帳號:guest(3.141.12.254)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳品璇
作者(外文):Chen, Pin Hsuan
論文名稱(中文):以氨氣電漿處理提升氧化鋯鉿鐵電元件之可靠度
論文名稱(外文):Enhanced Device Reliability for HfZrOx-based Ferroelectric MFM Capacitor by NH3 Plasma Treatment
指導教授(中文):巫勇賢
指導教授(外文):Wu, Yung Hsien
口試委員(中文):陳旻政
黃智方
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:103011702
出版年(民國):106
畢業學年度:105
語文別:英文
論文頁數:76
中文關鍵詞:鐵電材料
外文關鍵詞:ferroelectric material
相關次數:
  • 推薦推薦:0
  • 點閱點閱:123
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
Novel hafnium oxide (HfO2)-based ferroelectrics reveal full scalability and complementary metal oxide semiconductor integratability compared to perovskite-based ferroelectrics that are currently used in nonvolatile ferroelectric random access memories (FeRAMs) and ferroelectric field effect transistor. Within the lifetime of the device, two main regimes of wake up and fatigue can be identified which was inferred the root cause is domain de-pining/pining effect attributed to oxygen vacancies in HfO2-based dielectric. The evolution of unstable polarization may strike the electrical performance within the reliability test for future device applications.
The main scope of this study is to eliminate wake up and fatigue effect during electric field cycling by surface NH3 plasma treatment which is performed on different position. The endurance of PDP sample which was applied NH3 plasma between both top/bottom electrode and ferroelectric material interfaces with cycling up to #106 is stable which were verified by electrical analysis I-V curve, P-V curve, leakage current and C-V curve, i.e. wake up and fatigue cannot be observed in PDP sample. With NH3-plasma treatment, the XPS analysis reveals that about 7% oxygen vacancies can be reduced. Besides, the XRD diffraction pattern shows a noncentral-symmetric orthorhombic phase in NH3-plasma treatment sample, which was inferred as the proof of ferroelectric crystallized phase in hafnium-based oxide, furthermore, TEM images reveals an interfacial TiOxNy at the bottom and ferroelectric material for STD sample which without plasma treatment while no such layer is found for PDP sample which confirms that N-rich TiN is efficient to block electrode and ferroelectric material reaction.
由於微縮技術以及與金屬氧化物半導體整合的相容性高,以二氧化鉿為基底之新穎的鐵電材料近期時常被應用於鐵電非揮發性記憶體(FeRAM)或是電晶體上。在鐵電材料元件的操作上,會隨著操作次數增加而有兩種效應會隨之發生:Wake up 以及Fatigue效應,這兩種效應與鐵電材料的鐵電域是否因為氧空缺數量多而被釘札住有密切的關係,然而此兩種效應會造成往後元件在操作上的表現產生不穩定性。
此實驗中,我們在鐵電層不同的位置進行NH3 電漿之處理,並觀察鐵電材料的電性以及物性特性,其中以在上/下電極與鐵電層之介面皆以NH3 電漿處理之樣品(PDP樣品)容忍度特性表現改善最為顯著,當操作到#106¬次數時不論是從I-V特性、P-V特性、漏電流以及C-V特性圖皆可以發現隨著操作次數的增加其特性穩定性高,也就是成功地消除Wake up 以及Fatigue效應。另外,XRD顯示樣品在經由NH3電漿處理後亦可產生非對稱性之orthorhombic的結晶性;XPS顯示,經由NH3電漿處理後的樣品其鐵電層內氧空缺可減少約7%與電性特性沒有Wake up 以及Fatigue效應相互呼應;TEM顯示在沒有做任何電漿處理的樣品有一層不完全鍵結的氧化層TiOxNy,然而在上/下電極與鐵電層之介面皆以NH3 電漿處理的樣品沒有此氧化層,此結果可以證實在介面進行NH3電漿處理確實可以抑制電極與鐵電層之反應。
Abstact........................................................................................................................................i
摘要…........................................................................................................................................ii
Contents....................................................................................................................................iii
List of Illustration....................................................................................................................vi
List of Table………………………………………………………………………….….…..xi

Chapter 1 Introduction.............................................................................................................1
1-1 Background...........................................................................................................................1
1-1-1 Polarization........................................................................................................1
1-1-2 Ferroelectric Properties.....................................................................................2
1-1-3 Hafnium Dioxide………………………………………………………..…….5
1-2 Applications of Ferroelectric materials…............................................................................7
1-2-1 Ferroelectric Random Access Memory (FeRAM)……………………………7
1-2-2 Ferroelectric Field Effect Transistor (FeFET)…………………………….8
1-2-3 Ferroelectric Tunnel Junction (FTJ)…………………..……………………9
1-3 Motivation to study Zr doped HfO2 material………………………………………………9

Chapter 2 Literature Review….............................................................................................20
2-1 Ferroelectricity of Hafnium Oxide Thin Film....................................................................20
2-2 Incipient Ferroelectricity in Zr-doped HfO2 Thin Films....................................................21
2-3 Correlation between Oxide Vacancies and Wake up/Fatigue Effect in Ferroelectric Materials....................................................................................................................................21
2-4 Formation of Oxygen Vacancies…………………………………………...….…………23
2-5 Conclusion & Motivation……………………………………………………………...…24

Chapter 3 Experiment Process……………………………………………………………..32
TiN/HfZrO2/TiN MIM Capacitor Fabrication..........................................................................32

Chapter 4 Results & Discussions………………………...…………………………………39
4-1 Electrical Characterization…………………………………….………………………….39
4-1-1 V-t & I-t Characteristics Analysis…………………………………...………39
4-1-2 I-V & P-V Characteristics Analysis…………………...…………………….40
4-1-3 Leakage Current Characteristics Analysis………………………..…………41
4-1-4 C-V Characteristics Analysis……………………………………….……….42
4-1-5 Electrical Behavior of HfZrO2 with Electric Field Cycling…………………43
4-1-6 Dipole Switching speed of HfZrO2 for STD and PDP samples………..……45
4-1-7 Retention Characteristic for STD and PDP samples………………………45

4-2 Structural Characterization…………………………………………………………..46
4-2-1 X-ray Diffraction (XRD)…………………………………………………..46
4-2-2 X-ray Photoelectron Spectroscopy (XPS)………………………..……….…47
4-2-3 Transmission Electron Microscopy (TEM)……………………………...…..47

Chapter 5 Conclusions & Future Works………………………………………………..…70
Reference……………………………………………………………………..………………71

Chapter 1
[1.1] J. Fousek, “Joseph Valasek and the discovery of ferroelectricity,” in Proceedings of 1994 IEEE International Symposium on Applications of Ferroelectrics, pp. 1–5, 1994.
[1.2] K. M. Rabe, M. Dawber, C. Lichtensteiger, C. H. Ahn and J-M. Triscone, “Physics of Ferroelectrics: A modern Perspective,” Springer, 2007.
[1.3] T. Shimada and T. Kitamura, “Multi-physics Properties in Ferroelectric Nanowires and Related Structures from First-principles,” Nanowires, pp. 414, 2010.
[1.4] J. F. Scott, “Ferroelectric Memories,” Springer, 2000.
[1.5] C. Kittel, “Theory of Antiferroelectric Crystals,” Phys. Rev., vol. 82, no. 5, pp. 729–732, 1951.
[1.6] W. Martienssen and H. Warlimont, “Handbook of Condensed Matter and Materials Data,” Springer, 2005.
[1.7] M. H. Park, H. J. Kim, Y. J. Kim, T. Moon, K. Do Kim, and C. S. Hwang, “Toward a Multifunctional Monolithic Device Based on Pyroelectricity and The Electrocaloric Effect of Thin Antiferroelectric HfxZr1-xO2 films,” Nano Energy, vol. 12, pp. 131–140, 2015.
[1.8] S. Salahuddin and S. Datta, “Use of Negative Capacitance to Provide Voltage Amplification for Low Power Nanoscale Devices,” Nano Lett., vol. 8, no. 2, pp. 405–410, 2008.
[1.9] D. Shin, R. Arróyave, and Z. K. Liu, “Thermodynamic Modeling of The Hf-Si-O System,” Calphad Comput. Coupling Phase Diagrams Thermochem., vol. 30, no. 4, pp. 375–386, 2006.
[1.10] T. S. Böscke, J. Müller, D. Bräuhaus, U. Schröder, and U. Böttger, “Ferroelectricity in Hafnium Oxide Thin Films,” Appl. Phys. Lett., vol. 99, no. 10, p. 102903, 2011.
[1.11] T. S. Böescke, J. Müller, D. Bräuhaus, U. Schröder, and U. Böttger, “Ferroelectricity in Hafnium Oxide: CMOS Compatible Ferroelectric Field Effect Transistors,” Tech. Dig. Int. Electron Devices Meet. IEDM, pp. 547–550, 2011.
[1.12] M. C. Cheynet, S. Pokrant, F. D. Tichelaar, and J. L. Rouvière, “Crystal Structure and Band Gap Determination of HfO2 Thin Films,” J. Appl. Phys., vol. 101, no. 5, p. 54101, 2007.
[1.13] A. Kaur, E. R. Ylvisaker, Y. Li, G. Galli, and W. E. Pickett, “First-principles Study of Electronic and Dielectric Properties of ZrO2 and HfO2,” Mol. Simul., vol. 34, p. 6, 2003.
[1.14] U. Schroeder, E. Yurchuk, J. Müller, D. Martin, T. Schenk, P. Polakowski, C. Adelmann, M. I. Popovici, S. V. Kalinin, and T. Mikolajick, “Impact of Different Dopants on The Switching Properties of Ferroelectric Hafnium Oxide,” Jpn. J. Appl. Phys., vol. 53, p. 08LE02, 2014.
[1.15] J. C. Slater, “Atomic Radii in Crystals,” J. Chem. Phys., vol. 41, no. 10, p. 3199, 1964.
[1.16] M. H. Park, Y. H. Lee, H. J. Kim, Y. J. Kim, T. Moon, K. Do Kim, J. Müller, A. Kersch, U. Schroeder, T. Mikolajick, and C. S. Hwang, “Ferroelectricity and Antiferroelectricity of Doped Thin HfO2-Based Films,” Adv. Mater., vol. 27, no. 11, pp. 1811–1831, 2015.
[1.17] E. Yurchuk, J. Müller, J. Paul, T. Schlösser, D. Martin, R. Hoffmann, S. Müeller, S. Slesazeck, U. S. Member, R. Boschke, R. Van Bentum, T. Mikolajick, and S. Member, “Impact of Scaling on the Performance of HfO2-Based Ferroelectric Field Effect Transistors,” IEEE Trans. Electron Devices, vol. 61, no. 11, pp. 3699–3706, 2014.
[1.18] W. Choi, S. Kim, Y. W. Jin, S. Y. Lee, and T. D. Sands, “Capacitance-voltage modeling of metal-ferroelectric-semiconductor capacitors based on epitaxial oxide heterostructures,” Appl. Phys. Lett., vol. 98, no. 10, p. 102901, 2011.
[1.19] J. Frenkel, “On the electrical resistance of contacts between solid conductors,” Phys. Rev., vol. 36, no. 11, pp. 1604–1618, 1930.
[1.20] V. Garcia and M. Bibes, “Ferroelectric tunnel junctions for information storage and processing.,” Nat. Commun., vol. 5, p. 4289, 2014.
[1.21] NT-MDT, “Tunnel Current in MIM system,” Application Notes.
[1.22] J. Müller, T. S. Böscke, U. Schröder, S. Mueller, D. Bräuhaus, U. Böttger, L. Frey, and T. Mikolajick, “Ferroelectricity in Simple Binary ZrO2 and HfO2,” Nano Lett., vol. 12, no. 8, pp. 4318–4323, 2012.
[1.23] M. Y. Zhuravlev, R. F. Sabirianov, S. S. Jaswal, and E. Y. Tsymbal, “Giant Electroresistance in Ferroelectric Tunnel Junctions,” Phys. Rev. Lett., vol. 94, no. 24, p. 246802, 2005.

Chapter 2
[2.1] T. S. Böscke, J. Müller, D. Bräuhaus, U. Schröder, and U. Böttger, “Ferroelectricity in Hafnium Oxide Thin Films,” Appl. Phys. Lett., vol. 99, no. 10, p. 102903, 2011.
[2.2] D. H. Triyoso, P. J. Tobin, B. E. White, R. Gregory, and X. D. Wang, “Impact of Film Properties of Atomic Layer Deposited HfO2 Resulting from Annealing with A TiN Capping Layer,” Appl. Phys. Lett., vol. 89, no. 13, p. 132903, 2006.
[2.3] M. E. Lines and A. M. Glass “Principles and Applications of Ferroelectrics and Related Materials,” Oxford University Press, Oxford, England, Vol. 1, 2001.
[2.4] J. Müller, T. S. Böscke, U. Schröder, S. Mueller, D. Bräuhaus, U. Böttger, L. Frey, and T. Mikolajick, “Ferroelectricity in Simple Binary ZrO2 and HfO2,” Nano Lett., vol. 12, no. 8, pp. 4318–4323, 2012.
[2.5] N. Menou, C. Muller, I. S. Baturin, V. Y. Shur, and J. L. Hodeau, “Polarization Fatigue in PbZr0.45Ti0.55O3 -based Capacitors Studied from High Resolution Synchrotron X-ray Diffraction,” J. Appl. Phys., vol. 97, no. 6, p. 0647108, 2005.
[2.6] F. C. Kartawidjaja, C. H. Sim, and J. Wang, “Ferroelectric and Dielectric Behavior of Heterolayered PZT Thin Films,” J. Appl. Phys., vol. 102, no. 12, p. 124102, 2007.
[2.7] G. L. Yuan, J.-M. Liu, S. T. Zhang, D. Wu, Y. P. Wang, Z. G. Liu, H. L. W. Chan, and C. L. Choy, “Low-temperature switching fatigue behavior of ferroelectric SrBi2Ta2O9 thin films,” Appl. Phys. Lett., vol. 84, no. 6, p. 954, 2004.
[2.8] M. Pešić, F. P. G. Fengler, L. Larcher, A. Padovani, T. Schenk, E. D. Grimley, X. Sang, J. M. LeBeau, S. Slesazeck, U. Schroeder, and T. Mikolajick, “Physical Mechanisms behind the Field-Cycling Behavior of HfO2-Based Ferroelectric Capacitors,” Adv. Funct. Mater., vol. 26, pp. 4601–4612, 2016.
[2.9] D. Zhou, J. Xu, Q. Li, Y. Guan, F. Cao, X. Dong, J. Müller, T. Schenk, and U. Schröder, “Wake-up effects in Si-doped hafnium oxide ferroelectric thin films,” Appl. Phys. Lett., vol. 103, no. 19, p. 12904, 2013.
[2.10] A. K. Tagantsev, I. Stolichnov, E. L. Colla, and N. Setter, “Polarization fatigue in ferroelectric films: Basic experimental findings, phenomenological scenarios, and microscopic features,” J. Appl. Phys., vol. 90, no. 3, pp. 1387–1402, 2001.
[2.11] T. Schenk, U. Schroeder, M. Pešić, M. Popovici, Y. V. Pershin, and T. Mikolajick, “Electric Field Cycling Behavior of Ferroelectric Hafnium Oxide,” ACS Appl. Mater. Interfaces, vol. 6, no. 22, pp. 19744–19751, 2014.
[2.12] P. D. Lomenzo, Q. Takmeel, C. Zhou, C. M. Fancher, E. Lambers, N. G. Rudawski, J. L. Jones, S. Moghaddam, and T. Nishida, “TaN Interface Properties and Electric Field Cycling Eeffects on Ferroelectric Si-doped HfO2 Thin Films,” J. Appl. Phys., vol. 117, no. 13, p. 134105, 2015.
[2.13] N. Umezawa, K. Shiraishi, T. Ohno, H. Watanabe, T. Chikyow, K. Torii, K. Yamabe, K. Yamada, H. Kitajima, and T. Arikado, “First-Principles Studies of The Intrinsic Effect of Nitrogen Atoms on Reduction in Gate Leakage Current through Hf-Based High- k Dielectrics,” Appl. Phys. Lett., vol. 86, no. 14, p. 143507, 2005.
[2.14] V. Cuny and N. Richard, “Investigations of Dopants Introduction in Hafnia: Electronic Properties, Diffusion, and Their Role on The Gate Leakage Current,” J. Appl. Phys., vol. 104, no. 3, p. 033709, 2008.

Chapter 4
[4.1] K. Miyasato, S. Abe, H. Takezoe, A. Fukuda, and E. Kuze, “Direct Method with Triangular Waves for Measuring Spontaneous Polarization in Ferroelectric Liquid Crystals,” Jpn. J. Appl. Phys., vol. 22, no. 10, pp. L661–L663, 1983.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *