|
1. Dvorak, H.F., et al., Tumor microenvironment and progression. J Surg Oncol, 2011. 103(6): p. 468-74. 2. Korkaya, H., S. Liu, and M.S. Wicha, Breast cancer stem cells, cytokine networks, and the tumor microenvironment. J Clin Invest, 2011. 121(10): p. 3804-9. 3. Tredan, O., et al., Drug resistance and the solid tumor microenvironment. J Natl Cancer Inst, 2007. 99(19): p. 1441-54. 4. Harrington, K.J., et al., Guidelines for preclinical and early phase clinical assessment of novel radiosensitisers. Br J Cancer, 2011. 105(5): p. 628-39. 5. Harris, A.L., Hypoxia--a key regulatory factor in tumour growth. Nat Rev Cancer, 2002. 2(1): p. 38-47. 6. Koukourakis, M.I., et al., Hypoxia-inducible factor (HIF1A and HIF2A), angiogenesis, and chemoradiotherapy outcome of squamous cell head-and-neck cancer. Int J Radiat Oncol Biol Phys, 2002. 53(5): p. 1192-202. 7. Engel, C.J., et al., Tumor angiogenesis predicts recurrence in invasive colorectal cancer when controlled for Dukes staging. Am J Surg Pathol, 1996. 20(10): p. 1260-5. 8. Barker, H.E., et al., The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence. Nat Rev Cancer, 2015. 15(7): p. 409-25. 9. Vogelstein, B., D. Lane, and A.J. Levine, Surfing the p53 network. Nature, 2000. 408(6810): p. 307-310. 10. Knowles, P.P., et al., Structure and chemical inhibition of the RET tyrosine kinase domain. J Biol Chem, 2006. 281(44): p. 33577-87. 11. Ivanchuk, S.M., et al., The INK4A/ARF locus: Role in cell cycle control and apoptosis and implications for glioma growth. Journal of Neuro-Oncology, 2001. 51(3): p. 219-229. 12. Kastan, M.B., C.E. Canman, and C.J. Leonard, P53, Cell-Cycle Control and Apoptosis - Implications for Cancer. Cancer and Metastasis Reviews, 1995. 14(1): p. 3-15. 13. Nigro, J.M., et al., Mutations in the P53 Gene Occur in Diverse Human-Tumor Types. Nature, 1989. 342(6250): p. 705-708. 14. Keizer, H.G., et al., Doxorubicin (Adriamycin) - a Critical-Review of Free Radical-Dependent Mechanisms of Cytotoxicity. Pharmacology & Therapeutics, 1990. 47(2): p. 219-231. 15. Marupudi, N.I., et al., Paclitaxel: a review of adverse toxicities and novel delivery strategies. Expert Opinion on Drug Safety, 2007. 6(5): p. 609-621. 16. Peer, D., et al., Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnology, 2007. 2(12): p. 751-760. 17. Kwon, G.S. and T. Okano, Polymeric micelles as new drug carriers. Advanced Drug Delivery Reviews, 1996. 21(2): p. 107-116. 18. Xu, G., et al., Human carboxylesterase 2 is commonly expressed in tumor tissue and is correlated with activation of irinotecan. Clin Cancer Res, 2002. 8(8): p. 2605-11. 19. Kawato, Y., et al., Intracellular roles of SN-38, a metabolite of the camptothecin derivative CPT-11, in the antitumor effect of CPT-11. Cancer Res, 1991. 51(16): p. 4187-91. 20. Hsiang, Y.H. and L.F. Liu, Identification of mammalian DNA topoisomerase I as an intracellular target of the anticancer drug camptothecin. Cancer Res, 1988. 48(7): p. 1722-6. 21. Hsiang, Y.H., M.G. Lihou, and L.F. Liu, Arrest of replication forks by drug-stabilized topoisomerase I-DNA cleavable complexes as a mechanism of cell killing by camptothecin. Cancer Res, 1989. 49(18): p. 5077-82. 22. Tamura, K., et al., Enhancement of tumor radio-response by irinotecan in human lung tumor xenografts. Jpn J Cancer Res, 1997. 88(2): p. 218-23. 23. Liu, Y., et al., Comparison of two self-assembled macromolecular prodrug micelles with different conjugate positions of SN38 for enhancing antitumor activity. Int J Nanomedicine, 2015. 10: p. 2295-311. 24. Galvin, J.M., et al., Implementing IMRT in clinical practice: a joint document of the American Society for Therapeutic Radiology and Oncology and the American Association of Physicists in Medicine. Int J Radiat Oncol Biol Phys, 2004. 58(5): p. 1616-34. 25. Prise, K.M. and J.M. O'Sullivan, Radiation-induced bystander signalling in cancer therapy. Nat Rev Cancer, 2009. 9(5): p. 351-60. 26. Willson, R.L., W.A. Cramp, and R.M. Ings, Metronidazole ('Flagyl'): mechanisms of radiosensitization. Int J Radiat Biol Relat Stud Phys Chem Med, 1974. 26(6): p. 557-69. 27. Yarbro, C.H., D. Wujcik, and B.H. Gobel, Cancer nursing : principles and practice. 7th ed. 2011, Sudbury, Mass.: Jones and Bartlett Publishers. xlii, 1940 p., 2 p. of plates. 28. Raviraj, J., et al., Radiosensitizers, radioprotectors, and radiation mitigators. Indian J Dent Res, 2014. 25(1): p. 83-90. 29. Churchill-Davidson, I., et al., The place of oxygen in radiotherapy. Br J Radiol, 1966. 39(461): p. 321-31. 30. Dische, S., et al., Carcinoma of the cervix--anaemia, radiotherapy and hyperbaric oxygen. Br J Radiol, 1983. 56(664): p. 251-5. 31. Henk, J.M., P.B. Kunkler, and C.W. Smith, Radiotherapy and hyperbaric oxygen in head and neck cancer. Final report of first controlled clinical trial. Lancet, 1977. 2(8029): p. 101-3. 32. Rockwell, S., et al., Hypoxia and radiation therapy: past history, ongoing research, and future promise. Curr Mol Med, 2009. 9(4): p. 442-58. 33. Horsman, M.R. and J. Overgaard, Hyperthermia: a potent enhancer of radiotherapy. Clin Oncol (R Coll Radiol), 2007. 19(6): p. 418-26. 34. Dennis, W.H. and M.B. Yatvin, Correlation of hyperthermic sensitivity and membrane microviscosity in E. coli K1060. Int J Radiat Biol Relat Stud Phys Chem Med, 1981. 39(3): p. 265-71. 35. Ben-Hur, E., M.M. Elkind, and B.V. Bronk, Thermally enhanced radioresponse of cultured Chinese hamster cells: inhibition of repair of sublethal damage and enhancement of lethal damage. Radiat Res, 1974. 58(1): p. 38-51. 36. Manfredi, J.J. and S.B. Horwitz, Taxol: an antimitotic agent with a new mechanism of action. Pharmacol Ther, 1984. 25(1): p. 83-125. 37. Schiff, P.B., J. Fant, and S.B. Horwitz, Promotion of microtubule assembly in vitro by taxol. Nature, 1979. 277(5698): p. 665-7. 38. Gravina, G.L., et al., Biological rationale for the use of DNA methyltransferase inhibitors as new strategy for modulation of tumor response to chemotherapy and radiation. Mol Cancer, 2010. 9: p. 305. 39. Lamond, J.P., et al., Radiation lethality enhancement with 9-aminocamptothecin: comparison to other topoisomerase I inhibitors. Int J Radiat Oncol Biol Phys, 1996. 36(2): p. 369-76. 40. Omura, M., S. Torigoe, and N. Kubota, SN-38, a metabolite of the camptothecin derivative CPT-11, potentiates the cytotoxic effect of radiation in human colon adenocarcinoma cells grown as spheroids. Radiother Oncol, 1997. 43(2): p. 197-201. 41. Luke, D.R., et al., Effects of Cyclosporine on the Isolated Perfused Rat-Kidney. Transplantation, 1987. 43(6): p. 795-799. 42. Jain, R.K., Delivery of molecular and cellular medicine to solid tumors. Advanced Drug Delivery Reviews, 2012. 64: p. 353-365. 43. Ferrari, M., Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer, 2005. 5(3): p. 161-71. 44. Torchilin, V.P., Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat Rev Drug Discov, 2014. 13(11): p. 813-27. 45. Kumar, N., M.N. Ravikumar, and A.J. Domb, Biodegradable block copolymers. Adv Drug Deliv Rev, 2001. 53(1): p. 23-44. 46. Xu, H., et al., Macromolecular self-assembly and nanotechnology in China. Philos Trans A Math Phys Eng Sci, 2013. 371(2000): p. 20120305. 47. Pelicano, H., D. Carney, and P. Huang, ROS stress in cancer cells and therapeutic implications. Drug Resist Updat, 2004. 7(2): p. 97-110. 48. Trachootham, D., J. Alexandre, and P. Huang, Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov, 2009. 8(7): p. 579-91. 49. Xu, Q., et al., Reactive Oxygen Species (ROS) Responsive Polymers for Biomedical Applications. Macromol Biosci, 2016. 16(5): p. 635-46. 50. Xiao, C., et al., Synthesis of thermal and oxidation dual responsive polymers for reactive oxygen species (ROS)-triggered drug release. Polymer Chemistry, 2015. 6(5): p. 738-747. 51. Gupta, M.K., et al., Poly(PS-b-DMA) micelles for reactive oxygen species triggered drug release. Journal of Controlled Release, 2012. 162(3): p. 591-598. 52. Li, J., et al., Self-sufficing H2O2-responsive nanocarriers through tumor-specific H2O2 production for synergistic oxidation-chemotherapy. J Control Release, 2016. 225: p. 64-74. 53. Patel, A.R. and A.J. Stephenson, Radiation therapy for prostate cancer after prostatectomy: adjuvant or salvage? Nat Rev Urol, 2011. 8(7): p. 385-92. 54. Xiao, Q., et al., A core/satellite multifunctional nanotheranostic for in vivo imaging and tumor eradication by radiation/photothermal synergistic therapy. J Am Chem Soc, 2013. 135(35): p. 13041-8. 55. Mitteer, R.A., et al., Proton beam radiation induces DNA damage and cell apoptosis in glioma stem cells through reactive oxygen species. Scientific Reports, 2015. 5. 56. Lotti, N., et al., Thiodiethylene glycol based polyesters: synthesis and thermal characterization. E-Polymers, 2006. 57. Liu, Z., et al., PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc, 2008. 130(33): p. 10876-7. 58. Chung, D.M., J.H. Kim, and J.K. Kim, Evaluation of MTT and Trypan Blue assays for radiation-induced cell viability test in HepG2 cells. International Journal of Radiation Research, 2015. 13(4): p. 331-335.
|