern Taiwan. Environ Geochem Health, 2016.
18. Wei, B., Yu, J., Yang, L. et al., Arsenic methylation and skin lesions in migrant and native adult women with chronic exposure to arsenic from drinking groundwater. Environ Geochem Health, 2016.
19. Kim, K. W., Chanpiwat, P., Hanh, H. T. et al., Arsenic geochemistry of groundwater in Southeast Asia. Front Med, 2011. 5(4): p. 420-33.
20. Maharjan, M., Watanabe, C., Ahmad, S. A. et al., Arsenic contamination in drinking water and skin manifestations in lowland Nepal: the first community-based survey. Am J Trop Med Hyg, 2005. 73(2): p. 477-9.
21. Bissen, M. and Frimmel, F. H., Arsenic — a Review. Part I: Occurrence, Toxicity, Speciation, Mobility. Acta hydrochimica et hydrobiologica, 2003. 31(1): p. 9-18.
22. Hsueh, L., Beyond regulations: industry voluntary ban in arsenic use. J Environ Manage, 2013. 131: p. 435-46.
23. Shen, Z. X., Chen, G. Q., Ni, J. H. et al., Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): II. Clinical efficacy and pharmacokinetics in relapsed patients. Blood, 1997. 89(9): p. 3354-60.
24. Union, C. o. t. E., Council Directive 91/338/EEC. 1991: EU-Lex.
25. Godt, J., Scheidig, F., Grosse-Siestrup, C. et al., The toxicity of cadmium and resulting hazards for human health. J Occup Med Toxicol, 2006. 1: p. 22.
26. Jarup, L., Berglund, M., Elinder, C. G. et al., Health effects of cadmium exposure--a review of the literature and a risk estimate. Scand J Work Environ Health, 1998. 24 Suppl 1: p. 1-51.
27. Suwazono, Y., Kido, T., Nakagawa, H. et al., Biological half-life of cadmium in the urine of inhabitants after cessation of cadmium exposure. Biomarkers, 2009. 14(2): p. 77-81.
28. WHO, Lead. Environmental Health Criteria. Vol. 165. 1995, Geneva: World Health Organization.
29. Holson, J. F., Stump, D. G., Ulrich, C. E. et al., Absence of prenatal developmental toxicity from inhaled arsenic trioxide in rats. Toxicol Sci, 1999. 51(1): p. 87-97.
30. Stevens, J. T., DiPasquale, L. C., and Farmer, J. D., The acute inhalation toxicology of the technical grade organoarsenical herbicides, cacodylic acid and disodium methanearsonic acid; a route comparison. Bull Environ Contam Toxicol, 1979. 21(3): p. 304-11.
31. Ali, I. and Aboul-Enein, H. Y., Instrumental Methods in Metal Ion Speciation. 2006: CRC Press.
32. Styblo, M., Del Razo, L. M., Vega, L. et al., Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells. Arch Toxicol, 2000. 74(6): p. 289-99.
33. States, J. C., Srivastava, S., Chen, Y. et al., Arsenic and Cardiovascular Disease. Toxicological Sciences, 2009. 107(2): p. 312-323.
34. Navas-Acien, A., Sharrett, A. R., Silbergeld, E. K. et al., Arsenic exposure and cardiovascular disease: a systematic review of the epidemiologic evidence. Am J Epidemiol, 2005. 162(11): p. 1037-49.
35. Chen, Y., Santella, R. M., Kibriya, M. G. et al., Association between arsenic exposure from drinking water and plasma levels of soluble cell adhesion molecules. Environ Health Perspect, 2007. 115(10): p. 1415-20.
36. Lee, P. C., Ho, I. C., and Lee, T. C., Oxidative stress mediates sodium arsenite-induced expression of heme oxygenase-1, monocyte chemoattractant protein-1, and interleukin-6 in vascular smooth muscle cells. Toxicol Sci, 2005. 85(1): p. 541-50.
37. Maloney, M. E., Arsenic in Dermatology. Dermatol Surg, 1996. 22(3): p. 301-4.
38. Guo, X., Fujino, Y., Kaneko, S. et al., Arsenic contamination of groundwater and prevalence of arsenical dermatosis in the Hetao plain area, Inner Mongolia, China. Mol Cell Biochem, 2001. 222(1-2): p. 137-40.
39. Haque, R., Mazumder, D. N., Samanta, S. et al., Arsenic in drinking water and skin lesions: dose-response data from West Bengal, India. Epidemiology, 2003. 14(2): p. 174-82.
40. Borgoño, J. M., Vicent, P., Venturino, H. et al., Arsenic in the drinking water of the city of Antofagasta: epidemiological and clinical study before and after the installation of a treatment plant. Environ Health Perspect, 1977. 19: p. 103-5.
41. Ferreccio, C., Gonzalez, C., Milosavjlevic, V. et al., Lung cancer and arsenic concentrations in drinking water in Chile. Epidemiology, 2000. 11(6): p. 673-9.
42. Guo, H. R., Wang, N. S., Hu, H. et al., Cell type specificity of lung cancer associated with arsenic ingestion. Cancer Epidemiol Biomarkers Prev, 2004. 13(4): p. 638-43.
43. Goddard, M. J., Tanhehco, J. L., and Dau, P. C., Chronic arsenic poisoning masquerading as Landry-Guillain-Barre syndrome. Electromyogr Clin Neurophysiol, 1992. 32(9): p. 419-23.
44. Chiou, H. Y., Huang, W. I., Su, C. L. et al., Dose-response relationship between prevalence of cerebrovascular disease and ingested inorganic arsenic. Stroke, 1997. 28(9): p. 1717-23.
45. Zhang, Y., Ren, X., and Zhou, Z., Effects of high arsenic drinking water on the resident's nervous system. Chinese Journal of Control of Endemic Disenaces, 2001. 16(2).
46. Singh, N., Kumar, D., and Sahu, A. P., Arsenic in the environment: effects on human health and possible prevention. J Environ Biol, 2007. 28(2 Suppl): p. 359-65.
47. Su, C. C., Lu, J. L., Tsai, K. Y. et al., Reduction in arsenic intake from water has different impacts on lung cancer and bladder cancer in an arseniasis endemic area in Taiwan. Cancer Causes Control, 2011. 22(1): p. 101-8.
48. Gomez-Caminero, A., Howe, P., Hughes, M. et al., Environmental Health Criteria 224 Arsenic and Arsenic Compounds. Vol. 13. 2001, Geneva: World Health Organization.
49. Tseng, C. H., Blackfoot disease and arsenic: a never-ending story. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev, 2005. 23(1): p. 55-74.
50. Barrett, H. M., Irwin, D. A., and Semmons, E., Studies on the toxicity of inhaled cadmium: the acute toxicity of cadmium oxide by inhalation. J Ind Hyg Toxicol, 1947. 29(5): p. 279-85.
51. Baer, K. N. and Benson, W. H., Influence of chemical and environmental stressors on acute cadmium toxicity. J Toxicol Environ Health, 1987. 22(1): p. 35-44.
52. Barrett, H. M. and Card, B. Y., Studies on the toxicity of inhaled cadmium; the acute lethal dose of cadmium oxide for man. J Ind Hyg Toxicol, 1947. 29(5): p. 286-93.
53. Beton, D. C., Andrews, G. S., Davies, H. J. et al., Acute cadmium fume poisoning. Five cases with one death from renal necrosis. Br J Ind Med, 1966. 23(4): p. 292-301.
54. Wisniewska-Knypl, J., Jablonska, J., and Myslak, Z., Binding of cadmium on metallothionein in man: an analysis of a fatal poisoning by cadmium iodide. Arch Toxikol, 1971. 28(1): p. 46-55.
55. Tellez-Plaza, M., Jones, M. R., Dominguez-Lucas, A. et al., Cadmium Exposure and Clinical Cardiovascular Disease: A Systematic Review. Current Atherosclerosis Reports, 2013. 15(10): p. 1-15.
56. Park, S. L., Kim, Y. M., Ahn, J. H. et al., Cadmium stimulates the expression of vascular cell adhesion molecule-1 (VCAM-1) via p38 mitogen-activated protein kinase (MAPK) and JNK activation in cerebrovascular endothelial cells. J Pharmacol Sci, 2009. 110(3): p. 405-9.
57. Szuster-Ciesielska, A., Łokaj, I., and Kandefer-Szerszeń, M., The influence of cadmium and zinc ions on the interferon and tumor necrosis factor production in bovine aorta endothelial cells. Toxicology, 2000. 145(2–3): p. 135-145.
58. Seidal, K., Jorgensen, N., Elinder, C. G. et al., Fatal cadmium-induced pneumonitis. Scand J Work Environ Health, 1993. 19(6): p. 429-31.
59. Barbier, O., Jacquillet, G., Tauc, M. et al., Effect of heavy metals on, and handling by, the kidney. Nephron Physiol, 2005. 99(4): p. p105-10.
60. Svartengren, M., Elinder, C. G., Friberg, L. et al., Distribution and concentration of cadmium in human kidney. Environ Res, 1986. 39(1): p. 1-7.
61. Henson, M. C. and Chedrese, P. J., Endocrine disruption by cadmium, a common environmental toxicant with paradoxical effects on reproduction. Exp Biol Med (Maywood), 2004. 229(5): p. 383-92.
62. Frery, N., Nessmann, C., Girard, F. et al., Environmental exposure to cadmium and human birthweight. Toxicology, 1993. 79(2): p. 109-18.
63. Shiverick, K. T. and Salafia, C., Cigarette smoking and pregnancy I: ovarian, uterine and placental effects. Placenta, 1999. 20(4): p. 265-72.
64. Johnson, M. D., Kenney, N., Stoica, A. et al., Cadmium mimics the in vivo effects of estrogen in the uterus and mammary gland. Nat Med, 2003. 9(8): p. 1081-4.
65. Nogawa, K., Kobayashi, E., Okubo, Y. et al., Environmental cadmium exposure, adverse effects and preventive measures in Japan. Biometals, 2004. 17(5): p. 581-7.
66. Kolonel, L. N., Association of cadmium with renal cancer. Cancer, 1976. 37(4): p. 1782-7.
67. Waalkes, M. P., Rehm, S., Riggs, C. W. et al., Cadmium carcinogenesis in male Wistar [Crl:(WI)BR] rats: dose-response analysis of effects of zinc on tumor induction in the prostate, in the testes, and at the injection site. Cancer Res, 1989. 49(15): p. 4282-8.
68. Sahmoun, A. E., Case, L. D., Jackson, S. A. et al., Cadmium and prostate cancer: a critical epidemiologic analysis. Cancer Invest, 2005. 23(3): p. 256-63.
69. Flora, G., Gupta, D., and Tiwari, A., Toxicity of lead: A review with recent updates. Interdiscip Toxicol, 2012. 5(2): p. 47-58.
70. A., K. R., The gasoline-sniffing syndrome., in Biological effects of organolead compounds., G. P and G. E, Editors. 1984, CRC Press: Boca Raton, Florida. p. 219-225.
71. Rahde, A. F. Lead, organic. 1991; Available from: http://www.inchem.org/documents/pims/chemical/organlea.htm.
72. Bellinger, D. C., Lead. Pediatrics, 2004. 113(4 Suppl): p. 1016-22.
73. Needleman, H., Lead poisoning. Annu Rev Med, 2004. 55: p. 209-22.
74. Guidotti, T. L., McNamara, J., and Moses, M. S., The interpretation of trace element analysis in body fluids. Indian J Med Res, 2008. 128(4): p. 524-32.
75. Grant, L. D., Lead and Compounds, in Environmental Toxicants. 2008, John Wiley & Sons, Inc. p. 757-809.
76. Felton, J. S., Kahn, E., Salick, B. et al., Heavy Metal Poisoning: Mercury and Lead. Annals of Internal Medicine, 1972. 76(5): p. 779-792.
77. Rastogi, S. K., Renal effects of environmental and occupational lead exposure. Indian J Occup Environ Med, 2008. 12(3): p. 103-6.
78. Telišman, S., Čolak, B., Pizent, A. et al., Reproductive toxicity of low-level lead exposure in men. Environmental Research, 2007. 105(2): p. 256-266.
79. Saleh, H. A., El-Aziz, G. A., El-Fark, M. M. et al., Effect of maternal lead exposure on craniofacial ossification in rat fetuses and the role of antioxidant therapy. Anat Histol Embryol, 2009. 38(5): p. 392-9.
80. Park, H., Lee, K., Moon, C. S. et al., Simultaneous Exposure to Heavy Metals among Residents in the Industrial Complex: Korean National Cohort Study. Int J Environ Res Public Health, 2015. 12(6): p. 5905-17.
81. Shiue, I., Urinary arsenic, heavy metals, phthalates, pesticides, polyaromatic hydrocarbons but not parabens, polyfluorinated compounds are associated with self-rated health: USA NHANES, 2011-2012. Environ Sci Pollut Res Int, 2015. 22(12): p. 9570-4.
82. Wang, H., Han, M., Yang, S. et al., Urinary heavy metal levels and relevant factors among people exposed to e-waste dismantling. Environment International, 2011. 37(1): p. 80-85.
83. Sponder, M., Fritzer-Szekeres, M., Marculescu, R. et al., Blood and urine levels of heavy metal pollutants in female and male patients with coronary artery disease. Vasc Health Risk Manag, 2014. 10: p. 311-7.
84. Huang, H. B., Chen, G. W., Wang, C. J. et al., Exposure to heavy metals and polycyclic aromatic hydrocarbons and DNA damage in taiwanese traffic conductors. Cancer Epidemiol Biomarkers Prev, 2013. 22(1): p. 102-8.
85. Chaumont, A., Nickmilder, M., Dumont, X. et al., Associations between proteins and heavy metals in urine at low environmental exposures: Evidence of reverse causality. Toxicology Letters, 2012. 210(3): p. 345-352.
86. Batáriová, A., Spěváčková, V., Beneš, B. et al., Blood and urine levels of Pb, Cd and Hg in the general population of the Czech Republic and proposed reference values. International Journal of Hygiene and Environmental Health, 2006. 209(4): p. 359-366.
87. Shirai, S., Suzuki, Y., Yoshinaga, J. et al., Maternal exposure to low-level heavy metals during pregnancy and birth size. Journal of Environmental Science and Health, Part A, 2010. 45(11): p. 1468-1474.
88. Ochoa-Martinez, A. C., Orta-Garcia, S. T., Rico-Escobar, E. M. et al., Exposure Assessment to Environmental Chemicals in Children from Ciudad Juarez, Chihuahua, Mexico. Arch Environ Contam Toxicol, 2016.
89. Chang, C. H., Liu, C. S., Liu, H. J. et al., Association between levels of urinary heavy metals and increased risk of urothelial carcinoma. Int J Urol, 2016. 23(3): p. 233-9.
90. Mandal, B. K., Ogra, Y., and Suzuki, K. T., Speciation of arsenic in human nail and hair from arsenic-affected area by HPLC-inductively coupled argon plasma mass spectrometry. Toxicol Appl Pharmacol, 2003. 189(2): p. 73-83.
91. Agahian, B., Lee, J. S., Nelson, J. H. et al., Arsenic levels in fingernails as a biological indicator of exposure to arsenic. Am Ind Hyg Assoc J, 1990. 51(12): p. 646-51.
92. WHO, Arsenic and Arsenic Compounds. Environmental Health Criteria. Vol. 224. 2001, Geneva: World Health Organization.
93. Jarup, L., Rogenfelt, A., Elinder, C. G. et al., Biological half-time of cadmium in the blood of workers after cessation of exposure. Scand J Work Environ Health, 1983. 9(4): p. 327-31.
94. Roels, H. A., Hoet, P., and Lison, D., Usefulness of biomarkers of exposure to inorganic mercury, lead, or cadmium in controlling occupational and environmental risks of nephrotoxicity. Ren Fail, 1999. 21(3-4): p. 251-62.
95. Fukui, Y., Miki, M., Ukai, H. et al., Urinary lead as a possible surrogate of blood lead among workers occupationally exposed to lead. Int Arch Occup Environ Health, 1999. 72(8): p. 516-20.
96. Bergdahl, I. A. and Skerfving, S., Biomonitoring of lead exposure-alternatives to blood. J Toxicol Environ Health A, 2008. 71(18): p. 1235-43.
97. Gronemeyer, H., Gustafsson, J. A., and Laudet, V., Principles for modulation of the nuclear receptor superfamily. Nat Rev Drug Discov, 2004. 3(11): p. 950-64.
98. Dahlman-Wright, K., Cavailles, V., Fuqua, S. A. et al., International Union of Pharmacology. LXIV. Estrogen receptors. Pharmacol Rev, 2006. 58(4): p. 773-81.
99. Safe, S., Transcriptional activation of genes by 17 beta-estradiol through estrogen receptor-Sp1 interactions. Vitam Horm, 2001. 62: p. 231-52.
100. Murphy, E., Estrogen signaling and cardiovascular disease. Circ Res, 2011. 109(6): p. 687-96.
101. Wang, M., Tsai, B. M., Reiger, K. M. et al., 17-β-Estradiol decreases p38 MAPK-mediated myocardial inflammation and dysfunction following acute ischemia. Journal of Molecular and Cellular Cardiology, 2006. 40(2): p. 205-212.
102. Favre, J., Gao, J., Henry, J. P. et al., Endothelial estrogen receptor {alpha} plays an essential role in the coronary and myocardial protective effects of estradiol in ischemia/reperfusion. Arterioscler Thromb Vasc Biol, 2010. 30(12): p. 2562-7.
103. Pare, G., Krust, A., Karas, R. H. et al., Estrogen receptor-alpha mediates the protective effects of estrogen against vascular injury. Circ Res, 2002. 90(10): p. 1087-92.
104. Christian, R. C., Liu, P. Y., Harrington, S. et al., Intimal estrogen receptor (ER)beta, but not ERalpha expression, is correlated with coronary calcification and atherosclerosis in pre- and postmenopausal women. J Clin Endocrinol Metab, 2006. 91(7): p. 2713-20.
105. Lazennec, G., Bresson, D., Lucas, A. et al., ER beta inhibits proliferation and invasion of breast cancer cells. Endocrinology, 2001. 142(9): p. 4120-30.
106. Imamov, O., Morani, A., Shim, G. J. et al., Estrogen receptor beta regulates epithelial cellular differentiation in the mouse ventral prostate. Proc Natl Acad Sci U S A, 2004. 101(25): p. 9375-80.
107. Smith, E. P., Boyd, J., Frank, G. R. et al., Estrogen resistance caused by a mutation in the estrogen-receptor gene in a man. N Engl J Med, 1994. 331(16): p. 1056-61.
108. Sims, N. A., Dupont, S., Krust, A. et al., Deletion of estrogen receptors reveals a regulatory role for estrogen receptors-beta in bone remodeling in females but not in males. Bone, 2002. 30(1): p. 18-25.
109. Alonso, A., Jick, S. S., Olek, M. J. et al., Recent use of oral contraceptives and the risk of multiple sclerosis. Arch Neurol, 2005. 62(9): p. 1362-5.
110. Chadwick, C. C., Chippari, S., Matelan, E. et al., Identification of pathway-selective estrogen receptor ligands that inhibit NF-kappaB transcriptional activity. Proc Natl Acad Sci U S A, 2005. 102(7): p. 2543-8.
111. Barton, M. and Prossnitz, E. R., Emerging roles of GPER in diabetes and atherosclerosis. Trends in Endocrinology & Metabolism, 2015. 26(4): p. 185-192.
112. Chakrabarti, S. and Davidge, S. T., G-protein coupled receptor 30 (GPR30): a novel regulator of endothelial inflammation. PLoS One, 2012. 7(12): p. e52357.
113. Li, F., Yu, X., Szynkarski, C. K. et al., Activation of GPER Induces Differentiation and Inhibition of Coronary Artery Smooth Muscle Cell Proliferation. PLoS One, 2013. 8(6): p. e64771.
114. Haas, E., Bhattacharya, I., Brailoiu, E. et al., Regulatory role of G protein-coupled estrogen receptor for vascular function and obesity. Circ Res, 2009. 104(3): p. 288-91.
115. Davis, K. E., Carstens, E. J., Irani, B. G. et al., Sexually dimorphic role of G protein-coupled estrogen receptor (GPER) in modulating energy homeostasis. Hormones and Behavior, 2014. 66(1): p. 196-207.
116. Zhu, P., Yuen, J. M., Sham, K. W. et al., GPER mediates the inhibitory actions of estrogen on adipogenesis in 3T3-L1 cells through perturbation of mitotic clonal expansion. Gen Comp Endocrinol, 2013. 193: p. 19-26.
117. Sharma, G., Hu, C., Brigman, J. L. et al., GPER deficiency in male mice results in insulin resistance, dyslipidemia, and a proinflammatory state. Endocrinology, 2013. 154(11): p. 4136-45.
118. Martensson, U. E., Salehi, S. A., Windahl, S. et al., Deletion of the G protein-coupled receptor 30 impairs glucose tolerance, reduces bone growth, increases blood pressure, and eliminates estradiol-stimulated insulin release in female mice. Endocrinology, 2009. 150(2): p. 687-98.
119. Yoshida, S., Aihara, K., Ikeda, Y. et al., Androgen receptor promotes sex-independent angiogenesis in response to ischemia and is required for activation of vascular endothelial cell growth factor receptor signaling. Circulation, 2013. 128(1): p. 60-71.
120. Verhoeven, G. and Swinnen, J. V., Indirect mechanisms and cascades of androgen action. Mol Cell Endocrinol, 1999. 151(1-2): p. 205-12.
121. Shukla, G. C., Plaga, A. R., Shankar, E. et al., Androgen receptor-related diseases: what do we know? Andrology, 2016.
122. Brown, T. R., Human androgen insensitivity syndrome. J Androl, 1995. 16(4): p. 299-303.
123. Feige, J. N., Gelman, L., Tudor, C. et al., Fluorescence imaging reveals the nuclear behavior of peroxisome proliferator-activated receptor/retinoid X receptor heterodimers in the absence and presence of ligand. J Biol Chem, 2005. 280(18): p. 17880-90.
124. Mandard, S., Muller, M., and Kersten, S., Peroxisome proliferator-activated receptor alpha target genes. Cell Mol Life Sci, 2004. 61(4): p. 393-416.
125. Lefebvre, P., Chinetti, G., Fruchart, J. C. et al., Sorting out the roles of PPAR alpha in energy metabolism and vascular homeostasis. J Clin Invest, 2006. 116(3): p. 571-80.
126. Reddy, J. K. and Hashimoto, T., Peroxisomal beta-oxidation and peroxisome proliferator-activated receptor alpha: an adaptive metabolic system. Annu Rev Nutr, 2001. 21: p. 193-230.
127. Staels, B., Koenig, W., Habib, A. et al., Activation of human aortic smooth-muscle cells is inhibited by PPARalpha but not by PPARgamma activators. Nature, 1998. 393(6687): p. 790-3.
128. Barak, Y., Liao, D., He, W. et al., Effects of peroxisome proliferator-activated receptor delta on placentation, adiposity, and colorectal cancer. Proc Natl Acad Sci U S A, 2002. 99(1): p. 303-8.
129. Michalik, L., Auwerx, J., Berger, J. P. et al., International Union of Pharmacology. LXI. Peroxisome proliferator-activated receptors. Pharmacol Rev, 2006. 58(4): p. 726-41.
130. Nadra, K., Anghel, S. I., Joye, E. et al., Differentiation of trophoblast giant cells and their metabolic functions are dependent on peroxisome proliferator-activated receptor beta/delta. Mol Cell Biol, 2006. 26(8): p. 3266-81.
131. Wang, Y. X., Lee, C. H., Tiep, S. et al., Peroxisome-proliferator-activated receptor delta activates fat metabolism to prevent obesity. Cell, 2003. 113(2): p. 159-70.
132. Tontonoz, P., Hu, E., Graves, R. A. et al., mPPAR gamma 2: tissue-specific regulator of an adipocyte enhancer. Genes Dev, 1994. 8(10): p. 1224-34.
133. Tontonoz, P., Graves, R. A., Budavari, A. I. et al., Adipocyte-specific transcription factor ARF6 is a heterodimeric complex of two nuclear hormone receptors, PPAR gamma and RXR alpha. Nucleic Acids Res, 1994. 22(25): p. 5628-34.
134. Zhu, Y., Qi, C., Korenberg, J. R. et al., Structural organization of mouse peroxisome proliferator-activated receptor gamma (mPPAR gamma) gene: alternative promoter use and different splicing yield two mPPAR gamma isoforms. Proc Natl Acad Sci U S A, 1995. 92(17): p. 7921-5.
135. Savage, D. B., Tan, G. D., Acerini, C. L. et al., Human metabolic syndrome resulting from dominant-negative mutations in the nuclear receptor peroxisome proliferator-activated receptor-gamma. Diabetes, 2003. 52(4): p. 910-7.
136. Ricote, M., Li, A. C., Willson, T. M. et al., The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature, 1998. 391(6662): p. 79-82.
137. Berger, J. P., Akiyama, T. E., and Meinke, P. T., PPARs: therapeutic targets for metabolic disease. Trends Pharmacol Sci, 2005. 26(5): p. 244-51.
138. Marx, N., Sukhova, G. K., Collins, T. et al., PPARalpha activators inhibit cytokine-induced vascular cell adhesion molecule-1 expression in human endothelial cells. Circulation, 1999. 99(24): p. 3125-31.
139. Marx, N., Duez, H., Fruchart, J. C. et al., Peroxisome proliferator-activated receptors and atherogenesis: regulators of gene expression in vascular cells. Circ Res, 2004. 94(9): p. 1168-78.
140. Letavernier, E., Perez, J., Joye, E. et al., Peroxisome proliferator-activated receptor beta/delta exerts a strong protection from ischemic acute renal failure. J Am Soc Nephrol, 2005. 16(8): p. 2395-402.
141. Pfutzner, A., Marx, N., Lubben, G. et al., Improvement of cardiovascular risk markers by pioglitazone is independent from glycemic control: results from the pioneer study. J Am Coll Cardiol, 2005. 45(12): p. 1925-31.
142. Tenenbaum, A., Motro, M., and Fisman, E. Z., Dual and pan-peroxisome proliferator-activated receptors (PPAR) co-agonism: the bezafibrate lessons. Cardiovasc Diabetol, 2005. 4: p. 14.
143. Ma, X., Idle, J. R., and Gonzalez, F. J., The Pregnane X Receptor: From Bench to Bedside. Expert Opin Drug Metab Toxicol, 2008. 4(7): p. 895-908.
144. Zhang, B., Xie, W., and Krasowski, M. D., PXR: a xenobiotic receptor of diverse function implicated in pharmacogenetics. Pharmacogenomics, 2008. 9(11): p. 1695-709.
145. Zhou, C., Verma, S., and Blumberg, B., The steroid and xenobiotic receptor (SXR), beyond xenobiotic metabolism. Nucl Recept Signal, 2009. 7.
146. Moon, J. Y. and Gwak, H. S., Role of the nuclear pregnane X receptor in drug metabolism and the clinical response. Receptors & Clinical investigation, 2015. 2(4).
147. Zhou, C., Novel functions of PXR in cardiometabolic disease. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms.
148. Xie, W., Barwick, J. L., Downes, M. et al., Humanized xenobiotic response in mice expressing nuclear receptor SXR. Nature, 2000. 406(6794): p. 435-439.
149. Staudinger, J. L., Goodwin, B., Jones, S. A. et al., The nuclear receptor PXR is a lithocholic acid sensor that protects against liver toxicity. Proc Natl Acad Sci U S A, 2001. 98(6): p. 3369-74.
150. Kliewer, S. A., Goodwin, B., and Willson, T. M., The nuclear pregnane X receptor: a key regulator of xenobiotic metabolism. Endocr Rev, 2002. 23(5): p. 687-702.
151. Hankinson, O., The aryl hydrocarbon receptor complex. Annu Rev Pharmacol Toxicol, 1995. 35: p. 307-40.
152. Wu, X., Cobbina, S. J., Mao, G. et al., A review of toxicity and mechanisms of individual and mixtures of heavy metals in the environment. Environ Sci Pollut Res Int, 2016.
153. Lantz, R. C. and Hays, A. M., Role of oxidative stress in arsenic-induced toxicity. Drug Metab Rev, 2006. 38(4): p. 791-804.
154. Hughes, M. F., Beck, B. D., Chen, Y. et al., Arsenic exposure and toxicology: a historical perspective. Toxicol Sci, 2011. 123(2): p. 305-32.
155. Waisberg, M., Joseph, P., Hale, B. et al., Molecular and cellular mechanisms of cadmium carcinogenesis. Toxicology, 2003. 192(2-3): p. 95-117.
156. Wang, Y., Fang, J., Leonard, S. S. et al., Cadmium inhibits the electron transfer chain and induces reactive oxygen species. Free Radic Biol Med, 2004. 36(11): p. 1434-43.
157. Liu, J., Qu, W., and Kadiiska, M. B., Role of oxidative stress in cadmium toxicity and carcinogenesis. Toxicol Appl Pharmacol, 2009. 238(3): p. 209-14.
158. Ercal, N., Gurer-Orhan, H., and Aykin-Burns, N., Toxic metals and oxidative stress part I: mechanisms involved in metal-induced oxidative damage. Curr Top Med Chem, 2001. 1(6): p. 529-39.
159. Davey, J. C., Bodwell, J. E., Gosse, J. A. et al., Arsenic as an endocrine disruptor: effects of arsenic on estrogen receptor-mediated gene expression in vivo and in cell culture. Toxicol Sci, 2007. 98(1): p. 75-86.
160. Stoica, A., Pentecost, E., and Martin, M. B., Effects of arsenite on estrogen receptor-alpha expression and activity in MCF-7 breast cancer cells. Endocrinology, 2000. 141(10): p. 3595-602.
161. Liu, S., Guo, X., Wu, B. et al., Arsenic induces diabetic effects through beta-cell dysfunction and increased gluconeogenesis in mice. Sci Rep, 2014. 4: p. 6894.
162. Medina-Diaz, I. M., Estrada-Muniz, E., Reyes-Hernandez, O. D. et al., Arsenite and its metabolites, MMA(III) and DMA(III), modify CYP3A4, PXR and RXR alpha expression in the small intestine of CYP3A4 transgenic mice. Toxicol Appl Pharmacol, 2009. 239(2): p. 162-8.
163. Mann, K. K., Padovani, A. M., Guo, Q. et al., Arsenic trioxide inhibits nuclear receptor function via SEK1/JNK-mediated RXRalpha phosphorylation. J Clin Invest, 2005. 115(10): p. 2924-33.
164. Martin, M. B., Voeller, H. J., Gelmann, E. P. et al., Role of cadmium in the regulation of AR gene expression and activity. Endocrinology, 2002. 143(1): p. 263-75.
165. Liu, Z., Yu, X., and Shaikh, Z. A., Rapid activation of ERK1/2 and AKT in human breast cancer cells by cadmium. Toxicol Appl Pharmacol, 2008. 228(3): p. 286-94.
166. Gao, X., Yu, L., Moore, A. B. et al., Cadmium and proliferation in human uterine leiomyoma cells: evidence of a role for EGFR/MAPK pathways but not classical estrogen receptor pathways. Environ Health Perspect, 2015. 123(4): p. 331-6.
167. Chaube, R., Mishra, S., and Singh, R. K., In vitro effects of lead nitrate on steroid profiles in the post-vitellogenic ovary of the catfish Heteropneustes fossilis. Toxicol In Vitro, 2010. 24(7): p. 1899-904.
168. Taupeau, C., Poupon, J., Treton, D. et al., Lead reduces messenger RNA and protein levels of cytochrome p450 aromatase and estrogen receptor beta in human ovarian granulosa cells. Biol Reprod, 2003. 68(6): p. 1982-8.
169. Darwish, W. S., Ikenaka, Y., Nakayama, S. M. M. et al., Constitutive Effects of Lead on Aryl Hydrocarbon Receptor Gene Battery and Protection by β-carotene and Ascorbic Acid in Human HepG2 Cells. Journal of Food Science, 2016. 81(1): p. T275-T281.
170. Vigushin, D. M., Pepys, M. B., and Hawkins, P. N., Metabolic and scintigraphic studies of radioiodinated human C-reactive protein in health and disease. J Clin Invest, 1993. 91(4): p. 1351-7.
171. Ridker, P. M., Clinical application of C-reactive protein for cardiovascular disease detection and prevention. Circulation, 2003. 107(3): p. 363-9.
172. Ridker, P. M., Cardiology Patient Page. C-reactive protein: a simple test to help predict risk of heart attack and stroke. Circulation, 2003. 108(12): p. e81-5.
173. Bassuk, S. S., Rifai, N., and Ridker, P. M., High-sensitivity C-reactive protein: clinical importance. Curr Probl Cardiol, 2004. 29(8): p. 439-93.
174. de Ferranti, S. D. and Rifai, N., C-reactive protein: a nontraditional serum marker of cardiovascular risk. Cardiovasc Pathol, 2007. 16(1): p. 14-21.
175. Salazar, J., Martinez, M. S., Chavez, M. et al., C-Reactive Protein: Clinical and Epidemiological Perspectives. Cardiology Research and Practice, 2014. 2014: p. 10.
176. Wilson, A. M., Ryan, M. C., and Boyle, A. J., The novel role of C-reactive protein in cardiovascular disease: risk marker or pathogen. Int J Cardiol, 2006. 106(3): p. 291-7.
177. Lakkur, S., Judd, S., Bostick, R. M. et al., Oxidative stress, inflammation, and markers of cardiovascular health. Atherosclerosis, 2015. 243(1): p. 38-43.
178. Venugopal, S. K., Devaraj, S., Yuhanna, I. et al., Demonstration that C-reactive protein decreases eNOS expression and bioactivity in human aortic endothelial cells. Circulation, 2002. 106(12): p. 1439-41.
179. Li, L., Roumeliotis, N., Sawamura, T. et al., C-reactive protein enhances LOX-1 expression in human aortic endothelial cells: relevance of LOX-1 to C-reactive protein-induced endothelial dysfunction. Circ Res, 2004. 95(9): p. 877-83.
180. Devaraj, S., Singh, U., and Jialal, I., The evolving role of C-reactive protein in atherothrombosis. Clin Chem, 2009. 55(2): p. 229-38.
181. Jarvisalo, M. J., Juonala, M., and Raitakari, O. T., Assessment of inflammatory markers and endothelial function. Curr Opin Clin Nutr Metab Care, 2006. 9(5): p. 547-52.
182. Robert J. Stevens, Karen M.J. Douglas, Athanasios N. Saratzis et al., Potential mechanisms of C-reactive protein (CRP) involvement in the pathogenesis of atherosclerosis, in Expert Reviews in Molecular Medicine. 2005, Cambridge University Press.
183. Paul, I., Mandal, C., and Mandal, C., Effect of environmental pollutants on the c-reactive protein of a freshwater major carp, Catla catla. Developmental & Comparative Immunology, 1998. 22(5–6): p. 519-532.
184. Tellez-Plaza, M., Navas-Acien, A., Crainiceanu, C. M. et al., Cadmium and peripheral arterial disease: gender differences in the 1999-2004 US National Health and Nutrition Examination Survey. Am J Epidemiol, 2010. 172(6): p. 671-81.
185. Guallar, E., Silbergeld, E. K., Navas-Acien, A. et al., Confounding of the relation between homocysteine and peripheral arterial disease by lead, cadmium, and renal function. Am J Epidemiol, 2006. 163(8): p. 700-8.
186. Peters, B. A., Liu, X., Hall, M. N. et al., Arsenic exposure, inflammation, and renal function in Bangladeshi adults: effect modification by plasma glutathione redox potential. Free Radic Biol Med, 2015. 85: p. 174-82.
187. Druwe, I. L., Sollome, J. J., Sanchez-Soria, P. et al., Arsenite activates NFkappaB through induction of C-reactive protein. Toxicol Appl Pharmacol, 2012. 261(3): p. 263-70.
188. Liu, J., Xie, Y., Cooper, R. et al., Transplacental exposure to inorganic arsenic at a hepatocarcinogenic dose induces fetal gene expression changes in mice indicative of aberrant estrogen signaling and disrupted steroid metabolism. Toxicology and Applied Pharmacology, 2007. 220(3): p. 284-291.
189. Sirivarasai, J., Wananukul, W., Kaojarern, S. et al., Association between inflammatory marker, environmental lead exposure, and glutathione S-transferase gene. Biomed Res Int, 2013. 2013: p. 474963.
190. Heitland, P. and Koster, H. D., Biomonitoring of 30 trace elements in urine of children and adults by ICP-MS. Clin Chim Acta, 2006. 365(1-2): p. 310-8.
191. Zeng, Q., Feng, W., Zhou, B. et al., Urinary metal concentrations in relation to semen quality: a cross-sectional study in China. Environ Sci Technol, 2015. 49(8): p. 5052-9.
192. Atz, V. L. and Pozebon, D., Graphite Furnace Atomic Absorption Spectrometry (GFAAS) Methodology for Trace Element Determination in Eye Shadow and Lipstick. Atomic Spectroscopy -Norwalk Connecticut, 2009. 30(3): p. 82-91.
193. Borowska, S. and Brzoska, M. M., Metals in cosmetics: implications for human health. J Appl Toxicol, 2015. 35(6): p. 551-72.
194. Lee, J. W., Lee, C. K., Moon, C. S. et al., Korea National Survey for Environmental Pollutants in the Human Body 2008: Heavy metals in the blood or urine of the Korean population. International Journal of Hygiene and Environmental Health, 2012. 215(4): p. 449-457.
195. Chang, Y.-T. and Jiang, S.-J., Determination of As, Cd and Hg in emulsified vegetable oil by flow injection chemical vapour generation inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 2008. 23(1): p. 140-144.
196. Fang, G.-C., Chang, C.-N., Chu, C.-C. et al., Fine (PM2.5), coarse (PM2.5–10), and metallic elements of suspended particulates for incense burning at Tzu Yun Yen temple in central Taiwan. Chemosphere, 2003. 51(9): p. 983-991.
197. Leao, D. J., Junior, M. M. S., Brandao, G. C. et al., Simultaneous determination of cadmium, iron and tin in canned foods using high-resolution continuum source graphite furnace atomic absorption spectrometry. Talanta, 2016. 153: p. 45-50.
198. Hosseini, S. V., Sobhanardakani, S., Miandare, H. K. et al., Determination of toxic (Pb, Cd) and essential (Zn, Mn) metals in canned tuna fish produced in Iran. J Environ Health Sci Eng, 2015. 13: p. 59.
199. Molina-Villalba, I., Lacasaña, M., Rodríguez-Barranco, M. et al., Biomonitoring of arsenic, cadmium, lead, manganese and mercury in urine and hair of children living near mining and industrial areas. Chemosphere, 2015. 124: p. 83-91.
200. Kim, Y. D., Eom, S. Y., Yim, D. H. et al., Environmental Exposure to Arsenic, Lead, and Cadmium in People Living near Janghang Copper Smelter in Korea. J Korean Med Sci, 2016. 31(4): p. 489-96.
201. Rango, T., Jeuland, M., Manthrithilake, H. et al., Nephrotoxic contaminants in drinking water and urine, and chronic kidney disease in rural Sri Lanka. Science of The Total Environment, 2015. 518–519: p. 574-585.
202. Mo, J., Xia, Y., Wade, T. J. et al., Altered gene expression by low-dose arsenic exposure in humans and cultured cardiomyocytes: assessment by real-time PCR arrays. Int J Environ Res Public Health, 2011. 8(6): p. 2090-108.
203. States, J. C., Srivastava, S., Chen, Y. et al., Arsenic and cardiovascular disease. Toxicol Sci, 2009. 107(2): p. 312-23.
204. Huff, M. O., Todd, S. L., Smith, A. L. et al., Arsenite and Cadmium Activate MAPK/ERK via Membrane Estrogen Receptors and G-Protein Coupled Estrogen Receptor Signaling in Human Lung Adenocarcinoma Cells. Toxicol Sci, 2016.
205. Nilsson, B.-O., Olde, B., and Leeb-Lundberg, L. M. F., G protein-coupled oestrogen receptor 1 (GPER1)/GPR30: a new player in cardiovascular and metabolic oestrogenic signalling. British Journal of Pharmacology, 2011. 163(6): p. 1131-1139.
206. Gerbron, M., Geraudie, P., Xuereb, B. et al., In vitro and in vivo studies of the endocrine disrupting potency of cadmium in roach (Rutilus rutilus) liver. Marine Pollution Bulletin, 2015. 95(2): p. 582-589.
207. Sanchez, R., Nguyen, D., Rocha, W. et al., Diversity in the mechanisms of gene regulation by estrogen receptors. Bioessays, 2002. 24(3): p. 244-54.
208. Kelly, M. J. and Levin, E. R., Rapid actions of plasma membrane estrogen receptors. Trends Endocrinol Metab, 2001. 12(4): p. 152-6.
209. Ali, I., Damdimopoulou, P., Stenius, U. et al., Cadmium at nanomolar concentrations activates Raf-MEK-ERK1/2 MAPKs signaling via EGFR in human cancer cell lines. Chem Biol Interact, 2015. 231: p. 44-52.
210. Kawakami, T., Sugimoto, H., Furuichi, R. et al., Cadmium reduces adipocyte size and expression levels of adiponectin and Peg1/Mest in adipose tissue. Toxicology, 2010. 267(1–3): p. 20-26.
211. Khateeb, J., Gantman, A., Kreitenberg, A. J. et al., Paraoxonase 1 (PON1) expression in hepatocytes is upregulated by pomegranate polyphenols: a role for PPAR-gamma pathway. Atherosclerosis, 2010. 208(1): p. 119-25.
212. Liu, L., Lin, Y., Liu, L. et al., Regulation of peroxisome proliferator-activated receptor gamma on milk fat synthesis in dairy cow mammary epithelial cells. In Vitro Cellular & Developmental Biology - Animal, 2016: p. 1-16.
213. Ronchetti, S. A., Novack, G. V., Bianchi, M. S. et al., In vivo xenoestrogenic actions of cadmium and arsenic in anterior pituitary and uterus. Reproduction, 2016. 152(1): p. 1-10.
214. Peters, B. A., Liu, X., Hall, M. N. et al., Arsenic exposure, inflammation, and renal function in Bangladeshi adults: effect modification by plasma glutathione redox potential. Free Radical Biology and Medicine, 2015. 85: p. 174-182.
215. Colacino, J. A., Arthur, A. E., Ferguson, K. K. et al., Dietary antioxidant and anti-inflammatory intake modifies the effect of cadmium exposure on markers of systemic inflammation and oxidative stress. Environmental Research, 2014. 131: p. 6-12.
216. Kleemann, R., Gervois, P. P., Verschuren, L. et al., Fibrates down-regulate IL-1-stimulated C-reactive protein gene expression in hepatocytes by reducing nuclear p50-NFkappa B-C/EBP-beta complex formation. Blood, 2003. 101(2): p. 545-51.
217. Tellez-Plaza, M., Guallar, E., Howard, B. V. et al., Cadmium exposure and incident cardiovascular disease. Epidemiology, 2013. 24(3): p. 421-9.

(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *