|
Chapter 1 [1.1] J. Fousek, “Joseph Valasek and the discovery of ferroelectricity,” in Proceedings of 1994 IEEE International Symposium on Applications of Ferroelectrics, pp. 1–5, 1994. [1.2] K. M. Rabe, M. Dawber, C. Lichtensteiger, C. H. Ahn and J-M. Triscone, “Physics of Ferroelectrics: A modern Perspective,” Springer, 2007. [1.3] T. Shimada and T. Kitamura, “Multi-physics Properties in Ferroelectric Nanowires and Related Structures from First-principles,” Nanowires, pp. 414, 2010. [1.4] J. F. Scott, “Ferroelectric Memories,” Springer, 2000. [1.5] C. Kittel, “Theory of Antiferroelectric Crystals,” Phys. Rev., vol. 82, no. 5, pp. 729–732, 1951. [1.6] W. Martienssen and H. Warlimont, “Handbook of Condensed Matter and Materials Data,” Springer, 2005. [1.7] M. H. Park, H. J. Kim, Y. J. Kim, T. Moon, K. Do Kim, and C. S. Hwang, “Toward a Multifunctional Monolithic Device Based on Pyroelectricity and The Electrocaloric Effect of Thin Antiferroelectric HfxZr1-xO2 films,” Nano Energy, vol. 12, pp. 131–140, 2015. [1.8] S. Salahuddin and S. Datta, “Use of Negative Capacitance to Provide Voltage Amplification for Low Power Nanoscale Devices,” Nano Lett., vol. 8, no. 2, pp. 405–410, 2008. [1.9] D. Shin, R. Arróyave, and Z. K. Liu, “Thermodynamic Modeling of The Hf-Si-O System,” Calphad Comput. Coupling Phase Diagrams Thermochem., vol. 30, no. 4, pp. 375–386, 2006. [1.10] T. S. Böscke, J. Müller, D. Bräuhaus, U. Schröder, and U. Böttger, “Ferroelectricity in Hafnium Oxide Thin Films,” Appl. Phys. Lett., vol. 99, no. 10, p. 102903, 2011. [1.11] T. S. Böescke, J. Müller, D. Bräuhaus, U. Schröder, and U. Böttger, “Ferroelectricity in Hafnium Oxide: CMOS Compatible Ferroelectric Field Effect Transistors,” Tech. Dig. Int. Electron Devices Meet. IEDM, pp. 547–550, 2011. [1.12] M. C. Cheynet, S. Pokrant, F. D. Tichelaar, and J. L. Rouvière, “Crystal Structure and Band Gap Determination of HfO2 Thin Films,” J. Appl. Phys., vol. 101, no. 5, p. 54101, 2007. [1.13] A. Kaur, E. R. Ylvisaker, Y. Li, G. Galli, and W. E. Pickett, “First-principles Study of Electronic and Dielectric Properties of ZrO2 and HfO2,” Mol. Simul., vol. 34, p. 6, 2003. [1.14] U. Schroeder, E. Yurchuk, J. Müller, D. Martin, T. Schenk, P. Polakowski, C. Adelmann, M. I. Popovici, S. V. Kalinin, and T. Mikolajick, “Impact of Different Dopants on The Switching Properties of Ferroelectric Hafnium Oxide,” Jpn. J. Appl. Phys., vol. 53, p. 08LE02, 2014. [1.15] J. C. Slater, “Atomic Radii in Crystals,” J. Chem. Phys., vol. 41, no. 10, p. 3199, 1964. [1.16] M. H. Park, Y. H. Lee, H. J. Kim, Y. J. Kim, T. Moon, K. Do Kim, J. Müller, A. Kersch, U. Schroeder, T. Mikolajick, and C. S. Hwang, “Ferroelectricity and Antiferroelectricity of Doped Thin HfO2-Based Films,” Adv. Mater., vol. 27, no. 11, pp. 1811–1831, 2015. [1.17] E. Yurchuk, J. Müller, J. Paul, T. Schlösser, D. Martin, R. Hoffmann, S. Müeller, S. Slesazeck, U. S. Member, R. Boschke, R. Van Bentum, T. Mikolajick, and S. Member, “Impact of Scaling on the Performance of HfO2-Based Ferroelectric Field Effect Transistors,” IEEE Trans. Electron Devices, vol. 61, no. 11, pp. 3699–3706, 2014. [1.18] W. Choi, S. Kim, Y. W. Jin, S. Y. Lee, and T. D. Sands, “Capacitance-voltage modeling of metal-ferroelectric-semiconductor capacitors based on epitaxial oxide heterostructures,” Appl. Phys. Lett., vol. 98, no. 10, p. 102901, 2011. [1.19] J. Frenkel, “On the electrical resistance of contacts between solid conductors,” Phys. Rev., vol. 36, no. 11, pp. 1604–1618, 1930. [1.20] V. Garcia and M. Bibes, “Ferroelectric tunnel junctions for information storage and processing.,” Nat. Commun., vol. 5, p. 4289, 2014. [1.21] NT-MDT, “Tunnel Current in MIM system,” Application Notes. [1.22] J. Müller, T. S. Böscke, U. Schröder, S. Mueller, D. Bräuhaus, U. Böttger, L. Frey, and T. Mikolajick, “Ferroelectricity in Simple Binary ZrO2 and HfO2,” Nano Lett., vol. 12, no. 8, pp. 4318–4323, 2012. [1.23] M. Y. Zhuravlev, R. F. Sabirianov, S. S. Jaswal, and E. Y. Tsymbal, “Giant Electroresistance in Ferroelectric Tunnel Junctions,” Phys. Rev. Lett., vol. 94, no. 24, p. 246802, 2005.
Chapter 2 [2.1] T. S. Böscke, J. Müller, D. Bräuhaus, U. Schröder, and U. Böttger, “Ferroelectricity in Hafnium Oxide Thin Films,” Appl. Phys. Lett., vol. 99, no. 10, p. 102903, 2011. [2.2] D. H. Triyoso, P. J. Tobin, B. E. White, R. Gregory, and X. D. Wang, “Impact of Film Properties of Atomic Layer Deposited HfO2 Resulting from Annealing with A TiN Capping Layer,” Appl. Phys. Lett., vol. 89, no. 13, p. 132903, 2006. [2.3] M. E. Lines and A. M. Glass “Principles and Applications of Ferroelectrics and Related Materials,” Oxford University Press, Oxford, England, Vol. 1, 2001. [2.4] J. Müller, T. S. Böscke, U. Schröder, S. Mueller, D. Bräuhaus, U. Böttger, L. Frey, and T. Mikolajick, “Ferroelectricity in Simple Binary ZrO2 and HfO2,” Nano Lett., vol. 12, no. 8, pp. 4318–4323, 2012. [2.5] N. Menou, C. Muller, I. S. Baturin, V. Y. Shur, and J. L. Hodeau, “Polarization Fatigue in PbZr0.45Ti0.55O3 -based Capacitors Studied from High Resolution Synchrotron X-ray Diffraction,” J. Appl. Phys., vol. 97, no. 6, p. 0647108, 2005. [2.6] F. C. Kartawidjaja, C. H. Sim, and J. Wang, “Ferroelectric and Dielectric Behavior of Heterolayered PZT Thin Films,” J. Appl. Phys., vol. 102, no. 12, p. 124102, 2007. [2.7] G. L. Yuan, J.-M. Liu, S. T. Zhang, D. Wu, Y. P. Wang, Z. G. Liu, H. L. W. Chan, and C. L. Choy, “Low-temperature switching fatigue behavior of ferroelectric SrBi2Ta2O9 thin films,” Appl. Phys. Lett., vol. 84, no. 6, p. 954, 2004. [2.8] M. Pešić, F. P. G. Fengler, L. Larcher, A. Padovani, T. Schenk, E. D. Grimley, X. Sang, J. M. LeBeau, S. Slesazeck, U. Schroeder, and T. Mikolajick, “Physical Mechanisms behind the Field-Cycling Behavior of HfO2-Based Ferroelectric Capacitors,” Adv. Funct. Mater., vol. 26, pp. 4601–4612, 2016. [2.9] D. Zhou, J. Xu, Q. Li, Y. Guan, F. Cao, X. Dong, J. Müller, T. Schenk, and U. Schröder, “Wake-up effects in Si-doped hafnium oxide ferroelectric thin films,” Appl. Phys. Lett., vol. 103, no. 19, p. 12904, 2013. [2.10] A. K. Tagantsev, I. Stolichnov, E. L. Colla, and N. Setter, “Polarization fatigue in ferroelectric films: Basic experimental findings, phenomenological scenarios, and microscopic features,” J. Appl. Phys., vol. 90, no. 3, pp. 1387–1402, 2001. [2.11] T. Schenk, U. Schroeder, M. Pešić, M. Popovici, Y. V. Pershin, and T. Mikolajick, “Electric Field Cycling Behavior of Ferroelectric Hafnium Oxide,” ACS Appl. Mater. Interfaces, vol. 6, no. 22, pp. 19744–19751, 2014. [2.12] P. D. Lomenzo, Q. Takmeel, C. Zhou, C. M. Fancher, E. Lambers, N. G. Rudawski, J. L. Jones, S. Moghaddam, and T. Nishida, “TaN Interface Properties and Electric Field Cycling Eeffects on Ferroelectric Si-doped HfO2 Thin Films,” J. Appl. Phys., vol. 117, no. 13, p. 134105, 2015. [2.13] N. Umezawa, K. Shiraishi, T. Ohno, H. Watanabe, T. Chikyow, K. Torii, K. Yamabe, K. Yamada, H. Kitajima, and T. Arikado, “First-Principles Studies of The Intrinsic Effect of Nitrogen Atoms on Reduction in Gate Leakage Current through Hf-Based High- k Dielectrics,” Appl. Phys. Lett., vol. 86, no. 14, p. 143507, 2005. [2.14] V. Cuny and N. Richard, “Investigations of Dopants Introduction in Hafnia: Electronic Properties, Diffusion, and Their Role on The Gate Leakage Current,” J. Appl. Phys., vol. 104, no. 3, p. 033709, 2008.
Chapter 4 [4.1] K. Miyasato, S. Abe, H. Takezoe, A. Fukuda, and E. Kuze, “Direct Method with Triangular Waves for Measuring Spontaneous Polarization in Ferroelectric Liquid Crystals,” Jpn. J. Appl. Phys., vol. 22, no. 10, pp. L661–L663, 1983.
|