帳號:guest(18.218.62.194)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳彥燕
作者(外文):Tan, Yan Yan
論文名稱(中文):利用基因調控網絡分析探究雙酚A對於淋巴細胞癌化效應之影響
論文名稱(外文):Gene-network analysis identifies carcinogenic effect of bisphenol A exposure on lymphomagenesis
指導教授(中文):莊淳宇
指導教授(外文):Chuang, Chun Yu
口試委員(中文):鄒粹軍
蔡孟勳
口試委員(外文):Tsou, Tsui Chun
Tsai, Mon Hsun
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學號:103012401
出版年(民國):105
畢業學年度:105
語文別:英文
論文頁數:114
中文關鍵詞:淋巴癌雙酚A基因網絡CTNNB1DNA損傷細胞週期
外文關鍵詞:lymphomabisphenol Agene networkCTNNB1DNA damagecell cycle
相關次數:
  • 推薦推薦:0
  • 點閱點閱:205
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
淋巴癌發生率自二十世紀末急劇上升,為全球十大惡性腫瘤之一,已知淋巴癌致病原因與免疫能力下降有關,主要危險因子為暴露環境或職業中化學物質。雙酚A (bisphenol A; BPA)是廣泛用於製造聚碳酸酯塑料或環氧樹脂等材料之塑化劑。有研究指出BPA會藉由擾亂基因調控而導致疾病和癌症發生。已發現BPA會影響免疫反應,當免疫系統異常會增加淋巴癌發生機會,推測BPA可能干擾免疫系統誘發淋巴細胞癌化。由於暴露BPA可能誘發淋巴細胞癌化之分子機制並不清楚,因此本研究目的為探討BPA暴露是否藉由影響基因調控,誘發人類淋巴細胞癌化。
本研究利用巨量資料分析(meta-analysis)方法,匯集309片人類非何杰金氏淋巴癌(non-Hodgkin lymphoma; NHL)與正常組織基因晶片及98片BPA暴露與對照組之人類細胞株基因晶片,分別找出罹患NHL和暴露BPA之差異表現基因(differentially expressed genes; DEGs)。接著利用加權基因關聯性分析(weighted gene co-expression network analysis; WGCNA)建立對應BPA和NHL之基因模組,再利用Cytoscape分析各基因模組之基因網絡,並整合建構出BPA暴露可能導致NHL癌化之基因調控路徑。由基因網絡分析結果顯示,BPA暴露可能影響CTNNB1 (catenin beta 1)-NFKB1 (nuclear factor kappa B subunit 1)-AR (androgen receptor)-IGF1 (insulin like growth factor 1)-TWIST1 (twist family BHLH transcription factor 1)路徑,導致淋巴細胞癌化。本研究亦利用人類TK6淋巴細胞驗證BPA暴露(10, 103和105 nM)對於淋巴細胞癌化之影響。TK6細胞暴露BPA會上調CTNNB1、NFKB1、AR、IGF1和TWIST1基因表現,造成單股和雙股DNA斷裂,促使細胞週期停滯於G2/M期,以及降低DNA修復基因tumor protein 53 (TP53)和cyclin-dependent kinase inhibitor 1A (CDKN1A)表現量。CTNNB1 siRNA會下調BPA暴露後NFKB1、AR、IGF1和TWIST1基因表現增加量,減少DNA損傷與G2/M期停滯現象,提升TP53和CDKN1A表現量和修復能力。因此,本研究發現BPA暴露會影響CTNNB1-NFKB1-AR-IGF1-TWIST1路徑,導致DNA損傷,促使細胞週期停滯,造成DNA修復功能異常,誘發淋巴細胞癌化發生之可能性。
Lymphoma is the most top 10 cancers in worldwide and the incidence rise strikingly since the last half of the 20th century. Lymphoma is a cancer affecting the immune system, the major risk factor is associated with exposure to occupational or environmental chemicals. Bisphenol A (BPA) is a common manufactory chemical widely used in polycarbonate and epoxy plastic products. BPA can alter gene expression to raise susceptibility of disease and cancer. BPA can interfere with immune reaction, and aberrant immune function has been reported that related to lymphoma incidence. BPA may be considered to induce lymphomagenesis through influencing immune system. However, the molecular effect of BPA exposure on lymphomagenesis has not been declared. Therefore, the purpose of this study was to investigate whether BPA exposure would lead to lymphomagenesis through gene dysregulation.
This study conducted a meta-analysis in 309 microarray datasets of human NHL tissues and 98 microarray datasets of human cells in exposure to BPA. The differentially expressed genes (DEGs) of NHL and BPA exposure were identified individually. This study used weighted gene co-expression network analysis (WGCNA) to explore module genes of NHL and BPA exposure, respectively, and Cytoscape to construct the potential pathway of NHL progression in response to BPA exposure. The results of the gene-network analysis presented that BPA exposure could activate the CTNNB1 (catenin beta 1)-NFKB1 (nuclear factor kappa B subunit 1)-AR (androgen receptor)-IGF1 (insulin like growth factor 1)-TWIST1 (twist family BHLH transcription factor 1) pathway to lead to lymphomagenesis. Moreover, the result of gene-network analysis was validated in human lymphoblastoid TK6 cells. In TK6 cells, BPA exposure induced gene expression of CTNNB1, NFKB1, AR, IGF1 and TWIST1, caused DNA single strand and double strand damage, promoted G2/M cell cycle arrest, and reduced expression of DNA repair genes TP53 (tumor protein P53) and CDKN1A (cyclin-dependent kinase inhibitor 1A). This study demonstrated that transfection of siCTNNB1 attenuated BPA-induced NFKB1, AR, IGF1 and TWIST1 expression, diminished DNA damage and G2/M arrest, and elevated TP53 and CDKN1A expression for repair function. This study found that BPA exposure can cause DNA damage and disrupt cell cycle and DNA repair function potentially for lymphomagenesis underlying CTNNB1-NFKB1-AR-IGF1-TWIST1 pathway.
摘要 II
Abstract IV
Contents VI
Lists of Tables IX
Lists of Figures X
Chapter 1 Introduction 1
Chapter 2 Paper review 3
2.1 Lymphoma 3
2.2 Aberrant gene expression in non-Hodgkin lymphoma 4
2.3 Endocrine disrupting chemicals 6
2.4 Bisphenol A 7
2.5 Aberrant gene expression in exposure to BPA 10
2.6 Weighted gene co-expression network analysis and Cytoscape for gene-network analysis 11
2.7 The role of cell cycle regulation, DNA damage and DNA repair in carcinogenesis 13
Chapter 3 Aim of this study 15
Chapter 4 Materials and methods 17
4.1 Collection of microarray dataset 17
4.2 Preprocessing and normalization of microarray data 20
4.3 Differentially expressed genes analysis 21
4.4 Weighted gene co-expression network analysis 22
4.5 Gene ontology (GO) analysis 23
4.6 Reconstruction of gene network for regulatory pathway identification 24
4.7 Receiver-operator characteristic curve 25
4.8 Cell culture and BPA treatment 26
4.9 Cell viability assay 27
4.10 Total RNA extraction 28
4.11 Reverse transcription polymerase chain reaction (RT-PCR) and quantitative real-time PCR (qPCR) for mRNA determination 28
4.12 Cell cycle analysis 30
4.13 Comet assay 31
4.14 Transfection of small interfering RNA 33
4.15 Statistical analysis 34
Chapter 5 Results 35
5.1 Identification of differentially expressed genes and module genes 37
5.2 GO term for module genes of NHL and BPA exposure 37
5.3 Ontological network of module genes for NHL and BPA exposure 40
5.4 Sub-network and potential pathways for NHL and BPA exposure 43
5.5 ROC analysis for target genes in exposure to BPA 48
5.6 Viability of TK6 cells in exposure to BPA 51
5.7 Determination of gene expression of CTNNB1, NFKB1, AR, IGF1 and TWIST1 after BPA exposure 52
5.8 Cell cycle distribution in TK6 cells exposure to BPA 57
5.9 DNA single-strand break in TK6 cells exposure to BPA 62
5.10 DNA double-strand break in TK6 cells exposure to BPA 64
5.11 Determination of DNA repair-associated genes TP53 and CDKN1A in TK6 cells exposure to BPA 66
5.12 Dose selection of CTNNB1 siRNA transfection 68
5.13 Expression of downstream genes of CTNNB1 in TK6 cells exposure to BPA after CTNNB1 siRNA transfection 70
5.14 Cell cycle distribution in TK6 cells exposure to BPA after CTNNB1 siRNA transfection 73
5.15 Attenuation of DNA single-strand break in TK6 cells exposure to BPA after CTNNB1 siRNA transfection 77
5.16 Attenuation of DNA double-strand break in TK6 cells exposure to BPA after CTNNB1 siRNA transfection 79
5.17 Expression of DNA repair-associated genes in TK6 cells exposure to BPA after CTNNB1 siRNA transfection 82
Chapter 6 Discussion 85
6.1 An integrated ontological network of BPA exposure and NHL involved in regulation of fibroblast growth factor receptor, aorta development, and immune response 85
6.2 BPA exposure increased gene expression of CTNNB1, NFKB1, AR, IGF1 and TWIST1 potentially for NHL progression 87
6.3 BPA exposure caused cell cycle arrest 92
6.4 BPA exposure caused DNA damage and dysregulation of DNA repair 94
Chapter 7 Conclusion 99
Chapter 8 References 100
1. Zhang, Q., et al., ISL-1 is overexpressed in non-Hodgkin lymphoma and promotes lymphoma cell proliferation by forming a p-STAT3/p-c-Jun/ISL-1 complex. Mol Cancer, 2014. 13: p. 181.
2. Perry, A.M., et al., Relative frequency of non-Hodgkin lymphoma subtypes in selected centres in North Africa, the middle east and India: a review of 971 cases. Br J Haematol, 2016. 172(5): p. 699-708.
3. Ministry of Health and Welfare, Taiwan, 2015.
4. Purdue, M.P., et al., Prediagnostic serum levels of cytokines and other immune markers and risk of non-hodgkin lymphoma. Cancer Res, 2011. 71(14): p. 4898-907.
5. Hoffmann, C., et al., Hodgkin lymphoma is as common as non-Hodgkin lymphoma in HIV-positive patients with sustained viral suppression and limited immune deficiency: a prospective cohort study. HIV Med, 2015. 16(4): p. 261-4.
6. Doshi, T., et al., Hypermethylation of estrogen receptor promoter region in adult testis of rats exposed neonatally to bisphenol A. Toxicology, 2011. 289(2–3): p. 74-82.
7. Clayton, E.M., et al., The impact of bisphenol A and triclosan on immune parameters in the U.S. population, NHANES 2003-2006. Environ Health Perspect, 2011. 119(3): p. 390-6.
8. Gunes, S., et al., The role of epigenetics in idiopathic male infertility. J Assist Reprod Genet, 2016.
9. Ribeiro-Varandas, E., et al., Bisphenol A alters transcript levels of biomarker genes for Major Depressive Disorder in vascular endothelial cells and colon cancer cells. Chemosphere, 2016. 153: p. 75-7.
10. Fischer, C. and R. Mamillapalli, Bisphenol A (BPA) Exposure In Utero Leads to Immunoregulatory Cytokine Dysregulation in the Mouse Mammary Gland: A Potential Mechanism Programming Breast Cancer Risk. 2016. 7(4): p. 241-51.
11. Konieczna, A., A. Rutkowska, and D. Rachon, Health risk of exposure to Bisphenol A (BPA). Rocz Panstw Zakl Hig, 2015. 66(1): p. 5-11.
12. National Comprehensive Cancer Network, NCCN Clinical Practice Guidelines in Oncology: Non-Hodgkin's Lymphoma. National Comprehensive Cancer Network.
13. Meignan, M., M. Hutchings, and L.H. Schwartz, Imaging in Lymphoma: The Key Role of Fluorodeoxyglucose-Positron Emission Tomography. Oncologist, 2015. 20(8): p. 890-5.
14. Hodgkin's Lymphoma: Research Report. The Jesse and Julie Rasch Foundation, 2016.
15. Goedert, J.J. and M. Bower, Impact of highly effective antiretroviral therapy on the risk for Hodgkin lymphoma among people with human immunodeficiency virus infection. Curr Opin Oncol, 2012. 24(5): p. 531-6.
16. Cancer facts and statistics 2016. American Cancer Society, 2016.
17. Chen, R., et al., Brentuximab vedotin for treatment of relapsed or refractory malignant lymphoma: results of a systematic review and meta-analysis of prospective studies. Drug Des Devel Ther, 2015. 9: p. 2277-83.
18. Datta, S., et al., Hepatitis viruses and non-Hodgkin’s lymphoma: A review. World J Virol, 2012. 1(6): p. 162-73.
19. Ferlay J, S.I., Ervik M, et al., GLOBOCAN 2012 v1.0, Cancer incidence and mortality worldwide: IARC CancerBase No. 11. Lyon, France: International Agency for Research on Cancer; 2013. 2015.
20. Ferlay, J., et al., Cancer incidence and mortality patterns in Europe: Estimates for 40 countries in 2012. European Journal of Cancer, 2013. 49(6): p. 1374-1403.
21. Fisher, R.I. and P. Shah, Current trends in large cell lymphoma. Leukemia, 2003. 17(10): p. 1948-60.
22. Dave, S.S., et al., Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating immune cells. N Engl J Med, 2004. 351(21): p. 2159-69.
23. Morton, L.M., et al., Lymphoma incidence patterns by WHO subtype in the United States, 1992-2001. Blood, 2006. 107(1): p. 265-76.
24. Alexander, D.D., et al., The non-Hodgkin lymphomas: a review of the epidemiologic literature. Int J Cancer, 2007. 120 Suppl 12: p. 1-39.
25. Chiu, B.C. and N. Hou, Epidemiology and etiology of non-hodgkin lymphoma. Cancer Treat Res, 2015. 165: p. 1-25.
26. Blombery, P.A., M. Wall, and J.F. Seymour, The molecular pathogenesis of B-cell non-Hodgkin lymphoma. Eur J Haematol, 2015. 95(4): p. 280-93.
27. Sniderhan, L.F., et al., Neurotrophin signaling through tropomyosin receptor kinases contributes to survival and proliferation of non-Hodgkin lymphoma. Exp Hematol, 2009. 37(11): p. 1295-309.
28. Jost, P.J. and J. Ruland, Aberrant NF-kappaB signaling in lymphoma: mechanisms, consequences, and therapeutic implications. Blood, 2007. 109(7): p. 2700-7.
29. Hinz, M., et al., NF-kappaB function in growth control: regulation of cyclin D1 expression and G0/G1-to-S-phase transition. Mol Cell Biol, 1999. 19(4): p. 2690-8.
30. Toth, C.R., et al., Members of the nuclear factor kappa B family transactivate the murine c-myb gene. J Biol Chem, 1995. 270(13): p. 7661-71.
31. Romashkova, J.A. and S.S. Makarov, NF-kappaB is a target of AKT in anti-apoptotic PDGF signalling. Nature, 1999. 401(6748): p. 86-90.
32. Hamborg, K.H., et al., A highly sensitive and specific qPCR assay for quantification of the biomarker SOX11 in mantle cell lymphoma. Eur J Haematol, 2012. 89(5): p. 385-94.
33. Mozos, A., et al., SOX11 expression is highly specific for mantle cell lymphoma and identifies the cyclin D1-negative subtype. Haematologica, 2009. 94(11): p. 1555-62.
34. Cerhan, J.R., S.I. Berndt, and J. Vijai, Genome-wide association study identifies multiple susceptibility loci for diffuse large B cell lymphoma. 2014. 46(11): p. 1233-8.
35. Davies, A.J., et al., Transformation of follicular lymphoma to diffuse large B-cell lymphoma proceeds by distinct oncogenic mechanisms. Br J Haematol, 2007. 136(2): p. 286-93.
36. Bouska, A., et al., Genome-wide copy-number analyses reveal genomic abnormalities involved in transformation of follicular lymphoma. Blood, 2014. 123(11): p. 1681-90.
37. Sanfilippo, K., et al., Determination of trace endocrine disruptors in ultrapure water for laboratory use by the yeast estrogen screen (YES) and chemical analysis (GC/MS). J Chromatogr B Analyt Technol Biomed Life Sci, 2010. 878(15-16): p. 1190-4.
38. Diamanti-Kandarakis, E., et al., Endocrine-Disrupting Chemicals: An Endocrine Society Scientific Statement. Endocrine Reviews, 2009. 30(4): p. 293-342.
39. Schug, T.T., et al., Endocrine disrupting chemicals and disease susceptibility. The Journal of Steroid Biochemistry and Molecular Biology, 2011. 127(3–5): p. 204-215.
40. Annamalai, J. and V. Namasivayam, Endocrine disrupting chemicals in the atmosphere: Their effects on humans and wildlife. Environment International, 2015. 76: p. 78-97.
41. Chalubinski, M. and M.L. Kowalski, Endocrine disrupters--potential modulators of the immune system and allergic response. Allergy, 2006. 61(11): p. 1326-35.
42. Hung, C.H., et al., Modulation of cytokine expression in human myeloid dendritic cells by environmental endocrine-disrupting chemicals involves epigenetic regulation. Environ Health Perspect, 2010. 118(1): p. 67-72.
43. Rudel, R.A., et al., Phthalates, Alkylphenols, Pesticides, Polybrominated Diphenyl Ethers, and Other Endocrine-Disrupting Compounds in Indoor Air and Dust. Environmental Science & Technology, 2003. 37(20): p. 4543-4553.
44. Aurela, B., H. Kulmala, and L. Soderhjelm, Phthalates in paper and board packaging and their migration into Tenax and sugar. Food Additives & Contaminants, 1999. 16(12): p. 571-577.
45. Mostafalou, S. and M. Abdollahi, Pesticides and human chronic diseases: Evidences, mechanisms, and perspectives. Toxicology and Applied Pharmacology, 2013. 268(2): p. 157-177.
46. Mohammed, A., et al., Toxaphene: accumulation in the adrenal cortex and effect on ACTH-stimulated corticosteroid synthesis in the rat. Toxicol Lett, 1985. 24(2-3): p. 137-43.
47. Chalubinski, M. and M.L. Kowalski, Endocrine disrupters – potential modulators of the immune system and allergic response. Allergy, 2006. 61(11): p. 1326-1335.
48. Gao, C., et al., Bisphenol A in Urine of Chinese Young Adults: Concentrations and Sources of Exposure. Bull Environ Contam Toxicol, 2016. 96(2): p. 162-7.
49. Michalowicz, J., Bisphenol A--sources, toxicity and biotransformation. Environ Toxicol Pharmacol, 2014. 37(2): p. 738-58.
50. Olea, N., et al., Estrogenicity of resin-based composites and sealants used in dentistry. Environ Health Perspect, 1996. 104(3): p. 298-305.
51. Diamanti-Kandarakis, E., et al., Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr Rev, 2009. 30(4): p. 293-342.
52. Gore, A.C., et al., Executive Summary to EDC-2: The Endocrine Society's Second Scientific Statement on Endocrine-Disrupting Chemicals. Endocr Rev, 2015. 36(6): p. 593-602.
53. Vandenberg, L.N., et al., Bisphenol-A and the Great Divide: A Review of Controversies in the Field of Endocrine Disruption. Endocrine Reviews, 2009. 30(1): p. 75-95.
54. Rosenfeld, C.S., Bisphenol A and phthalate endocrine disruption of parental and social behaviors. Front Neurosci, 2015. 9: p. 57.
55. Kang, J.H., F. Kondo, and Y. Katayama, Human exposure to bisphenol A. Toxicology, 2006. 226(2-3): p. 79-89.
56. Volkel, W., et al., Metabolism and kinetics of bisphenol a in humans at low doses following oral administration. Chem Res Toxicol, 2002. 15(10): p. 1281-7.
57. Calafat, A.M., et al., Exposure of the U.S. population to bisphenol A and 4-tertiary-octylphenol: 2003-2004. Environ Health Perspect, 2008. 116(1): p. 39-44.
58. Calafat, A.M., et al., Exposure of the U.S. Population to Bisphenol A and 4-tertiary-Octylphenol: 2003–2004. Environ Health Perspect, 2008. 116(1): p. 39-44.
59. Ouchi, K. and S. Watanabe, Measurement of bisphenol A in human urine using liquid chromatography with multi-channel coulometric electrochemical detection. J Chromatogr B Analyt Technol Biomed Life Sci, 2002. 780(2): p. 365-70.
60. Geens, T., et al., Assessment of human exposure to Bisphenol-A, Triclosan and Tetrabromobisphenol-A through indoor dust intake in Belgium. Chemosphere, 2009. 76(6): p. 755-60.
61. vom Saal, F.S., et al., A physiologically based approach to the study of bisphenol A and other estrogenic chemicals on the size of reproductive organs, daily sperm production, and behavior. Toxicol Ind Health, 1998. 14(1-2): p. 239-60.
62. Nagel, S.C., et al., Relative binding affinity-serum modified access (RBA-SMA) assay predicts the relative in vivo bioactivity of the xenoestrogens bisphenol A and octylphenol. Environ Health Perspect, 1997. 105(1): p. 70-6.
63. Markey, C.M., et al., In utero exposure to bisphenol A alters the development and tissue organization of the mouse mammary gland. Biol Reprod, 2001. 65(4): p. 1215-23.
64. Kubo, K., et al., Low dose effects of bisphenol A on sexual differentiation of the brain and behavior in rats. Neuroscience Research, 2003. 45(3): p. 345-356.
65. Schonfelder, G., et al., Parent bisphenol A accumulation in the human maternal-fetal-placental unit. Environ Health Perspect, 2002. 110(11): p. A703-7.
66. Howdeshell, K.L., et al., Exposure to bisphenol A advances puberty. Nature, 1999. 401(6755): p. 763-4.
67. Wetherill, Y.B., et al., In vitro molecular mechanisms of bisphenol A action. Reprod Toxicol, 2007. 24(2): p. 178-98.
68. Honma, S., et al., Low dose effect of in utero exposure to bisphenol A and diethylstilbestrol on female mouse reproduction. Reprod Toxicol, 2002. 16(2): p. 117-22.
69. Laws, S.C., et al., Estrogenic activity of octylphenol, nonylphenol, bisphenol A and methoxychlor in rats. Toxicol Sci, 2000. 54(1): p. 154-67.
70. Tarapore, P., et al., Exposure to bisphenol A correlates with early-onset prostate cancer and promotes centrosome amplification and anchorage-independent growth in vitro. PLoS One, 2014. 9(3): p. e90332.
71. DeMatteo, R., et al., Chemical exposures of women workers in the plastics industry with particular reference to breast cancer and reproductive hazards. New Solut, 2012. 22(4): p. 427-48.
72. Chen, Z.J., et al., Bisphenol A modulates colorectal cancer protein profile and promotes the metastasis via induction of epithelial to mesenchymal transitions. Arch Toxicol, 2015. 89(8): p. 1371-81.
73. Kim, Y.S., et al., Bisphenol A and nonylphenol have the potential to stimulate the migration of ovarian cancer cells by inducing epithelial-mesenchymal transition via an estrogen receptor dependent pathway. Chem Res Toxicol, 2015. 28(4): p. 662-71.
74. Upson, K., et al., A population-based case-control study of urinary bisphenol A concentrations and risk of endometriosis. Hum Reprod, 2014. 29(11): p. 2457-64.
75. Kundakovic, M. and F.A. Champagne, Epigenetic Perspective on the Developmental Effects of Bisphenol A. Brain, behavior, and immunity, 2011. 25(6): p. 1084-1093.
76. Smith, C.C. and H.S. Taylor, Xenoestrogen exposure imprints expression of genes (Hoxa10) required for normal uterine development. Faseb j, 2007. 21(1): p. 239-46.
77. Weng, Y.I., et al., Epigenetic influences of low-dose bisphenol A in primary human breast epithelial cells. Toxicol Appl Pharmacol, 2010. 248(2): p. 111-21.
78. Susiarjo, M., et al., Bisphenol a exposure disrupts genomic imprinting in the mouse. PLoS Genet, 2013. 9(4): p. e1003401.
79. Tang, W.Y., et al., Neonatal exposure to estradiol/bisphenol A alters promoter methylation and expression of Nsbp1 and Hpcal1 genes and transcriptional programs of Dnmt3a/b and Mbd2/4 in the rat prostate gland throughout life. Endocrinology, 2012. 153(1): p. 42-55.
80. Patisaul, H.B., et al., Anxiogenic effects of developmental bisphenol A exposure are associated with gene expression changes in the juvenile rat amygdala and mitigated by soy. PLoS One, 2012. 7(9): p. e43890.
81. Monje, L., et al., Neonatal exposure to bisphenol A modifies the abundance of estrogen receptor alpha transcripts with alternative 5'-untranslated regions in the female rat preoptic area. J Endocrinol, 2007. 194(1): p. 201-12.
82. Zhang, W.Z., et al., Combined subchronic toxicity of bisphenol A and dibutyl phthalate on male rats. Biomed Environ Sci, 2013. 26(1): p. 63-9.
83. Eisen, M.B., et al., Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A, 1998. 95(25): p. 14863-8.
84. MacLennan, N.K., et al., Weighted gene co-expression network analysis identifies biomarkers in glycerol kinase deficient mice. Mol Genet Metab, 2009. 98(1-2): p. 203-14.
85. Langfelder, P. and S. Horvath, WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics, 2008. 9: p. 559.
86. Ma, S., et al., Incorporating gene co-expression network in identification of cancer prognosis markers. BMC Bioinformatics, 2010. 11: p. 271.
87. Presson, A.P., et al., Protein expression based multimarker analysis of breast cancer samples. BMC Cancer, 2011. 11: p. 230.
88. Cline, M.S., et al., Integration of biological networks and gene expression data using Cytoscape. Nat Protoc, 2007. 2(10): p. 2366-82.
89. Shannon, P., et al., Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res, 2003. 13(11): p. 2498-504.
90. Cerami, E.G., et al., cPath: open source software for collecting, storing, and querying biological pathways. BMC Bioinformatics, 2006. 7: p. 497.
91. Salwinski, L. and D. Eisenberg, The MiSink Plugin: Cytoscape as a graphical interface to the Database of Interacting Proteins. Bioinformatics, 2007. 23(16): p. 2193-5.
92. Avila-Campillo, I., et al., BioNetBuilder: automatic integration of biological networks. Bioinformatics, 2007. 23(3): p. 392-3.
93. Bindea, G., et al., ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics, 2009. 25(8): p. 1091-3.
94. Bindea, G., J. Galon, and B. Mlecnik, CluePedia Cytoscape plugin: pathway insights using integrated experimental and in silico data. Bioinformatics, 2013. 29(5): p. 661-3.
95. Vermeulen, K., D.R. Van Bockstaele, and Z.N. Berneman, The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif, 2003. 36(3): p. 131-49.
96. Massague, J., G1 cell-cycle control and cancer. Nature, 2004. 432(7015): p. 298-306.
97. Zhou, B.B. and S.J. Elledge, The DNA damage response: putting checkpoints in perspective. Nature, 2000. 408(6811): p. 433-9.
98. Malumbres, M. and M. Barbacid, Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer, 2009. 9(3): p. 153-66.
99. Branzei, D. and M. Foiani, Regulation of DNA repair throughout the cell cycle. Nat Rev Mol Cell Biol, 2008. 9(4): p. 297-308.
100. Gee, H.E., et al., MicroRNA-Related DNA Repair/Cell-Cycle Genes Independently Associated With Relapse After Radiation Therapy for Early Breast Cancer. International Journal of Radiation Oncology • Biology • Physics. 93(5): p. 1104-1114.
101. Langfelder, P. and S. Horvath, WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics, 2008. 9: p. 559-559.
102. Tanabe, Y., et al., Blockade of the chemokine receptor, CCR5, reduces the growth of orthotopically injected colon cancer cells via limiting cancerassociated fibroblast accumulation. 2016. 2016.
103. Hallinan, N., et al., Targeting the fibroblast growth factor receptor family in cancer. Cancer Treat Rev, 2016. 46: p. 51-62.
104. Jarosz, M., et al., Fibroblast Growth Factor 22 Is Not Essential for Skin Development and Repair but Plays a Role in Tumorigenesis. PLoS ONE, 2012. 7(6): p. e39436.
105. Li, Q., et al., Chronic Exposure to Bisphenol A Affects Uterine Function During Early Pregnancy in Mice. Endocrinology, 2016. 157(5): p. 1764-74.
106. Cha, Z., et al., Fibroblast growth factor receptor 4 polymorphisms and the prognosis of non-Hodgkin lymphoma. Mol Biol Rep, 2014. 41(2): p. 1165-70.
107. Pazgal, I., et al., Expression of basic fibroblast growth factor is associated with poor outcome in non-Hodgkin's lymphoma. Br J Cancer, 2002. 86(11): p. 1770-5.
108. Sui, Y., et al., Bisphenol A increases atherosclerosis in pregnane X receptor-humanized ApoE deficient mice. J Am Heart Assoc, 2014. 3(2): p. e000492.
109. Fang, C., et al., Bisphenol A exposure induces metabolic disorders and enhances atherosclerosis in hyperlipidemic rabbits. J Appl Toxicol, 2015. 35(9): p. 1058-70.
110. Fang, C., et al., Bisphenol A exposure enhances atherosclerosis in WHHL rabbits. PLoS One, 2014. 9(10): p. e110977.
111. Lotto, A.A., et al., A case of a periaortic lymphoma presenting with the features of descending thoracic aorta dissection. The British Journal of Radiology, 2007. 80(949): p. e30-e32.
112. Chisholm, R.A., et al., Circumferential para-aortic masses: computed tomographic observations. Clin Radiol, 1986. 37(6): p. 531-5.
113. Hanahan, D. and R.A. Weinberg, Hallmarks of cancer: the next generation. Cell, 2011. 144(5): p. 646-74.
114. Kim, A., et al., An Examination of the Local Cellular Immune Response to Examples of Both Ductal Carcinoma In Situ (DCIS) of the Breast and DCIS With Microinvasion, With Emphasis on Tertiary Lymphoid Structures and Tumor Infiltrating Lymphoctytes. Am J Clin Pathol, 2016. 146(1): p. 137-44.
115. Goto, M., et al., Orally administered bisphenol A disturbed antigen specific immunoresponses in the naive condition. Biosci Biotechnol Biochem, 2007. 71(9): p. 2136-43.
116. Qiu, W., et al., Oxidative stress and immune disturbance after long-term exposure to bisphenol A in juvenile common carp (Cyprinus carpio). Ecotoxicol Environ Saf, 2016. 130: p. 93-102.
117. Care, M.A., D.R. Westhead, and R.M. Tooze, Gene expression meta-analysis reveals immune response convergence on the IFNgamma-STAT1-IRF1 axis and adaptive immune resistance mechanisms in lymphoma. Genome Med, 2015. 7: p. 96.
118. Brembeck, F.H., M. Rosário, and W. Birchmeier, Balancing cell adhesion and Wnt signaling, the key role of β-catenin. Current Opinion in Genetics & Development, 2006. 16(1): p. 51-59.
119. Luu, H.H., et al., Wnt / β-Catenin Signaling Pathway as Novel Cancer Drug Targets. Current Cancer Drug Targets, 2004. 4(8): p. 653-671.
120. Groen, R.W.J., Microenvironmental regulation of multiple myeloma and malignant lymphoma: the role of HGF, Wnts, heparan sulfate proteoglycans, and N-cadherin. 2010.
121. Fang, Z., et al., Effects of Wnt/beta-catenin signaling on bisphenol A exposure in male mouse reproductive cells. Mol Med Rep, 2015. 12(4): p. 5561-7.
122. Tait, S., et al., Bisphenol A affects placental layers morphology and angiogenesis during early pregnancy phase in mice. J Appl Toxicol, 2015. 35(11): p. 1278-91.
123. Heard, M.E., et al., Kruppel-like factor 9 deficiency in uterine endometrial cells promotes ectopic lesion establishment associated with activated notch and hedgehog signaling in a mouse model of endometriosis. Endocrinology, 2014. 155(4): p. 1532-46.
124. Velcheti, V., Hedgehog signaling is a potent regulator of angiogenesis in small cell lung cancer. Med Hypotheses, 2007. 69(4): p. 948-9.
125. Lee, S.W., M.A. Moskowitz, and J.R. Sims, Sonic hedgehog inversely regulates the expression of angiopoietin-1 and angiopoietin-2 in fibroblasts. Int J Mol Med, 2007. 19(3): p. 445-51.
126. Katoh, Y. and M. Katoh, Hedgehog target genes: mechanisms of carcinogenesis induced by aberrant hedgehog signaling activation. Curr Mol Med, 2009. 9(7): p. 873-86.
127. Athar, M., et al., Inhibition of smoothened signaling prevents ultraviolet B-induced basal cell carcinomas through regulation of Fas expression and apoptosis. Cancer Res, 2004. 64(20): p. 7545-52.
128. Hironaka, N., et al., Tax-independent constitutive IkappaB kinase activation in adult T-cell leukemia cells. Neoplasia, 2004. 6(3): p. 266-78.
129. Bargou, R.C., et al., Constitutive nuclear factor-kappaB-RelA activation is required for proliferation and survival of Hodgkin's disease tumor cells. J Clin Invest, 1997. 100(12): p. 2961-9.
130. Yang, J., et al., BMS-345541 targets inhibitor of kappaB kinase and induces apoptosis in melanoma: involvement of nuclear factor kappaB and mitochondria pathways. Clin Cancer Res, 2006. 12(3 Pt 1): p. 950-60.
131. Gasparian, A.V., et al., The role of IKK in constitutive activation of NF-kappaB transcription factor in prostate carcinoma cells. J Cell Sci, 2002. 115(Pt 1): p. 141-51.
132. Cartwright, T., N.D. Perkins, and L.W. C, NFKB1: a suppressor of inflammation, ageing and cancer. Febs j, 2016. 283(10): p. 1812-22.
133. Aggarwal, B.B., Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol, 2003. 3(9): p. 745-56.
134. Boland, M.P., DNA damage signalling and NF-kappaB: implications for survival and death in mammalian cells. Biochem Soc Trans, 2001. 29(Pt 6): p. 674-8.
135. Valentino, R., et al., Bisphenol-A Impairs Insulin Action and Up-Regulates Inflammatory Pathways in Human Subcutaneous Adipocytes and 3T3-L1 Cells. PLoS One, 2013. 8(12).
136. Castro, B., et al., Effects of Adult Exposure to Bisphenol A on Genes Involved in the Physiopathology of Rat Prefrontal Cortex. PLoS One, 2013. 8(9).
137. Ricke, E.A., et al., Androgen hormone action in prostatic carcinogenesis: stromal androgen receptors mediate prostate cancer progression, malignant transformation and metastasis. Carcinogenesis, 2012. 33(7): p. 1391-8.
138. Park, H.S., et al., Expression of DBC1 and Androgen Receptor Predict Poor Prognosis in Diffuse Large B Cell Lymphoma. Transl Oncol, 2013. 6(3): p. 370-81.
139. Krishnan, A.V., et al., Bisphenol-A: an estrogenic substance is released from polycarbonate flasks during autoclaving. Endocrinology, 1993. 132(6): p. 2279-86.
140. Hess-Wilson, J.K., et al., Unique bisphenol A transcriptome in prostate cancer: novel effects on ERbeta expression that correspond to androgen receptor mutation status. Environ Health Perspect, 2007. 115(11): p. 1646-53.
141. Schweizer, L., et al., The androgen receptor can signal through Wnt/β-Catenin in prostate cancer cells as an adaptation mechanism to castration levels of androgens. BMC Cell Biology, 2008. 9(1): p. 1-15.
142. Yu, H. and T. Rohan, Role of the Insulin-Like Growth Factor Family in Cancer Development and Progression. Journal of the National Cancer Institute, 2000. 92(18): p. 1472-1489.
143. Hartmann, E.M., et al., Increased tumor cell proliferation in mantle cell lymphoma is associated with elevated insulin-like growth factor 2 mRNA-binding protein 3 expression. Mod Pathol, 2012. 25(9): p. 1227-1235.
144. Mohnike, K.L., et al., Serum levels of insulin-like growth factor-I,-II and insulin-like growth factor binding proteins-2 and-3 in children with acute lymphoblastic leukaemia. European Journal of Pediatrics, 1996. 155(2): p. 81-86.
145. Hankinson, S.E., et al., Circulating concentrations of insulin-like growth factor-I and risk of breast cancer. Lancet, 1998. 351(9113): p. 1393-6.
146. Chan, J.M., et al., Plasma insulin-like growth factor-I and prostate cancer risk: a prospective study. Science, 1998. 279(5350): p. 563-6.
147. Ma, J., et al., Prospective study of colorectal cancer risk in men and plasma levels of insulin-like growth factor (IGF)-I and IGF-binding protein-3. J Natl Cancer Inst, 1999. 91(7): p. 620-5.
148. Yu, H., et al., Plasma levels of insulin-like growth factor-I and lung cancer risk: a case-control analysis. J Natl Cancer Inst, 1999. 91(2): p. 151-6.
149. Desbois-Mouthon, C., et al., Insulin and IGF-1 stimulate the beta-catenin pathway through two signalling cascades involving GSK-3beta inhibition and Ras activation. Oncogene, 2001. 20(2): p. 252-9.
150. Kwintkiewicz, J., et al., Peroxisome Proliferator–Activated Receptor-γ Mediates Bisphenol A Inhibition of FSH-Stimulated IGF-1, Aromatase, and Estradiol in Human Granulosa Cells. Environ Health Perspect, 2010. 118(3): p. 400-6.
151. Wu, Y., et al., Reduced circulating insulin-like growth factor I levels delay the onset of chemically and genetically induced mammary tumors. Cancer Res, 2003. 63(15): p. 4384-8.
152. Khan, M.A., et al., Thymoquinone inhibits cancer metastasis by downregulating TWIST1 expression to reduce epithelial to mesenchymal transition. Oncotarget, 2015. 6(23): p. 19580-91.
153. Fernandez, S.V., et al., Expression and DNA methylation changes in human breast epithelial cells after bisphenol A (BPA) exposure. Int J Oncol, 2012. 41(1): p. 369-77.
154. Howe, L.R., et al., Twist is up-regulated in response to Wnt1 and inhibits mouse mammary cell differentiation. Cancer Res, 2003. 63(8): p. 1906-13.
155. Zhang, J., et al., Aberrant expression of the transcriptional factor Twist1 promotes invasiveness in ALK-positive anaplastic large cell lymphoma. Cellular Signalling, 2012. 24(4): p. 852-858.
156. Jia, C., et al., Expression levels of TWIST1 are associated with the clinicopathological stage of B-cell non-Hodgkin lymphoma. Experimental and Therapeutic Medicine, 2014. 8(5): p. 1489-1493.
157. Olmeda, D., et al., Beta-catenin regulation during the cell cycle: implications in G2/M and apoptosis. Mol Biol Cell, 2003. 14(7): p. 2844-60.
158. Islaih, M., et al., Relationships between genomic, cell cycle, and mutagenic responses of TK6 cells exposed to DNA damaging chemicals. Mutat Res, 2005. 578(1-2): p. 100-16.
159. Hwang, K.A., et al., Genistein, a soy phytoestrogen, prevents the growth of BG-1 ovarian cancer cells induced by 17beta-estradiol or bisphenol A via the inhibition of cell cycle progression. Int J Oncol, 2013. 42(2): p. 733-40.
160. Lv, X.-B., et al., Damaged DNA-binding Protein 1 (DDB1) Interacts with Cdh1 and Modulates the Function of APC/CCdh1. Journal of Biological Chemistry, 2010. 285(24): p. 18234-18240.
161. Aoki, K. and M.M. Taketo, Adenomatous polyposis coli (APC): a multi-functional tumor suppressor gene. Journal of Cell Science, 2007. 120(19): p. 3327-3335.
162. Alberts B, J.A., Lewis J, et al., Components of the Cell-Cycle Control System. Molecular Biology of the Cell. 4th edition. New York: Garland Science, 2002.
163. Fodde, R., The APC gene in colorectal cancer. Eur J Cancer, 2002. 38(7): p. 867-71.
164. Yang, Y., et al., Methylation analysis of the adenomatous polyposis coli (APC) gene in adult T-cell leukemia/lymphoma. Leuk Res, 2005. 29(1): p. 47-51.
165. Bott, L.C., et al., The polyglutamine-expanded androgen receptor responsible for spinal and bulbar muscular atrophy inhibits the APC/C(Cdh1) ubiquitin ligase complex. Sci Rep, 2016. 6: p. 27703.
166. Mitchell, G.C., et al., IGF1 activates cell cycle arrest following irradiation by reducing binding of ΔNp63 to the p21 promoter. Cell Death & Disease, 2010. 1(6): p. e50.
167. Srivastava, J., et al., Abstract 5355: Twist1 regulates the cell cycle and proliferative capacity of keratinocytes during tumor promotion. Cancer Research, 2014. 74(19 Supplement): p. 5355-5355.
168. Whitehead, J. and D. Vignjevic, Mechanical factors activate β-catenin-dependent oncogene expression. 2008. 2(5): p. 286-94.
169. Kastan, M.B. and J. Bartek, Cell-cycle checkpoints and cancer. Nature, 2004. 432(7015): p. 316-23.
170. Allard, P. and M.P. Colaiacovo, Bisphenol A impairs the double-strand break repair machinery in the germline and causes chromosome abnormalities. Proc Natl Acad Sci U S A, 2010. 107(47): p. 20405-10.
171. De Flora, S., et al., Upregulation of clusterin in prostate and DNA damage in spermatozoa from bisphenol A-treated rats and formation of DNA adducts in cultured human prostatic cells. Toxicol Sci, 2011. 122(1): p. 45-51.
172. Pacchierotti, F., et al., Evaluation of aneugenic effects of bisphenol A in somatic and germ cells of the mouse. Mutat Res, 2008. 651(1-2): p. 64-70.
173. Tiwari, D., et al., Clastogenic and mutagenic effects of bisphenol A: an endocrine disruptor. Mutat Res, 2012. 743(1-2): p. 83-90.
174. Pedram, A., et al., Estrogen inhibits ATR signaling to cell cycle checkpoints and DNA repair. Mol Biol Cell, 2009. 20(14): p. 3374-89.
175. Allard, P. and M.P. Colaiácovo, Bisphenol A impairs the double-strand break repair machinery in the germline and causes chromosome abnormalities. Proceedings of the National Academy of Sciences of the United States of America, 2010. 107(47): p. 20405-20410.
176. Pfeifer, D., Y.M. Chung, and M.C. Hu, Effects of Low-Dose Bisphenol A on DNA Damage and Proliferation of Breast Cells: The Role of c-Myc. Environ Health Perspect, 2015. 123(12): p. 1271-9.
177. Lodish H, B.A., Zipursky SL, et al., DNA Damage and Repair and Their Role in Carcinogenesis. Molecular Cell Biology. 4th edition. New York: W. H. Freeman, 2000.
178. Hiraku, Y. and S. Kawanishi, Oxidative DNA damage and apoptosis induced by benzene metabolites. Cancer Res, 1996. 56(22): p. 5172-8.
179. Min, J., C.H. Pham, and M.B. Gu, Specific responses of bacterial cells to dioxins. Environ Toxicol Chem, 2003. 22(2): p. 233-8.
180. Wang, X.W., et al., p53 modulation of TFIIH-associated nucleotide excision repair activity. Nat Genet, 1995. 10(2): p. 188-95.
181. Levine, A.J., J. Momand, and C.A. Finlay, The p53 tumour suppressor gene. Nature, 1991. 351(6326): p. 453-6.
182. Vousden, K.H. and D.P. Lane, p53 in health and disease. Nat Rev Mol Cell Biol, 2007. 8(4): p. 275-83.
183. Smith, M.L. and Y.R. Seo, p53 regulation of DNA excision repair pathways. Mutagenesis, 2002. 17(2): p. 149-156.
184. Dairkee, S.H., et al., Bisphenol-A-induced inactivation of the p53 axis underlying deregulation of proliferation kinetics, and cell death in non-malignant human breast epithelial cells. Carcinogenesis, 2013. 34(3): p. 703-12.
185. Cherney, B.W., et al., Role of the p53 tumor suppressor gene in the tumorigenicity of Burkitt's lymphoma cells. Cancer Res, 1997. 57(12): p. 2508-15.
186. Levine, A.J. and E. Vosburgh, P53 mutations in lymphomas: position matters. Blood, 2008. 112(8): p. 2997-2998.
187. el-Deiry, W.S., et al., WAF1, a potential mediator of p53 tumor suppression. Cell, 1993. 75(4): p. 817-25.
188. Liu, X., et al., Differential BCCIP gene expression in primary human ovarian cancer, renal cell carcinoma and colorectal cancer tissues. Int J Oncol, 2013. 43(6): p. 1925-34.
189. Pezdirc, M., B. Zegura, and M. Filipic, Genotoxicity and induction of DNA damage responsive genes by food-borne heterocyclic aromatic amines in human hepatoma HepG2 cells. Food Chem Toxicol, 2013. 59: p. 386-94.
190. Dutto, I., M. Tillhon, and E. Prosperi, Assessing Cell Cycle Independent Function of the CDK Inhibitor p21(CDKN(1)A) in DNA Repair. Methods Mol Biol, 2016. 1336: p. 123-39.
191. Xiao, W., et al., CBX8, a novel DNA repair protein, promotes tumorigenesis in human esophageal carcinoma. Int J Clin Exp Pathol, 2014. 7(8): p. 4817-26.
192. Lee, H.R., et al., Treatment with bisphenol A and methoxychlor results in the growth of human breast cancer cells and alteration of the expression of cell cycle-related genes, cyclin D1 and p21, via an estrogen receptor-dependent signaling pathway. Int J Mol Med, 2012. 29(5): p. 883-90.
193. Valente, L.J. and S. Grabow, Combined loss of PUMA and p21 accelerates c-MYC-driven lymphoma development considerably less than loss of one allele of p53. 2016. 35(29): p. 3866-71.
194. Sadot, E., et al., Down-regulation of beta-catenin by activated p53. Mol Cell Biol, 2001. 21(20): p. 6768-81.
195. Damalas, A., et al., Excess beta-catenin promotes accumulation of transcriptionally active p53. Embo j, 1999. 18(11): p. 3054-63.
196. Yang, W., et al., MiR-146b-5p overexpression attenuates stemness and radioresistance of glioma stem cells by targeting HuR/lincRNA-p21/beta-catenin pathway. Oncotarget, 2016.
197. Kabátková, M., et al., Inhibition of β-catenin signalling promotes DNA damage elicited by benzo[a]pyrene in a model of human colon cancer cells via CYP1 deregulation. Mutagenesis, 2015. 30(4): p. 565-576.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *