帳號:guest(18.217.49.233)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):袁偉昌
作者(外文):Yuan Weichang
論文名稱(中文):以層層自組裝法製備含二氧化鈦奈米顆粒與聚L-多巴的光催化多層膜
論文名稱(外文):Photocatalytic Multilayer Films Based on TiO2 Nanoparticles and Poly(L-Dopa) Using Layer-by-Layer Self-Assembly
指導教授(中文):吳劍侯
指導教授(外文):Wu Chien Hou
口試委員(中文):董瑞安
黃郁棻
柯富祥
口試委員(外文):Doong Ruey An
Huang Yu Feng
Ko Fu Hsiang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學號:103012466
出版年(民國):105
畢業學年度:104
語文別:英文中文
論文頁數:84
中文關鍵詞:二氧化鈦層層自組裝薄膜光催化反應磺酸羅丹明B
外文關鍵詞:TiO2layer-by-layer self-assemblythin filmphotocatalytic reactionsulforhodamine B
相關次數:
  • 推薦推薦:0
  • 點閱點閱:95
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
摘要
在溫和的反應條件和簡易的製備過程下,以玻璃為基材的層層自組裝二氧化鈦/L-多巴薄膜被成功製備,並且具有很好的透明度以及可控的粗糙度和厚度。此外,該薄膜也展現出了對染劑的有效降解。紫外可見分光光度計、場發射掃描式電子顯微鏡、傅里葉轉換紅外光譜和原子力顯微鏡被用於鑑定製備好的層層自組裝P25/聚L-多巴多層薄膜。鑑定結果顯示了薄膜厚度隨著層數增加呈現線性增長,表面結構具有起伏狀的孔洞性結構,奈米級別二氧化鈦清晰可見。該薄膜的光催化性質在紫外光(352 nm)下進行了測試,分別探討了每層浸泡的時間、鍍膜的層數和總的浸泡時間對光催化性質的影響。P25/聚L-多巴多層薄膜對磺酸羅丹明B (SRB)的光降解展現出與厚度的高度相關性和很好的重複利用性,通過銀離子溶液的浸泡可進一步增加其光催化效率。相同條件下,P25/聚L-多巴多層膜與P25/聚丙烯酸(PAA)多層膜具有近似光催化效率。此外,本文也探討了不同的二氧化鈦粒子(粒徑和表面電位)對層層自組裝薄膜製備和光催化性質的影響。
Abstract
Layer-by-layer (LbL) self-assembly TiO2/Poly(L-Dopa) (PDopa) thin films on soda lime glass slides with good transparency, controlled roughness and thickness have been successfully prepared under mild conditions and simple process. The obtained LbL P25/PDopa multilayer thin films were characterized by UV-vis spectroscopy, field emission scanning electron microscopy (FESEM), fourier transform infrared spectroscopy (FT-IR) and atomic force microscopy (AFM). The characterization revealed the linear growth of nanoscale thickness, porous surface morphology and nanosized NPs. Photocatalytic activities were tested under UV (352 nm) irradiation. The effects of layer deposition time, number of bilayers and total deposition time were studied and compared. LbL P25/PDopa multilayer thin films demonstrated a thickness-dependent photocatalytic performance with excellent reusability towards the degradation of Sulforhodamine B (SRB). The photocatalytic performance can be further enhanced by simple treatment with Ag+. The LbL P25/PDopa multilayer thin films had similar photocatalytic performance with LbL P25/PAA multilayer thin films. The influence of using TiO2 NPs with different particle size and surface zeta potential has also been studied.
Content
摘要 I
Abstract II
Acknowledgements III
Content IV
Figure content VII
Table content XIV
Chapter 1 Overview 1
1.1 Introduction 1
1.2 Objectives 3
Chapter 2 Literature Reviews 4
2.1 TiO2 photocatalysis 4
2.1.1 Synthesis of TiO2 nanomaterials 4
2.1.2 Applications 7
2.1.3 Photocatalytic mechanism 8
2.1.4 Major challenges to TiO2 photocatalysis process 11
2.1.5 TiO2 assisted photocatalytic dye treatment 13
2.2 Methods to immobilize TiO2 nanoparticles 16
2.2.1 Vacuum deposition techniques 16
2.2.2 Solution techniques 17
2.2.3 Layer-by-Layer self-assembly 18
2.3 Poly (L-Dopa) 21
Chapter 3 Experimental Section 27
3.1 Materials 27
3.2 Solution preparation 27
3.3 Preparation of TiO2 Thin Films 28
3.4 Characterization 30
3.5 Photocatalytic Activity 31
Chapter 4 Results and Discussion 33
4.1 Film Fabrication and Characterization 33
4.1.1 Characterization of PDopa 33
4.1.2 Characterization of multilayer thin films 38
4.2 Photocatalytic Performance 55
4.2.1 SRB calibration curve 55
4.2.2 No. of bilayers 56
4.2.3 Layer deposition time 60
4.2.4 Total deposition time 64
4.2.5 Comparison study with PAA 65
4.2.6 Reusability 68
4.2.7 Different TiO2 69
Chapter 5 Summary and Conclusions 74
Chapter 6 Future Works 76
References 79
Figure content
Figure 2-1. TEM images of the shuttle-like and round-shaped TiO2 nanoparticles (Zhang et al., 2002a). 4
Figure 2-2. SEM image of TiO2 nanotubes prepared from the AAO template (Liu et al., 2002). 5
Figure 2-3. TEM image of TiO2 nanorods prepared with the hydrothermal method 5
Figure 2-4. SEM images of TiO2 nanowires with the inset showing a TEM image of a single TiO2 nanowire with a [010] selected area electron diffraction (SAED) recorded perpendicular to the long axis of the wire (Zhang et al., 2002b). 6
Figure 2-5. Schematic diagram illustrating the principle of TiO2 photocatalysis with the presence of water pollutant (RH) (Dong et al., 2015). 9
Figure 2-6. Limitations in application of TiO2-based particles for photocatalytic degradation of organic pollutants (Dong et al., 2015). 12
Figure 2-7, Chemical structure of Sulforhodamine B. 14
Figure 2-8. Proposed Photooxidation Pathways of SRB in Aqueous TiO2 Dispersions under Visible Light Irradiation: (a) Adsorption Mode with a Sulfonate Group and (b) Adsorption Mode with a Diethylamine Group. 16
Figure 2-9. A schematic diagram of the CVD deposition. (Choy, 2002) 17
Figure 2-10. Outline of Layer-by-Layer (LbL) assembly through electrostatic interaction (Ariga et al., 2007). 19
Figure 2-11. (A) A brief timeline for the development of polydopamine. (B) The number of publications in terms of polydopamine sorted by year. Data were collected from the “Web of Science”. The word “polydopamine” is keyed into the “topic” search box (date of search: 27 September, 2013) (Liu et al., 2014). 22
Figure 2-12. Proposed formation and structure of polydopamine. In this model, polydopamine is proposed to be comprised of intra- and interchain noncovalent interactions including hydrogen bonding, π-stacking, and charge transfer (Dreyer et al., 2012). 22
Figure 2-13. Schematic illustration of possible reaction routes involved in the formation of polydopamine. This model suggests that both covalent and noncovalent bond interactions occur and play different roles in the formation of polydopamine (Vecchia et al., 2013). 23
Figure 2-14. Two reaction pathways for the formation of polydopamine: (A) covalent bond forming oxidative polymerization, and (B) a newly proposed pathway of physical self-assembly of dopamine and DHI (Hong et al., 2012). 24
Figure 2-15. Chemical structure of a) dopamine (pKa = 8.93), b) L-Dopa (pKa = 2.32) 25
Figure 2-16. a) Schematic illustration of PDopa-PAH hydrogel beads for water purification, b) schematic illustration of self-polymerization of L-Dopa to PDopa (Yu et al., 2015). 26
Figure 3-1. Layer-by-layer fabrication of TiO2/Polyelectrolyte multilayer thin films process. 29
Figure 3-2. a) Photochemical reactor PR-1000, b) Sankyo Denki Blacklight Blue (F8T5BLB, 8W, 352 nm) lamp. 32
Figure 4-1. Photographs of the self-polymerization reaction of L-Dopa in air (pH was adjusted to ca. 8.5 using 10 M tris buffer). 33
Figure 4-2. Photographs of PDopa and PDA suspension in room temperature (concentration = 2g/L, pH = 3). 34
Figure 4-3. FT-IR spectra of L-Dopa and PDopa 35
Figure 4-4. Zeta potential of PDopa under pH from 2 to 7. 37
Figure 4-5. Hydrodynamic size and zeta potential changes of Degussa P25 under pH from 2 to 7 (concentration = 1g/L, pH = 3). 38
Figure 4-6. UV-vis absorption spectra of LbL P25/PDopa multilayer thin films. Inset shows the linear regression of absorption at 300 nm for 2.5, 5.5, 10.5, 15.5 and 20.5 bilayers of LbL P25/PDopa multilayer thin films. 39
Figure 4-7. UV-vis transmittance spectra of LbL P25/PDopa multilayer thin films. 40
Figure 4-8. Photographs of LbL P25/PDopa multilayer thin films on quartz slides (coated area has been selected within the red dash rectangle). 40
Figure 4-9. The top-view SEM images (Mag = ×10k) of a) 0.5, b) 2.5, c) 5.5, d) 10.5, e) 15.5 and f) 20.5 bilayers P25/PDopa. Inset of a) shows the top-view SEM image of 0.5 bilayers LbL P25/PDopa multilayer thin films in Mag = ×1k. 42
Figure 4-10. The cross-section SEM images of LbL P25/PDopa multilayer thin films. On the left are in Mag = ×100k of a)0.5, c)2.5, e)5.5, g)10.5, i)15.5 and k)20.5 bilayers LbL P25/PDopa multilayer thin films. On the right are in Mag = ×10k of b)0.5, d)2.5, f)5.5, h)10.5, j)15.5 and l)20.5 bilayers LbL P25/PDopa multilayer thin films. 44
Figure 4-11. Thickness of LbL P25/PDopa multilayer thin films measured by cross-section SEM images (Mag = ×100k). The black solid line is the linear regression of the thickness growth of 2.5, 5.5, 10.5, 15.5 and 20.5 bilayers of LbL P25/PDopa multilayer thin films. 44
Figure 4-12. High magnification SEM images of LbL P25/PDopa multilayer thin films (left: top-view; right: cross-section). 46
Figure 4-13. Energy-dispersive X-ray spectroscopy (EDX) of the 10.5 bilayers LbL P25/PDopa multilayer thin film, a) Ti Ka1, b) O Ka1, c) C Ka1_2 and d) N Ka1_2. 48
Figure 4-14. AFM images of LbL P25/PDopa multilayer thin films (left: 2D; right: 3D). 50
Figure 4-15. FT-IR spectra of P25, PAA and P25/PAA composite. 53
Figure 4-16. FT-IR spectra of P25, PDopa and P25/PDopa composite. 53
Figure 4-17. Calibration curve of Sulforhodamine B (SRB) (absorbance determine at 562 nm in UV-vis spectra). Inset shows the UV-vis spectra of SRB at different concentration (M). 55
Figure 4-18. Degradation profiles of SRB using different number of bilayers of LbL P25/PDopa multilayer thin films. 56
Figure 4-19. First-order kinetic plot of ln(C/C0) vs. time (min) for photodegradation of SRB using different number of bilayers of LbL P25/PDopa multilayer thin films. 57
Figure 4-20. Linear regression of the first-order kinetic photodegradation rates of SRB using different number of bilayers of LbL P25/PDopa multilayer thin films. 57
Figure 4-21. Degradation profiles of SRB using 5.5 bilayers of LbL P25/PDopa multilayer thin films in different layer deposition time. 61
Figure 4-22. First-order kinetic plot of ln(C/C0) vs. time (min) for photodegradation of SRB using 5.5 bilayers of LbL P25/PDopa multilayer thin films in different layer deposition time. 61
Figure 4-23. Plot of first-order kinetic photodegradation rates of SRB evolution (30 minutes) using LbL 5.5 bilayers multilayer thin films in different layer deposition time. 62
Figure 4-24. Degradation profiles of SRB using different number of bilayers of LbL P25/PAA multilayer thin films. 65
Figure 4-25. First-order kinetic photodegradation rates comparison of LbL P25/PAA and P25/PDopa multilayer thin films in a) 2.5 bilayers, b) 5.5 bilayers, c) 10.5 bilayers, d) 15.5 bilayers, e) 20.5 bilayers and f) 60-minute photocatalytic removal ratio of SRB by LbL P25/PAA (white) and P25/PDopa (grey) multilayer thin films. 66
Figure 4-26. Removal ratio recovery of 5.5 bilayers LbL P25/PDopa multilayer thin films in different rounds. 68
Figure 4-27. First-order kinetic photodegradation rates of SRB using 0.5 bilayer LbL P25/PDopa multilayer thin film (black square is the first round, red circle is the second round). 68
Figure 4-28. The hydrodynamic size and surface zeta potential of the 4 kinds of TiO2 NPs used in this work. 70
Figure 4-29. UV-vis spectra (transmittance) of 5.5 bilayers TiO2/PDopa multilayer thin films coated on quartz slides. Inset shows the photographs of the corresponding coated quartz slides. 70
Figure 4-30. Plot of correlation between TiO2 grain size and their corresponding transmittance at 300 nm (5.5 bilayers LbL multilayer thin films on quartz slides). 71
Figure 4-31. First-oder kinetic photodegradation rates of SRB (30 minutes) using 5.5 bilayers LbL TiO2/PDopa multilayer thin films. 71
Figure 6-1. Photodegradation rates comparison of SRB by using 5.5 bilayers LbL P25/PAA and P25/PDopa multilayer thin films (second round: with modification using 10 M AgNO3). 76
Table content
Table 2-1. Summary of commonly used TiO2 nanomaterial preparation methods and the corresponding conditions (Chen and Mao, 2007). 6
Table 3-1. Summary of different number of bilayers and their composition used in this work. 30
Table 4-1. Summary of surface morphology of LbL P25/PDopa multilayer thin films. 52
Table 4-2. Summary of the photocatalytic activity of the LbL P25/PDopa multilayer thin films towards the degradation of SRB. 58
Table 4-3. Summary of first-order kinetic photodegradation rates of SRB by LbL P25/PDopa multilayer thin films using different layer deposition time. 63
Table 4-4. Summary of total deposition time study. 65
Content
摘要 I
Abstract II
Acknowledgements III
Content IV
Figure content VII
Table content XIV
Chapter 1 Overview 1
1.1 Introduction 1
1.2 Objectives 3
Chapter 2 Literature Reviews 4
2.1 TiO2 photocatalysis 4
2.1.1 Synthesis of TiO2 nanomaterials 4
2.1.2 Applications 7
2.1.3 Photocatalytic mechanism 8
2.1.4 Major challenges to TiO2 photocatalysis process 11
2.1.5 TiO2 assisted photocatalytic dye treatment 13
2.2 Methods to immobilize TiO2 nanoparticles 16
2.2.1 Vacuum deposition techniques 16
2.2.2 Solution techniques 17
2.2.3 Layer-by-Layer self-assembly 18
2.3 Poly (L-Dopa) 21
Chapter 3 Experimental Section 27
3.1 Materials 27
3.2 Solution preparation 27
3.3 Preparation of TiO2 Thin Films 28
3.4 Characterization 30
3.5 Photocatalytic Activity 31
Chapter 4 Results and Discussion 33
4.1 Film Fabrication and Characterization 33
4.1.1 Characterization of PDopa 33
4.1.2 Characterization of multilayer thin films 38
4.2 Photocatalytic Performance 55
4.2.1 SRB calibration curve 55
4.2.2 No. of bilayers 56
4.2.3 Layer deposition time 60
4.2.4 Total deposition time 64
4.2.5 Comparison study with PAA 65
4.2.6 Reusability 68
4.2.7 Different TiO2 69
Chapter 5 Summary and Conclusions 74
Chapter 6 Future Works 76
References 79
Figure content
Figure 2-1. TEM images of the shuttle-like and round-shaped TiO2 nanoparticles (Zhang et al., 2002a). 4
Figure 2-2. SEM image of TiO2 nanotubes prepared from the AAO template (Liu et al., 2002). 5
Figure 2-3. TEM image of TiO2 nanorods prepared with the hydrothermal method 5
Figure 2-4. SEM images of TiO2 nanowires with the inset showing a TEM image of a single TiO2 nanowire with a [010] selected area electron diffraction (SAED) recorded perpendicular to the long axis of the wire (Zhang et al., 2002b). 6
Figure 2-5. Schematic diagram illustrating the principle of TiO2 photocatalysis with the presence of water pollutant (RH) (Dong et al., 2015). 9
Figure 2-6. Limitations in application of TiO2-based particles for photocatalytic degradation of organic pollutants (Dong et al., 2015). 12
Figure 2-7, Chemical structure of Sulforhodamine B. 14
Figure 2-8. Proposed Photooxidation Pathways of SRB in Aqueous TiO2 Dispersions under Visible Light Irradiation: (a) Adsorption Mode with a Sulfonate Group and (b) Adsorption Mode with a Diethylamine Group. 16
Figure 2-9. A schematic diagram of the CVD deposition. (Choy, 2002) 17
Figure 2-10. Outline of Layer-by-Layer (LbL) assembly through electrostatic interaction (Ariga et al., 2007). 19
Figure 2-11. (A) A brief timeline for the development of polydopamine. (B) The number of publications in terms of polydopamine sorted by year. Data were collected from the “Web of Science”. The word “polydopamine” is keyed into the “topic” search box (date of search: 27 September, 2013) (Liu et al., 2014). 22
Figure 2-12. Proposed formation and structure of polydopamine. In this model, polydopamine is proposed to be comprised of intra- and interchain noncovalent interactions including hydrogen bonding, π-stacking, and charge transfer (Dreyer et al., 2012). 22
Figure 2-13. Schematic illustration of possible reaction routes involved in the formation of polydopamine. This model suggests that both covalent and noncovalent bond interactions occur and play different roles in the formation of polydopamine (Vecchia et al., 2013). 23
Figure 2-14. Two reaction pathways for the formation of polydopamine: (A) covalent bond forming oxidative polymerization, and (B) a newly proposed pathway of physical self-assembly of dopamine and DHI (Hong et al., 2012). 24
Figure 2-15. Chemical structure of a) dopamine (pKa = 8.93), b) L-Dopa (pKa = 2.32) 25
Figure 2-16. a) Schematic illustration of PDopa-PAH hydrogel beads for water purification, b) schematic illustration of self-polymerization of L-Dopa to PDopa (Yu et al., 2015). 26
Figure 3-1. Layer-by-layer fabrication of TiO2/Polyelectrolyte multilayer thin films process. 29
Figure 3-2. a) Photochemical reactor PR-1000, b) Sankyo Denki Blacklight Blue (F8T5BLB, 8W, 352 nm) lamp. 32
Figure 4-1. Photographs of the self-polymerization reaction of L-Dopa in air (pH was adjusted to ca. 8.5 using 10 M tris buffer). 33
Figure 4-2. Photographs of PDopa and PDA suspension in room temperature (concentration = 2g/L, pH = 3). 34
Figure 4-3. FT-IR spectra of L-Dopa and PDopa 35
Figure 4-4. Zeta potential of PDopa under pH from 2 to 7. 37
Figure 4-5. Hydrodynamic size and zeta potential changes of Degussa P25 under pH from 2 to 7 (concentration = 1g/L, pH = 3). 38
Figure 4-6. UV-vis absorption spectra of LbL P25/PDopa multilayer thin films. Inset shows the linear regression of absorption at 300 nm for 2.5, 5.5, 10.5, 15.5 and 20.5 bilayers of LbL P25/PDopa multilayer thin films. 39
Figure 4-7. UV-vis transmittance spectra of LbL P25/PDopa multilayer thin films. 40
Figure 4-8. Photographs of LbL P25/PDopa multilayer thin films on quartz slides (coated area has been selected within the red dash rectangle). 40
Figure 4-9. The top-view SEM images (Mag = ×10k) of a) 0.5, b) 2.5, c) 5.5, d) 10.5, e) 15.5 and f) 20.5 bilayers P25/PDopa. Inset of a) shows the top-view SEM image of 0.5 bilayers LbL P25/PDopa multilayer thin films in Mag = ×1k. 42
Figure 4-10. The cross-section SEM images of LbL P25/PDopa multilayer thin films. On the left are in Mag = ×100k of a)0.5, c)2.5, e)5.5, g)10.5, i)15.5 and k)20.5 bilayers LbL P25/PDopa multilayer thin films. On the right are in Mag = ×10k of b)0.5, d)2.5, f)5.5, h)10.5, j)15.5 and l)20.5 bilayers LbL P25/PDopa multilayer thin films. 44
Figure 4-11. Thickness of LbL P25/PDopa multilayer thin films measured by cross-section SEM images (Mag = ×100k). The black solid line is the linear regression of the thickness growth of 2.5, 5.5, 10.5, 15.5 and 20.5 bilayers of LbL P25/PDopa multilayer thin films. 44
Figure 4-12. High magnification SEM images of LbL P25/PDopa multilayer thin films (left: top-view; right: cross-section). 46
Figure 4-13. Energy-dispersive X-ray spectroscopy (EDX) of the 10.5 bilayers LbL P25/PDopa multilayer thin film, a) Ti Ka1, b) O Ka1, c) C Ka1_2 and d) N Ka1_2. 48
Figure 4-14. AFM images of LbL P25/PDopa multilayer thin films (left: 2D; right: 3D). 50
Figure 4-15. FT-IR spectra of P25, PAA and P25/PAA composite. 53
Figure 4-16. FT-IR spectra of P25, PDopa and P25/PDopa composite. 53
Figure 4-17. Calibration curve of Sulforhodamine B (SRB) (absorbance determine at 562 nm in UV-vis spectra). Inset shows the UV-vis spectra of SRB at different concentration (M). 55
Figure 4-18. Degradation profiles of SRB using different number of bilayers of LbL P25/PDopa multilayer thin films. 56
Figure 4-19. First-order kinetic plot of ln(C/C0) vs. time (min) for photodegradation of SRB using different number of bilayers of LbL P25/PDopa multilayer thin films. 57
Figure 4-20. Linear regression of the first-order kinetic photodegradation rates of SRB using different number of bilayers of LbL P25/PDopa multilayer thin films. 57
Figure 4-21. Degradation profiles of SRB using 5.5 bilayers of LbL P25/PDopa multilayer thin films in different layer deposition time. 61
Figure 4-22. First-order kinetic plot of ln(C/C0) vs. time (min) for photodegradation of SRB using 5.5 bilayers of LbL P25/PDopa multilayer thin films in different layer deposition time. 61
Figure 4-23. Plot of first-order kinetic photodegradation rates of SRB evolution (30 minutes) using LbL 5.5 bilayers multilayer thin films in different layer deposition time. 62
Figure 4-24. Degradation profiles of SRB using different number of bilayers of LbL P25/PAA multilayer thin films. 65
Figure 4-25. First-order kinetic photodegradation rates comparison of LbL P25/PAA and P25/PDopa multilayer thin films in a) 2.5 bilayers, b) 5.5 bilayers, c) 10.5 bilayers, d) 15.5 bilayers, e) 20.5 bilayers and f) 60-minute photocatalytic removal ratio of SRB by LbL P25/PAA (white) and P25/PDopa (grey) multilayer thin films. 66
Figure 4-26. Removal ratio recovery of 5.5 bilayers LbL P25/PDopa multilayer thin films in different rounds. 68
Figure 4-27. First-order kinetic photodegradation rates of SRB using 0.5 bilayer LbL P25/PDopa multilayer thin film (black square is the first round, red circle is the second round). 68
Figure 4-28. The hydrodynamic size and surface zeta potential of the 4 kinds of TiO2 NPs used in this work. 70
Figure 4-29. UV-vis spectra (transmittance) of 5.5 bilayers TiO2/PDopa multilayer thin films coated on quartz slides. Inset shows the photographs of the corresponding coated quartz slides. 70
Figure 4-30. Plot of correlation between TiO2 grain size and their corresponding transmittance at 300 nm (5.5 bilayers LbL multilayer thin films on quartz slides). 71
Figure 4-31. First-oder kinetic photodegradation rates of SRB (30 minutes) using 5.5 bilayers LbL TiO2/PDopa multilayer thin films. 71
Figure 6-1. Photodegradation rates comparison of SRB by using 5.5 bilayers LbL P25/PAA and P25/PDopa multilayer thin films (second round: with modification using 10 M AgNO3). 76

Table content
Table 2-1. Summary of commonly used TiO2 nanomaterial preparation methods and the corresponding conditions (Chen and Mao, 2007). 6
Table 3-1. Summary of different number of bilayers and their composition used in this work. 30
Table 4-1. Summary of surface morphology of LbL P25/PDopa multilayer thin films. 52
Table 4-2. Summary of the photocatalytic activity of the LbL P25/PDopa multilayer thin films towards the degradation of SRB. 58
Table 4-3. Summary of first-order kinetic photodegradation rates of SRB by LbL P25/PDopa multilayer thin films using different layer deposition time. 63
Table 4-4. Summary of total deposition time study. 65
References
Ajmal, A.; Majeed, I.; Malik, R. N.; Idriss, H.; Nadeem, M. A. Principles and Mechanisms of Photocatalytic Dye Degradation on TiO2 Based Photocatalysts: a Comparative Overview. RSC Adv. 2014, 4, 37003–37026.
Ariga, K.; Hill, J. P.; Ji, Q. Layer-by-Layer Assembly as a Versatile Bottom-Up Nanofabrication Technique for Exploratory Research and Realistic Application. Phys. Chem. Chem. Phys. 2007, 9, 2319–2340.
Chen, X.; Mao, S. S. Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications. Chem. Rev. 2007, 107, 2891−2959.
Chen, X.; Zhang, J.; Zhai, H.; Hu, Z. Determination of Levodopa by Capillary Zone Electrophoresis Using an Acidic Phosphate Buffer and Its Application in the Analysis of Beans. Food Chem. 2005, 92, 381–386.
Choi, G. H.; Rhee, D. K.; Park, A. R.; Oh, M. J. Ag Nanoparticle/Polydopamine-Coated Inverse Opals as Highly Efficient Catalytic Membranes. ACS Appl. Mater. Interfaces 2016, 8, 3250−3257.
Choy, K. L. Chemical Vapour Deposition of Coatings. Prog. Mater Sci. 2002, 48, 57–170.
Decher, G. Fuzzy Nanoassemblies:Toward Layered PolymericMulticomposites. Science 1997, 277, 1232–1237.
Dong, H.; Zeng, G.; Tang, L.; Fan, C.; Zhang, C.; He, X.; He, Y. An Overview on Limitations of TiO2-Based Particles for Photocatalytic Degradation of Organic Pollutants and the Corresponding Countermeasures. Water Res. 2015, 79, 128–146.
Dreyer, D. R.; Miller, D. J.; Freeman, B. D.; Paul, D. R.; Bielawski, C. W. Elucidating the Structure of Poly(Dopamine). Langmuir 2012, 28, 6428–6435.
Fu, J.; Chen, Z.; Wang, M.; Liu, S.; Zhang, J.; Zhang, J.; Han, R.; Xu, Q. Adsorption of Methylene Blue by a High-Efficiency Adsorbent (Polydopamine Microspheres): Kinetics, Isotherm, Thermodynamics and Mechanism Analysis. Chem. Eng. J. 2015, 259, 53–61.
Ghosh, S. K.; Kundu, S.; Mandal, M.; Nath, S. Studies on the Evolution of Silver Nanoparticles in Micelle by UV-Photoactivation. J. Nanopart. Res. 2003, 5, 577–587.
Gupta, S. M.; Tripathi, M. A Review of TiO2. Chin. Sci. Bull. 2011, 56, 1639–1657.
He, Q.; Cui, Y.; Ai, S.; Tian, Y.; Li, J. Self-Assembly of Composite Nanotubes and Their Applications. Curr. Opin. Colloid Interface Sci. 2009, 14, 115–125.
Hendren, C. O.; Mesnard, X.; Dröge, J. Estimating Production Data for Five Engineered Nanomaterials as a Basis for Exposure Assessment. Environ. Sci. Technol. 2011, 45, 2562–2569.
Herrmann, J. M. Heterogeneous Photocatalysis: Fundamentals and Applications to the Removal of Various Types of Aqueous Pollutants. Catal. Today 1999, 53, 115–129.
Hirakawa, T.; Kamat, P. V. Charge Separation and Catalytic Activity of Ag@TiO2 Core−Shell Composite Clusters Under UV−Irradiation. J. Am. Chem. Soc. 2005, 127, 3928–3934.
Hojjati, B.; Sui, R.; Charpentier, P. A. Synthesis of TiO2/PAA Nanocomposite by RAFT Polymerization. Polymer 2007, 48, 5850–5858.
Hong, S.; Na, Y. S.; Choi, S.; Song, I. T.; Kim, W. Y.; Lee, H. Non‐Covalent Self‐Assembly and Covalent Polymerization Co‐Contribute to Polydopamine Formation. Adv. Funct. Mater. 2012, 22, 4711–4717.
Kamegawa, T.; Seto, H.; Matsuura, S.; Yamashita, H. Preparation of Hydroxynaphthalene-Modified TiO2 via Formation of Surface Complexes and Their Applications in the Photocatalytic Reduction of Nitrobenzene Under Visible-Light Irradiation. ACS Appl. Mater. Interfaces 2012, 4, 6635–6639.
Keeney, M.; Jiang, X. Y.; Yamane, M.; Lee, M.; Goodman, S.; Yang, F. Nanocoating for Biomolecule Delivery Using Layer-by-Layer Self-Assembly. J. Mater. Chem. B 2015, 3, 8757–8770.
Kim, J.-H.; Shiratori, S. Characterization of TiO2/Polyelectrolyte Thin Film Fabricated by a Layer-by-Layer Self-Assembly Method. Jpn. J. Appl. Phys. 2005, 44, 7588–7592.
Konstantinou, I. K.; Albanis, T. A. TiO2-Assisted Photocatalytic Degradation of Azo Dyes in Aqueous Solution: Kinetic and Mechanistic Investigations. Appl. Catal., B 2004, 49, 1–14.
Kumbhar, A.; Chumanov, G. Synthesis of Iron(III)-Doped Titania Nanoparticles and Its Application for Photodegradation of Sulforhodamine-B Pollutant. J. Nanopart. Res. 2005, 7, 489–498.
Lee, D.; Rubner, M. F.; Cohen, R. E. All-Nanoparticle Thin-Film Coatings. Nano Lett. 2006, 6, 2305–2312.
Lee, H.; Dellatore, S. M.; Miller, W. M.; Messersmith, P. B. Mussel-Inspired Surface Chemistry for Multifunctional Coatings. Science 2007, 318, 426–430.
Li, H.; Duan, X.; Liu, G.; Liu, X. Photochemical Synthesis and Characterization of Ag/TiO2 Nanotube Composites. J Mater. Sci. 2008, 43, 1669–1676.
Liu, G.; Li, X.; Zhao, J.; Hidaka, H.; Serpone, N. Photooxidation Pathway of Sulforhodamine-B. Dependence on the Adsorption Mode on TiO2 Exposed to Visible Light Radiation. Environ. Sci. Technol. 2000, 34, 3982–3990.
Liu, S. M.; Gan, L. M.; Liu, L. H.; Zhang, W. D.; Zeng, H. C. Synthesis of Single-Crystalline TiO2 Nanotubes. Chem. Mater. 2002, 14, 1391–1397.
Liu, Y.; Ai, K.; Lu, L. Polydopamine and Its Derivative Materials: Synthesis and Promising Applications in Energy, Environmental, and Biomedical Fields. Chem. Rev. 2014, 114, 5057–5115.
Pastoriza-Santos, I.; Koktysh, D. S.; Mamedov, A. A. One-Pot Synthesis of Ag@TiO2 Core-Shell Nanoparticles and Their Layer-by-Layer Assembly. Langmuir 2000, 16, 2731–2735.
Prinz, E. M.; Szamocki, R.; Nica, V. Synthesis and Characterization of Layer-by-Layer Composition of Nanoparticles Coated with Doxorubicin for Drug Delivery Applications. Z Phys. Chem. 2013, 227, 121–131.
Priya, D. N.; Modak, J. M.; Raichur, A. M. LbL Fabricated Poly (Styrene Sulfonate)/TiO2 Multilayer Thin Films for Environmental Applications. ACS Appl. Mater. Interfaces 2009, 1, 2684–2693.
Rajh, T.; Chen, L. X.; Lukas, K.; Liu, T.; Thurnauer, M. C.; Tiede, D. M. Surface Restructuring of Nanoparticles: an Efficient Route for Ligand−Metal Oxide Crosstalk. J. Phys. Chem. B 2002, 106, 10543–10552.
Robichaud, C. O.; Uyar, A. E.; Darby, M. R. Estimates of Upper Bounds and Trends in Nano-TiO2 Production as a Basis for Exposure Assessment. Environ. Sci. Technol. 2009, 43, 4227–4233.
Rongé, J.; Bets, J.; Pattanaik, S.; Bosserez, T.; Borellini, S. Tailoring Preparation, Structure and Photocatalytic Activity of Layer-by-Layer Films for Degradation of Different Target Molecules. Catal. Today 2015, 246, 28–34.
Schweigert, N.; Zehnder, A. J. B.; Eggen, R. I. L. Chemical Properties of Catechols and Their Molecular Modes of Toxic Action in Cells, From Microorganisms to Mammals. Environ. Microbiol. 2001, 3, 81–91.
Shimomura, H.; Gemici, Z.; Cohen, R. E.; Rubner, M. F. Layer-by-Layer-Assembled High-Performance Broadband Antireflection Coatings. ACS Appl. Mater. Interfaces 2010, 2, 813–820.
Tachan, Z.; Hod, I.; Zaban, A. The TiO2-Catechol Complex: Coupling Type II Sensitization with Efficient Catalysis of Water Oxidation. Adv. Energy Mater. 2013, 4, 1301249.
Tang, L.; Livi, K. J. T.; Chen, K. L. Polysulfone Membranes Modified with Bioinspired Polydopamine and Silver Nanoparticles Formed in SituTo Mitigate Biofouling. Environ. Sci. Technol. Lett. 2015, 2, 59–65.
Vecchia, Della, N. F.; Avolio, R.; Alfè, M.; Errico, M. E.; Napolitano, A.; d'Ischia, M. Building‐Block Diversity in Polydopamine Underpins a Multifunctional Eumelanin‐Type Platform Tunable Through a Quinone Control Point. Adv. Funct. Mater. 2013, 23, 1331–1340.
Waite, J. H.; Tanzer, M. L. Polyphenolic Substance of Mytilus Edulis: Novel Adhesive Containing L-Dopa and Hydroxyproline. Science 1981, 212, 1038–1040.
Wang, D.; Bierwagen, G. P. Sol–Gel Coatings on Metals for Corrosion Protection. Prog. Org. Coat. 2009, 64, 327–338.
Wu, C.-Y.; Lee, Y.-L.; Lo, Y.-S.; Lin, C.-J.; Wu, C.-H. Thickness-Dependent Photocatalytic Performance of Nanocrystalline TiO2 Thin Films Prepared by Sol–Gel Spin Coating. Appl. Surf. Sci. 2013, 280, 737–744.
Xie, Y.; Yan, B.; Xu, H.; Chen, J.; Liu, Q.; Deng, Y.; Zeng, H. Highly Regenerable Mussel-Inspired Fe3O4@Polydopamine-Ag Core–Shell Microspheres as Catalyst and Adsorbent for Methylene Blue Removal. ACS Appl. Mater. Interfaces 2014, 6, 8845–8852.
Yang, Z.; Zhang, X.; Cui, J. Self-Assembly of Bioinspired Catecholic Cyclodextrin TiO2 Heterosupramolecule with High Adsorption Capacity and Efficient Visible-Light Photoactivity. Appl. Catal., B 2014, 148-149, 243–249.
Yoo, D.; Shiratori, S. S.; Rubner, M. F. Controlling Bilayer Composition and Surface Wettability of Sequentially Adsorbed Multilayers of Weak Polyelectrolytes. Macromolecules 1998.
Yu, L.; Liu, X.; Yuan, W.; Brown, L. J.; Wang, D. Confined Flocculation of Ionic Pollutants by Poly(L-Dopa)-Based Polyelectrolyte Complexes in Hydrogel Beads for Three-Dimensional, Quantitative, Efficient Water Decontamination. Langmuir 2015, 31, 6351–6366.
Zhang, D.; Qi, L.; Ma, J.; Cheng, H. Formation of Crystalline Nanosized Titania in Reverse Micelles at Room Temperature. J. Mater. Chem. 2002a, 12, 3677–3680.
Zhang, G.; Choi, W. A Low-Cost Sensitizer Based on a Phenolic Resin for Charge-Transfer Type Photocatalysts Working Under Visible Light. Chem. Commun. 2012, 48, 10621–10623.
Zhang, Q.; Gao, L. Preparation of Oxide Nanocrystals with Tunable Morphologies by the Moderate Hydrothermal Method: Insights From Rutile TiO2. Langmuir 2003, 19, 967–971.
Zhang, Y. X.; Li, G. H.; Jin, Y. X.; Zhang, Y.; Zhang, J.; Zhang, L. D. Hydrothermal Synthesis and Photoluminescence of TiO2 Nanowires. Chem. Phys. Lett. 2002b, 365, 300–304.
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *