帳號:guest(3.145.102.131)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林弘善
作者(外文):Lin, Hong San
論文名稱(中文):粒子追蹤演算法之發展及其在細胞力學性質分析之應用
論文名稱(外文):Deveolpment of particle tracking algorithms for cellular mechanical property analysis
指導教授(中文):吳順吉
指導教授(外文):Wu, Shun Chi
口試委員(中文):張順福
謝協伸
陳紹文
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:103011572
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:68
中文關鍵詞:微流變學粒子追蹤細胞力學
外文關鍵詞:microrheologyparticle trackingcell mechanics
相關次數:
  • 推薦推薦:0
  • 點閱點閱:48
  • 評分評分:*****
  • 下載下載:3
  • 收藏收藏:0
細胞為構成身體組織的最重要的基本元素之一。在因應外在微環境的刺激時,細胞會藉由改變其本身的機械力學性質來適應外在微環境的變化,而細胞微流變學則是分析細胞內力學性質變化的一種技術。本研究旨建置一套粒子追蹤微流變系統、發展相關分析演算法,並將此系統運用在實際細胞的分析上。透過追蹤嵌入於細胞內螢光珠粒在細胞受到外在微環境刺激時所產生的布朗運動軌跡,此系統可計算出細胞內的黏性與彈性係數,並藉此分析細胞力學性質的變化。本文將先回顧微流變學的原理及其在力學分析上的意義,接著再描述本研究所提出的演算法流程與設計理念。在均方位移演算法驗證方面,採用理論布朗運動的模擬影像為分析標的,而系統所推得的均方位移與理論數值誤差小於2%;在彈性模數的計算方面,則採用文獻上的資料為驗證基準,結果顯示,由系統所得的彈性模數與文獻相比,平均誤差約8%而黏性模數的平均誤差約5%,其可能原因為文獻中的發散曲線數據被演算法用連續性片段曲線擬合給收斂至連續性曲線。最後,我們探究在雜訊的干擾下,我們所提的各種追蹤方法組合的效能,在雜訊比(singal-to-noise ratio, SNR)越大,珠粒影像的亮度分佈越接近常態分佈時,運用高斯混合模型做影像分割去追蹤的組合可獲得最佳的結果;而在追蹤發生形變的目標物體下,則不適合搭配相關性法去做定位。最後,採用本研究所發展的粒子追蹤微流變系統來探究腫瘤壞死因子(TNFα)對軟骨細胞的影響,並從量測結果歸納出,加了TNFα的細胞明顯比正常細胞的彈性還來得大,也就是越能抵抗變形以至於硬度較大,與文獻上結論一致。
Cells are basic constituents of tissue in the body. To adapt to the changes of extracellular microenvironment, cells will regulate their intracellular mechanical and physiological mechanisms to control their activities, and cellular microrheology is a technique to examine these intracellular mechanical properties. Advantages of particle tracking microrheology are its non-invasiveness and locality to living cells. The purpose of this study is to develop a system of video particle tracking microrheology and its corresponding algorithms to infer cellular mechanical properties. To begin with, we reviewed the theory and physical meaning of microrheology. Then, we described the procedure of our proposed algorithms and design concepts in detail. For algorithm validation, the proposed algorithms were used to track the simulated images of fluorescence particles undergoing Brownian motion with various types of noise contamination. Finally, the proposed algorithms were applied to the process of real images of fluorescence particles embedded in living cell. Results of the experiments indicated that our algorithms could reach similar conclusions as those presented in the literature.
摘要 I
ABSTRACT II
誌謝 III
目錄 IV
表格目錄 VII
圖目錄 VIII
參數符號與縮寫表 XI
第一章 緒論 1
1.1 細胞力學 (Cell mechanics) 1
1.2 力學性質量測 2
1.3 文獻回顧 3
1.4 研究目的與方法 4
第二章 粒子追蹤微流變學 5
2.1 基本原理:在擴散作用下 5
2.1.1 黏滯性液體(Viscous Liquid) 6
2.1.2 彈性固體(Elastic Solid) 8
2.1.3 黏彈性物質(Viscoelastic material) 9
2.2 基本原理:粒子在擴散和載流下的作用 11
2.3 均方位移與粒子在介質中的關係 14
第三章 分析方法 15
3.1 影像概念 17
3.1.1 像素 17
3.1.2 解析度 17
3.2 影像平滑化 18
3.3 影像分割 20
3.3.1 K-means分群法 20
3.3.2 最佳化閥值,Otsu二分法 22
3.3.3 高斯混合模型 25
3.4 珠粒定位 27
3.4.1 重心(Center of Mass)法 30
3.4.1 相關性(Correlation)法 30
3.5 運動軌跡 32
第四章 系統的初步驗證 34
4.1 影像模型 34
4.2 模擬結果比較 34
4.3 剪力模數 38
4.4 分析方法比較 42
4.4.1 粒子追蹤演算法在散粒雜訊影像的效能分析 43
4.4.2 粒子追蹤演算法在椒鹽雜訊影像的效能分析 48
4.4.3 粒子追蹤演算法在銳利影像的效能分析 48
第五章 活體細胞的黏彈性測量 52
5.1 統計檢定分析 52
5.2 離群值探測 53
5.3 量測分析結果 56
第六章 結論與未來工作 61
6.1 總結 61
6.2 未來工作 62
參考文獻 63
[1] A. Bershadsky, M. Kozlov, and B. Geiger, "Adhesion-mediated mechanosensitivity: a time to experiment, and a time to theorize," Current opinion in cell biology, vol. 18, pp. 472-481, 2006.
[2] R. Krishnan, C. Y. Park, Y.-C. Lin, J. Mead, R. T. Jaspers, X. Trepat, et al., "Reinforcement versus fluidization in cytoskeletal mechanoresponsiveness," PloS one, vol. 4, p. e5486, 2009.
[3] M. Unal, Y. Alapan, H. Jia, A. G. Varga, K. Angelino, M. Aslan, et al., "Micro and nano-scale technologies for cell mechanics," 2014.
[4] S. W. Moore, P. Roca-Cusachs, and M. P. Sheetz, "Stretchy proteins on stretchy substrates: the important elements of integrin-mediated rigidity sensing," Developmental cell, vol. 19, pp. 194-206, 2010.
[5] D. Ingber, "Mechanobiology and diseases of mechanotransduction," Annals of medicine, vol. 35, pp. 564-577, 2003.
[6] M. J. Paszek, N. Zahir, K. R. Johnson, J. N. Lakins, G. I. Rozenberg, A. Gefen, et al., "Tensional homeostasis and the malignant phenotype," Cancer cell, vol. 8, pp. 241-254, 2005.
[7] J. Klein-Nulend, R. Bacabac, J. Veldhuijzen, and J. Van Loon, "Microgravity and bone cell mechanosensitivity," Advances in Space Research, vol. 32, pp. 1551-1559, 2003.
[8] D. A. Affonce and K. R. Lutchen, "New perspectives on the mechanical basis for airway hyperreactivity and airway hypersensitivity in asthma," Journal of applied physiology, vol. 101, pp. 1710-1719, 2006.
[9] M. A. Vollrath, K. Y. Kwan, and D. P. Corey, "The micromachinery of mechanotransduction in hair cells," Annual review of neuroscience, vol. 30, p. 339, 2007.
[10] M. A. Gimbrone, J. N. Topper, T. Nagel, K. R. Anderson, and G. GARCIA‐CARDEÑA, "Endothelial dysfunction, hemodynamic forces, and atherogenesisa," Annals of the New York Academy of Sciences, vol. 902, pp. 230-240, 2000.
[11] J. Tan, F. Kalapesi, and M. Coroneo, "Mechanosensitivity and the eye: cells coping with the pressure," British journal of ophthalmology, vol. 90, pp. 383-388, 2006.
[12] G. Y. Lee and C. T. Lim, "Biomechanics approaches to studying human diseases," Trends in biotechnology, vol. 25, pp. 111-118, 2007.
[13] M. L. Rodriguez, P. J. McGarry, and N. J. Sniadecki, "Review on cell mechanics: experimental and modeling approaches," Applied Mechanics Reviews, vol. 65, p. 060801, 2013.
[14] D. Di Carlo, L. Y. Wu, and L. P. Lee, "Dynamic single cell culture array," Lab on a Chip, vol. 6, pp. 1445-1449, 2006.
[15] C. H. Turner and F. M. Pavalko, "Mechanotransduction and functional response of the skeleton to physical stress: the mechanisms and mechanics of bone adaptation," Journal of Orthopaedic Science, vol. 3, pp. 346-355, 1998.
[16] M. Mullender, A. El Haj, Y. Yang, M. Van Duin, E. Burger, and J. Klein-Nulend, "Mechanotransduction of bone cellsin vitro: mechanobiology of bone tissue," Medical and Biological Engineering and Computing, vol. 42, pp. 14-21, 2004.
[17] G. K. Owens, "Role of mechanical strain in regulation of differentiation of vascular smooth muscle cells," Circulation research, vol. 79, pp. 1054-1055, 1996.
[18] B. Williams, "Mechanical influences on vascular smooth muscle cell function," Journal of hypertension, vol. 16, pp. 1921-1929, 1998.
[19] J. H.-C. Wang and B. P. Thampatty, "An introductory review of cell mechanobiology," Biomechanics and modeling in mechanobiology, vol. 5, pp. 1-16, 2006.
[20] Y. Li, J. Schnekenburger, and M. H. Duits, "Intracellular particle tracking as a tool for tumor cell characterization," Journal of biomedical optics, vol. 14, pp. 064005-064005-7, 2009.
[21] S. E. Cross, Y.-S. Jin, J. Rao, and J. K. Gimzewski, "Nanomechanical analysis of cells from cancer patients," Nature nanotechnology, vol. 2, pp. 780-783, 2007.
[22] C. M. Kraning-Rush, J. P. Califano, and C. A. Reinhart-King, "Cellular traction stresses increase with increasing metastatic potential," PloS one, vol. 7, p. e32572, 2012.
[23] S. Byun, S. Son, D. Amodei, N. Cermak, J. Shaw, J. H. Kang, et al., "Characterizing deformability and surface friction of cancer cells," Proceedings of the National Academy of Sciences, vol. 110, pp. 7580-7585, 2013.
[24] G. Bao and S. Suresh, "Cell and molecular mechanics of biological materials," Nature materials, vol. 2, pp. 715-725, 2003.
[25] J. L. Maciaszek and G. Lykotrafitis, "Sickle cell trait human erythrocytes are significantly stiffer than normal," Journal of biomechanics, vol. 44, pp. 657-661, 2011.
[26] Y.-Q. Chen, C.-Y. Kuo, M.-T. Wei, K. Wu, P.-T. Su, C.-S. Huang, et al., "Intracellular viscoelasticity of HeLa cells during cell division studied by video particle-tracking microrheology," Journal of biomedical optics, vol. 19, pp. 011008-011008, 2014.
[27] L. Deng, N. J. Fairbank, D. J. Cole, J. J. Fredberg, and G. N. Maksym, "Airway smooth muscle tone modulates mechanically induced cytoskeletal stiffening and remodeling," Journal of Applied Physiology, vol. 99, pp. 634-641, 2005.
[28] M.-T. Wei, A. Zaorski, H. C. Yalcin, J. Wang, M. Hallow, S. N. Ghadiali, et al., "A comparative study of living cell micromechanical properties by oscillatory optical tweezers," Optics express, vol. 16, pp. 8594-8603, 2008.
[29] R. Mahaffy, S. Park, E. Gerde, J. Käs, and C. Shih, "Quantitative analysis of the viscoelastic properties of thin regions of fibroblasts using atomic force microscopy," Biophysical journal, vol. 86, pp. 1777-1793, 2004.
[30] K. D. Costa, A. J. Sim, and F. C. Yin, "Non-Hertzian approach to analyzing mechanical properties of endothelial cells probed by atomic force microscopy," Journal of biomechanical engineering, vol. 128, pp. 176-184, 2006.
[31] P. A. Janmey, P. C. Georges, and S. Hvidt, "Basic rheology for biologists," Methods in cell biology, vol. 83, pp. 1-27, 2007.
[32] S. Kumar, I. Z. Maxwell, A. Heisterkamp, T. R. Polte, T. P. Lele, M. Salanga, et al., "Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics," Biophysical journal, vol. 90, pp. 3762-3773, 2006.
[33] P. Panorchan, J. S. Lee, T. P. Kole, Y. Tseng, and D. Wirtz, "Microrheology and ROCK signaling of human endothelial cells embedded in a 3D matrix," Biophysical journal, vol. 91, pp. 3499-3507, 2006.
[34] D. Wirtz, "Particle-tracking microrheology of living cells: principles and applications," Annual review of biophysics, vol. 38, pp. 301-326, 2009.
[35] C. M. Hale, S. X. Sun, and D. Wirtz, "Resolving the role of actoymyosin contractility in cell microrheology," PloS one, vol. 4, p. e7054, 2009.
[36] R. N. Ghosh and W. W. Webb, "Automated detection and tracking of individual and clustered cell surface low density lipoprotein receptor molecules," Biophysical journal, vol. 66, p. 1301, 1994.
[37] J. Gelles, B. J. Schnapp, and M. P. Sheetz, "Tracking kinesin-driven movements with nanometre-scale precision," Nature, vol. 331, pp. 450-453, 1988.
[38] S. S. Work and D. M. Warshaw, "Computer-assisted tracking of actin filament motility," Analytical biochemistry, vol. 202, pp. 275-285, 1992.
[39] J. S. Lee, P. Panorchan, C. M. Hale, S. B. Khatau, T. P. Kole, Y. Tseng, et al., "Ballistic intracellular nanorheology reveals ROCK-hard cytoplasmic stiffening response to fluid flow," Journal of cell science, vol. 119, pp. 1760-1768, 2006.
[40] B. R. Daniels, C. M. Hale, S. B. Khatau, S. Kusuma, T. M. Dobrowsky, S. Gerecht, et al., "Differences in the microrheology of human embryonic stem cells and human induced pluripotent stem cells," Biophysical journal, vol. 99, pp. 3563-3570, 2010.
[41] J. C. Crocker and B. D. Hoffman, "Multiple‐Particle Tracking and Two‐Point Microrheology in Cells," Methods in cell biology, vol. 83, pp. 141-178, 2007.
[42] J. C. Crocker, M. T. Valentine, E. R. Weeks, T. Gisler, P. D. Kaplan, A. G. Yodh, et al., "Two-point microrheology of inhomogeneous soft materials," Physical Review Letters, vol. 85, p. 888, 2000.
[43] L. Xie, N. Gu, Z. Cao, and D. Li, "A hybrid approach for multiple particle tracking microrheology," International Journal of Advanced Robotic Systems, vol. 10, 2013.
[44] M. K. Cheezum, W. F. Walker, and W. H. Guilford, "Quantitative comparison of algorithms for tracking single fluorescent particles," Biophysical journal, vol. 81, pp. 2378-2388, 2001.
[45] S. S. Rogers, T. A. Waigh, X. Zhao, and J. R. Lu, "Precise particle tracking against a complicated background: polynomial fitting with Gaussian weight," Physical Biology, vol. 4, p. 220, 2007.
[46] T. Savin and P. S. Doyle, "Static and dynamic errors in particle tracking microrheology," Biophysical journal, vol. 88, pp. 623-638, 2005.
[47] M. J. Saxton and K. Jacobson, "Single-particle tracking: applications to membrane dynamics," Annual review of biophysics and biomolecular structure, vol. 26, pp. 373-399, 1997.
[48] D. T. Chen, Q. Wen, P. A. Janmey, J. C. Crocker, and A. G. Yodh, "Rheology of soft materials," Condensed Matter Physics, vol. 1, 2010.
[49] C. S. Chen, J. Tan, and J. Tien, "Mechanotransduction at cell-matrix and cell-cell contacts," Annu. Rev. Biomed. Eng., vol. 6, pp. 275-302, 2004.
[50] C. R. Jacobs, H. Huang, and R. Y. Kwon, Introduction to cell mechanics and mechanobiology: Garland Science, 2012.
[51] T. M. Squires and T. G. Mason, "Fluid mechanics of microrheology," Annual Review of Fluid Mechanics, vol. 42, p. 413, 2009.
[52] A. L. Kholodenko and J. F. Douglas, "Generalized Stokes-Einstein equation for spherical particle suspensions," Physical Review E, vol. 51, p. 1081, 1995.
[53] H. Qian, M. P. Sheetz, and E. L. Elson, "Single particle tracking. Analysis of diffusion and flow in two-dimensional systems," Biophysical journal, vol. 60, p. 910, 1991.
[54] T. P. Kole, Y. Tseng, and D. Wirtz, "Intracellular microrheology as a tool for the measurement of the local mechanical properties of live cells," Methods Cell Biol, vol. 78, pp. 45-64, 2004.
[55] S. R. Heidemann and D. Wirtz, "Towards a regional approach to cell mechanics," Trends in cell biology, vol. 14, pp. 160-166, 2004.
[56] M. Valentine, Z. Perlman, M. Gardel, J. Shin, P. Matsudaira, T. Mitchison, et al., "Colloid surface chemistry critically affects multiple particle tracking measurements of biomaterials," Biophysical journal, vol. 86, pp. 4004-4014, 2004.
[57] J. Suh, M. Dawson, and J. Hanes, "Real-time multiple-particle tracking: applications to drug and gene delivery," Advanced drug delivery reviews, vol. 57, pp. 63-78, 2005.
[58] T. G. Mason, "Estimating the viscoelastic moduli of complex fluids using the generalized Stokes–Einstein equation," Rheologica Acta, vol. 39, pp. 371-378, 2000.
[59] S.-Y. Tee, A. R. Bausch, and P. A. Janmey, "The mechanical cell," Current Biology, vol. 19, pp. R745-R748, 2009.
[60] D. Mizuno, C. Tardin, C. Schmidt, and F. MacKintosh, "Nonequilibrium mechanics of active cytoskeletal networks," Science, vol. 315, pp. 370-373, 2007.
[61] A. W. Lau, B. D. Hoffman, A. Davies, J. C. Crocker, and T. C. Lubensky, "Microrheology, stress fluctuations, and active behavior of living cells," Physical review letters, vol. 91, p. 198101, 2003.
[62] J. Suh, D. Wirtz, and J. Hanes, "Efficient active transport of gene nanocarriers to the cell nucleus," Proceedings of the National Academy of Sciences, vol. 100, pp. 3878-3882, 2003.
[63] M. J. Saxton, "Anomalous diffusion due to obstacles: a Monte Carlo study," Biophysical journal, vol. 66, p. 394, 1994.
[64] T. Mason and D. Weitz, "Linear viscoelasticity of colloidal hard sphere suspensions near the glass transition," Physical Review Letters, vol. 75, p. 2770, 1995.
[65] J. Zheng, P. Lamoureux, V. Santiago, T. Dennerll, R. E. Buxbaum, and S. R. Heidemann, "Tensile regulation of axonal elongation and initiation," The Journal of neuroscience, vol. 11, pp. 1117-1125, 1991.
[66] G. M. Lee, A. Ishihara, and K. A. Jacobson, "Direct observation of Brownian motion of lipids in a membrane," Proceedings of the National Academy of Sciences, vol. 88, pp. 6274-6278, 1991.
[67] J. W. Goodman, Introduction to Fourier optics: Roberts and Company Publishers, 2005.
[68] M. Kapoor, J. Martel-Pelletier, D. Lajeunesse, J.-P. Pelletier, and H. Fahmi, "Role of proinflammatory cytokines in the pathophysiology of osteoarthritis," Nature Reviews Rheumatology, vol. 7, pp. 33-42, 2011.
[69] M. Daheshia and J. Q. Yao, "The interleukin 1β pathway in the pathogenesis of osteoarthritis," The Journal of rheumatology, vol. 35, pp. 2306-2312, 2008.
[70] C. Chen, J. Xie, R. Rajappa, L. Deng, J. Fredberg, and L. Yang, "Interleukin-1β and tumor necrosis factor-α increase stiffness and impair contractile function of articular chondrocytes," Acta biochimica et biophysica Sinica, vol. 47, pp. 121-129, 2015.
[71] J. W. Tukey, Exploratory data analysis: Addison-Wesely, 1977.
[72] Y. Tseng, T. P. Kole, and D. Wirtz, "Micromechanical mapping of live cells by multiple-particle-tracking microrheology," Biophysical journal, vol. 83, pp. 3162-3176, 2002.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *