帳號:guest(3.22.75.223)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):洪浚凱
作者(外文):Hung, Chun Kai
論文名稱(中文):開發具氧化應答性奈米給藥傳輸系統於放射/化學複合療法應用
論文名稱(外文):Development of Oxidation-responsive Nanomedicine Delivery Systems for Radio/Chemo combinational therapy
指導教授(中文):邱信程
指導教授(外文):Chiu, Hsin Cheng
口試委員(中文):黃郁棻
江啟勳
胡尚秀
口試委員(外文):Huang, Yu Fen
Chiang, Chi Shiun
Hu, Shang Hsiu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學號:103012502
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:81
中文關鍵詞:放射線治療奈米藥物傳遞系統活性氧物質應答
外文關鍵詞:Radiation therapyDrug delivery systemROS response
相關次數:
  • 推薦推薦:0
  • 點閱點閱:65
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究旨在開發能針對腫瘤組織經放射線照射後大量產生活性氧物質(reactive oxygen species, ROS) 進行應答以釋放化療藥物的智慧型奈米藥物載體系統,用以輔助放射治療並抑制放射治療後之復發情形。
本研究成功開發出對活性氧物質具應答能力之高分子poly(thiodiethylene adipate) (PSDEA) 與其三團聯衍伸物Polyethylene glycol - poly(thiodiethylene adipate) - Polyethylene glycol (PEG-PSDEA-PEG),並利用此高分子為材料製備出裝載化療藥物的奈米粒子。此高分子透過thiodiethylene glycol內硫醚 (sulfides) 在高氧化應力 (oxidative stress) 環境中會被氧化為亞碸 (sulfoxide) 之特性,賦予其疏水/親水性間轉換 (hydrophobic/hydrophilic transition) 能力。一旦構築奈米粒子的高分子被氧化轉變為親水特性時,即會導致奈米粒子瓦解並釋放出所載化療藥物。此奈米粒子直徑大小約為109 nm,並具良好化療藥物SN38裝載效率 (11 wt%)。體外載體氧化應答能力評估顯示,經過氧化後的奈米粒子形態會產生膨潤至瓦解之現象,且藥物累積釋放量經氧化後亦會明顯提升。在體外細胞實驗上證實此氧化應答性奈米粒子會被放射線 (X-ray) 照射所產生的ROS破壞而釋出藥物,造成細胞內部累積較多的藥物分子,導致BNL 1MEA.7R.1癌細胞凋亡。而在腫瘤生長抑制結果指出,當給予具應答性奈米粒子於腫瘤內並施予放射線照射後確實有最佳的抑制效果,證明載體可受放射線照射觸發化療藥物釋放並能成功結合化療與放射治療,強化治療效果並抑制腫瘤復發情形。綜合上述成果,本研究所開發之搭載SN38的氧化應答奈米粒子,具有深厚潛力對於現今放射線療法有很好的輔助功能,利用放療與化學複合治療,以期達成抑制癌細胞生長與復發的最大治療成效。
This work aims to develop a novel nanoparticle delivery system capable of liberating therapeutic payloads in response to the dramatic increase of the external reactive oxygen species (ROS) level upon radiation therapy for improving the overall anti-cancer efficacy. Herein, the ROS-responsive Poly(thiodiethylene adipate) have been successfully prepared by stepwise polymerization approach and employed as the major materials in developing the novel nanotherapeutics. Through the ROS-mediated oxidation reaction, the non-polar sulfide groups on the main chains of polyesters are chemically converted to the polar sulfoxide group, thus resulting in the hydrophobic-hydrophilic transition of the ROS-sensitive polymers. This inevitably leads to the structural disruption of nanotherapeutics comprising mainly the ROS-sensitive polyesters upon the irradiation and thus activates drug liberation for chemotherapy in combination with the radiation treatment against carcinoma. The nanotherapeutics with a particle size of ca109 nm in diameter demonstrate an excellent chemodrug confinement of the camptothecin analog, SN38. In vitro evaluation of oxidative responsive ability indicate the nanotherapeutics were oxidized under the exposure to ROS and, leading to the swelling and disassembly of the micelles, increasing significantly the amount of SN38 released from nanotherapeutics. In vitro cellular uptake data indicate that nanoparticles with X-ray irradiation-pretreatment show the efficiently promoted cellular uptake. Furthermore, cytotoxic analysis demonstrates that the viability of murine HCC cells (BNL 1MEA.7R.1) co-incubated with the X-ray irradiation-pretreated nanoparticles was reduced proportionally with the increase of the SN38 dose, while that of cancer cells incubated with the nanoparticles in the absence of ROS activation remained relatively high, indicating the strong dependence of drug release from the smart nanoparticles on the production of ROS. Importantly, in vivo tumor growth inhibition study strongly illustrates that the incorporation of radiation therapy and its induced chemotherapy with the smart nanoparticles not only exhibit potent antitumor efficacy but also inhibit tumor recurrence. Based on the above results, this study provides a promising strategy for the development of ROS responsive drug delivery nanotherapeutics for tumor therapy.
Abstract 9
摘要 11
致謝 12
一、研究動機 13
二、文獻回顧 15
2.1 腫瘤微環境 15
2.1.1 放療後腫瘤微環境與腫瘤復發機制 16
2.2惡性腫瘤 18
2.3癌症治療 20
2.3.1化學治療 20
2.3.1.1化療藥物 7-Ethyl-10-hydroxy-camptothecin (SN38)介紹 21
2.3.2放射線治療 22
2.3.2.1放射線增敏劑(radiosensitizer) 24
2.4奈米載體概況 27
2.4.1奈米藥物載體傳遞系統 27
2.4.2高分子微粒 29
2.4.3氧化應答於藥物傳遞系統的應用 31
2.4.4放射線療法於藥物傳遞系統的應用 34
三、實驗方法與步驟 36
3.1 高分子合成與鑑定 36
3.1.1 Poly(thiodiethylene adipate) (PSDEA) 和 Poly(hexamethylene adipate) (PHDEA) 合成 36
3.1.2 PEG-PSDEA-PEG 和 PEG-PHDEA-PEG合成 37
3.1.3 高分子氧化應答特性測試 37
3.1.4 高分子生物可降解測試 38
3.2 奈米微粒製備與性質探討 38
3.2.1 奈米微粒製備 38
3.2.2 塑造活性氧物質環境 (ROS treatment) 39
3.2.3 奈米微粒的粒徑分布 39
3.2.4 奈米微粒的藥物裝載量 40
3.2.5 奈米微粒膠體穩定性與冷凍乾燥保存測試 41
3.2.6 穿透式電子顯微鏡影像 41
3.2.7 奈米微粒體外藥物釋放實驗與分析 41
3.3 體外細胞實驗 42
3.3.1 細胞來源及適合之培養環境 42
3.3.2 配置細胞培養液與磷酸鹽緩衝溶液 42
3.3.3 細胞繼代 43
3.3.4 細胞計數 43
3.3.5 螢光顯微鏡觀察 44
3.3.6 細胞毒性分析 44
3.3.7 合併治療之細胞毒性分析 45
3.4 動物實驗 46
3.4.1 動物來源 46
3.4.2 腫瘤模型建立 46
3.4.3腫瘤抑制生長評估 46
3.4.4動物犧牲與腫瘤組織包埋 47
3.4.5組織切片 47
3.4.6腫瘤組織切片Hematoxylin and eosin (H&E)染色 48
3.4.7腫瘤組織切片免疫螢光染色 48
3.5 數據統計 49
四、結果與討論 50
4.1 高分子合成與鑑定 50
4.1.1 Poly(thiodiethylene adipate) (PSDEA) 與Poly(hexamethylene adipate) (PHDEA) 合成與組成鑑定 50
4.1.2 PEG-PSDEA-PEG 和 PEG-PHDEA-PEG合成與組成鑑定 51
4.2 高分子氧化應答能力 53
4.3 高分子生物可降解性 54
4.4 奈米粒子特性分析 55
4.4.1 奈米微粒性質分析 55
4.4.2 奈米微粒穩定度分析 57
4.4.3 奈米微粒氧化應答能力評估 58
4.4.4 奈米微粒體外藥物釋放 63
4.5 細胞實驗 65
4.5.1 奈米粒子於ROS treatment後細胞吞噬評估 65
4.5.2奈米粒子於ROS treatment後細胞毒性分析 66
4.5.3放射線結合化療之細胞毒性分析 69
4.6 動物實驗 70
4.6.1腫瘤抑制生長評估 70
4.6.2腫瘤組織切片觀察 73
五、結論 76
六、參考文獻 77
1. Dvorak, H.F., et al., Tumor microenvironment and progression. J Surg Oncol, 2011. 103(6): p. 468-74.
2. Korkaya, H., S. Liu, and M.S. Wicha, Breast cancer stem cells, cytokine networks, and the tumor microenvironment. J Clin Invest, 2011. 121(10): p. 3804-9.
3. Tredan, O., et al., Drug resistance and the solid tumor microenvironment. J Natl Cancer Inst, 2007. 99(19): p. 1441-54.
4. Harrington, K.J., et al., Guidelines for preclinical and early phase clinical assessment of novel radiosensitisers. Br J Cancer, 2011. 105(5): p. 628-39.
5. Harris, A.L., Hypoxia--a key regulatory factor in tumour growth. Nat Rev Cancer, 2002. 2(1): p. 38-47.
6. Koukourakis, M.I., et al., Hypoxia-inducible factor (HIF1A and HIF2A), angiogenesis, and chemoradiotherapy outcome of squamous cell head-and-neck cancer. Int J Radiat Oncol Biol Phys, 2002. 53(5): p. 1192-202.
7. Engel, C.J., et al., Tumor angiogenesis predicts recurrence in invasive colorectal cancer when controlled for Dukes staging. Am J Surg Pathol, 1996. 20(10): p. 1260-5.
8. Barker, H.E., et al., The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence. Nat Rev Cancer, 2015. 15(7): p. 409-25.
9. Vogelstein, B., D. Lane, and A.J. Levine, Surfing the p53 network. Nature, 2000. 408(6810): p. 307-310.
10. Knowles, P.P., et al., Structure and chemical inhibition of the RET tyrosine kinase domain. J Biol Chem, 2006. 281(44): p. 33577-87.
11. Ivanchuk, S.M., et al., The INK4A/ARF locus: Role in cell cycle control and apoptosis and implications for glioma growth. Journal of Neuro-Oncology, 2001. 51(3): p. 219-229.
12. Kastan, M.B., C.E. Canman, and C.J. Leonard, P53, Cell-Cycle Control and Apoptosis - Implications for Cancer. Cancer and Metastasis Reviews, 1995. 14(1): p. 3-15.
13. Nigro, J.M., et al., Mutations in the P53 Gene Occur in Diverse Human-Tumor Types. Nature, 1989. 342(6250): p. 705-708.
14. Keizer, H.G., et al., Doxorubicin (Adriamycin) - a Critical-Review of Free Radical-Dependent Mechanisms of Cytotoxicity. Pharmacology & Therapeutics, 1990. 47(2): p. 219-231.
15. Marupudi, N.I., et al., Paclitaxel: a review of adverse toxicities and novel delivery strategies. Expert Opinion on Drug Safety, 2007. 6(5): p. 609-621.
16. Peer, D., et al., Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnology, 2007. 2(12): p. 751-760.
17. Kwon, G.S. and T. Okano, Polymeric micelles as new drug carriers. Advanced Drug Delivery Reviews, 1996. 21(2): p. 107-116.
18. Xu, G., et al., Human carboxylesterase 2 is commonly expressed in tumor tissue and is correlated with activation of irinotecan. Clin Cancer Res, 2002. 8(8): p. 2605-11.
19. Kawato, Y., et al., Intracellular roles of SN-38, a metabolite of the camptothecin derivative CPT-11, in the antitumor effect of CPT-11. Cancer Res, 1991. 51(16): p. 4187-91.
20. Hsiang, Y.H. and L.F. Liu, Identification of mammalian DNA topoisomerase I as an intracellular target of the anticancer drug camptothecin. Cancer Res, 1988. 48(7): p. 1722-6.
21. Hsiang, Y.H., M.G. Lihou, and L.F. Liu, Arrest of replication forks by drug-stabilized topoisomerase I-DNA cleavable complexes as a mechanism of cell killing by camptothecin. Cancer Res, 1989. 49(18): p. 5077-82.
22. Tamura, K., et al., Enhancement of tumor radio-response by irinotecan in human lung tumor xenografts. Jpn J Cancer Res, 1997. 88(2): p. 218-23.
23. Liu, Y., et al., Comparison of two self-assembled macromolecular prodrug micelles with different conjugate positions of SN38 for enhancing antitumor activity. Int J Nanomedicine, 2015. 10: p. 2295-311.
24. Galvin, J.M., et al., Implementing IMRT in clinical practice: a joint document of the American Society for Therapeutic Radiology and Oncology and the American Association of Physicists in Medicine. Int J Radiat Oncol Biol Phys, 2004. 58(5): p. 1616-34.
25. Prise, K.M. and J.M. O'Sullivan, Radiation-induced bystander signalling in cancer therapy. Nat Rev Cancer, 2009. 9(5): p. 351-60.
26. Willson, R.L., W.A. Cramp, and R.M. Ings, Metronidazole ('Flagyl'): mechanisms of radiosensitization. Int J Radiat Biol Relat Stud Phys Chem Med, 1974. 26(6): p. 557-69.
27. Yarbro, C.H., D. Wujcik, and B.H. Gobel, Cancer nursing : principles and practice. 7th ed. 2011, Sudbury, Mass.: Jones and Bartlett Publishers. xlii, 1940 p., 2 p. of plates.
28. Raviraj, J., et al., Radiosensitizers, radioprotectors, and radiation mitigators. Indian J Dent Res, 2014. 25(1): p. 83-90.
29. Churchill-Davidson, I., et al., The place of oxygen in radiotherapy. Br J Radiol, 1966. 39(461): p. 321-31.
30. Dische, S., et al., Carcinoma of the cervix--anaemia, radiotherapy and hyperbaric oxygen. Br J Radiol, 1983. 56(664): p. 251-5.
31. Henk, J.M., P.B. Kunkler, and C.W. Smith, Radiotherapy and hyperbaric oxygen in head and neck cancer. Final report of first controlled clinical trial. Lancet, 1977. 2(8029): p. 101-3.
32. Rockwell, S., et al., Hypoxia and radiation therapy: past history, ongoing research, and future promise. Curr Mol Med, 2009. 9(4): p. 442-58.
33. Horsman, M.R. and J. Overgaard, Hyperthermia: a potent enhancer of radiotherapy. Clin Oncol (R Coll Radiol), 2007. 19(6): p. 418-26.
34. Dennis, W.H. and M.B. Yatvin, Correlation of hyperthermic sensitivity and membrane microviscosity in E. coli K1060. Int J Radiat Biol Relat Stud Phys Chem Med, 1981. 39(3): p. 265-71.
35. Ben-Hur, E., M.M. Elkind, and B.V. Bronk, Thermally enhanced radioresponse of cultured Chinese hamster cells: inhibition of repair of sublethal damage and enhancement of lethal damage. Radiat Res, 1974. 58(1): p. 38-51.
36. Manfredi, J.J. and S.B. Horwitz, Taxol: an antimitotic agent with a new mechanism of action. Pharmacol Ther, 1984. 25(1): p. 83-125.
37. Schiff, P.B., J. Fant, and S.B. Horwitz, Promotion of microtubule assembly in vitro by taxol. Nature, 1979. 277(5698): p. 665-7.
38. Gravina, G.L., et al., Biological rationale for the use of DNA methyltransferase inhibitors as new strategy for modulation of tumor response to chemotherapy and radiation. Mol Cancer, 2010. 9: p. 305.
39. Lamond, J.P., et al., Radiation lethality enhancement with 9-aminocamptothecin: comparison to other topoisomerase I inhibitors. Int J Radiat Oncol Biol Phys, 1996. 36(2): p. 369-76.
40. Omura, M., S. Torigoe, and N. Kubota, SN-38, a metabolite of the camptothecin derivative CPT-11, potentiates the cytotoxic effect of radiation in human colon adenocarcinoma cells grown as spheroids. Radiother Oncol, 1997. 43(2): p. 197-201.
41. Luke, D.R., et al., Effects of Cyclosporine on the Isolated Perfused Rat-Kidney. Transplantation, 1987. 43(6): p. 795-799.
42. Jain, R.K., Delivery of molecular and cellular medicine to solid tumors. Advanced Drug Delivery Reviews, 2012. 64: p. 353-365.
43. Ferrari, M., Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer, 2005. 5(3): p. 161-71.
44. Torchilin, V.P., Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery. Nat Rev Drug Discov, 2014. 13(11): p. 813-27.
45. Kumar, N., M.N. Ravikumar, and A.J. Domb, Biodegradable block copolymers. Adv Drug Deliv Rev, 2001. 53(1): p. 23-44.
46. Xu, H., et al., Macromolecular self-assembly and nanotechnology in China. Philos Trans A Math Phys Eng Sci, 2013. 371(2000): p. 20120305.
47. Pelicano, H., D. Carney, and P. Huang, ROS stress in cancer cells and therapeutic implications. Drug Resist Updat, 2004. 7(2): p. 97-110.
48. Trachootham, D., J. Alexandre, and P. Huang, Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov, 2009. 8(7): p. 579-91.
49. Xu, Q., et al., Reactive Oxygen Species (ROS) Responsive Polymers for Biomedical Applications. Macromol Biosci, 2016. 16(5): p. 635-46.
50. Xiao, C., et al., Synthesis of thermal and oxidation dual responsive polymers for reactive oxygen species (ROS)-triggered drug release. Polymer Chemistry, 2015. 6(5): p. 738-747.
51. Gupta, M.K., et al., Poly(PS-b-DMA) micelles for reactive oxygen species triggered drug release. Journal of Controlled Release, 2012. 162(3): p. 591-598.
52. Li, J., et al., Self-sufficing H2O2-responsive nanocarriers through tumor-specific H2O2 production for synergistic oxidation-chemotherapy. J Control Release, 2016. 225: p. 64-74.
53. Patel, A.R. and A.J. Stephenson, Radiation therapy for prostate cancer after prostatectomy: adjuvant or salvage? Nat Rev Urol, 2011. 8(7): p. 385-92.
54. Xiao, Q., et al., A core/satellite multifunctional nanotheranostic for in vivo imaging and tumor eradication by radiation/photothermal synergistic therapy. J Am Chem Soc, 2013. 135(35): p. 13041-8.
55. Mitteer, R.A., et al., Proton beam radiation induces DNA damage and cell apoptosis in glioma stem cells through reactive oxygen species. Scientific Reports, 2015. 5.
56. Lotti, N., et al., Thiodiethylene glycol based polyesters: synthesis and thermal characterization. E-Polymers, 2006.
57. Liu, Z., et al., PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc, 2008. 130(33): p. 10876-7.
58. Chung, D.M., J.H. Kim, and J.K. Kim, Evaluation of MTT and Trypan Blue assays for radiation-induced cell viability test in HepG2 cells. International Journal of Radiation Research, 2015. 13(4): p. 331-335.

(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 多功能之酸鹼應答型高分子複合液胞於藥物傳遞與核磁共振應用之探討
2. 酸鹼應答型聚麩胺酸/二硬酯酸甘油脂共聚合高分子複合液胞於藥物傳遞系統之應用
3. 開發具抗癌藥物傳輸與核磁共振顯影之多功能環境應答接枝共聚合高分子自組裝系統
4. 開發具磁性與酸鹼應答性複合高分子液胞作為腫瘤標的藥物傳遞及MR影像顯影之診斷治療奈米平台
5. 酸鹼/溫度應答型交聯式高分子/藥物複合微胞於細胞內藥物傳遞之應用
6. 裝載高分子氣胞/載藥液胞的單核白血球於超音波操控藥物傳遞之評估
7. 利用腫瘤趨向性單核球傳輸功能性高分子奈米粒子以增進腫瘤缺氧區之治療效果
8. 利用腫瘤趨向性單核球對腫瘤缺氧區域傳遞裝載超順磁奈米氧化鐵/Chlorin e6的高分子含氧氣胞用以改善磁熱及光動力治療的療效
9. 開發智慧型‟中途接駁”藥物傳遞系統 對深層腫瘤區域進行化療
10. 利用腫瘤趨向性脂肪幹細胞攜帶智慧型奈米微粒對膠質母細胞瘤進行靶向傳遞及化學治療
11. 具增強腫瘤組織滲透與細胞吞噬之智慧型表面電荷轉換奈米給藥傳輸系統應用於影像導引之光熱及化學複合式腫瘤治療
12. 開發雙重標靶口服多醣體/脂質複合奈米化療傳輸系統進行大腸癌治療
13. 開發次微米磁棒攪拌系統捕捉類澱粉蛋白寡聚體以發展新型阿茲海默氏症治療策略
14. 以雙靶向性奈米載藥粒子強化大腸直腸癌腹腔轉移腫瘤之化學治療
15. 開發智慧靶向型藥物傳遞系統對癌症骨轉移腫瘤進行化療
 
* *