帳號:guest(18.191.238.216)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):褚福荃
作者(外文):Chu, Fu Chuan
論文名稱(中文):十六奈米鰭式電晶體調變高介電層氧空缺分佈與微縮界面層厚度研究
論文名稱(外文):Tuning oxygen vacancy distributions in High-K dielectric and scaling interfacial layer thickness for 16nm FinFET
指導教授(中文):張廖貴術
指導教授(外文):Chang-Liao Kuei-Shu
口試委員(中文):趙天生
吳永俊
口試委員(外文):Chao,Tien-Sheng
Wu, Yung-Chun
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:103011571
出版年(民國):105
畢業學年度:105
語文別:英文
論文頁數:102
中文關鍵詞:半導體製程鰭式電晶體氧空缺等效氧化層微縮高介電層金屬層後退火
外文關鍵詞:Semiconductor ProcessFinFETOxygen VacancyEOT ScalingHigh-K DielectricPost Metal Annealing
相關次數:
  • 推薦推薦:0
  • 點閱點閱:59
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
氧化層微縮面臨:界面層造成等效氧化層厚度增加、可靠度及氧空缺導致臨界電壓下降等問題。本論文中分成三部份研究:利用界面層後高溫氮環境退火破壞矽氧鍵結脫附界面層、調變原子層沉積高介電層前驅物沉積時間鈍化氧空缺改善平帶電壓下降或增加氧空缺降低等效氧化層厚度以及利用金屬後退火溫度促使氧擴散還原界面層並探討退火溫度與氮源分壓之影響,探討對十六奈米鰭式電晶體電特性響。
第一部分,成長完界面層後進行不同秒數的大於1000°C高溫氮環境退火。針對高電壓操作的I/O規格鰭式電晶體,經退火後等效氧化層厚度下降成功脫附界面層。電晶體的汲極操作電流與轉導隨增加退火時間而提升,PFinFET經退火後改善漏電流、增加電洞遷移率且元件可靠度大幅提升推測界面層經退火後緻密化,但NFinFET因高溫損傷源極/汲極接面與介面導致漏電流、次臨界擺幅與可靠度退化。
第二部分,調變ALD high-K前驅物Metal precursor與Oxygen precursor的沉積時間改變高介電層內氧空缺分佈。針對高效能Core規格鰭式電晶體結果顯示,整體氧空缺較多的試片有最低的等效氧化層厚度但次臨界擺幅、遷移率與可靠度退化。表面氧空缺較少的試片改善臨界電壓標準差、漏電流與可靠度,但等效氧化層厚度增加令汲極操作電流與次臨界擺幅退化。表面氧空缺較多的試片改善平帶電壓下降、臨界電壓標準差、次臨界擺幅以及元件可靠度,並降低等效氧化層厚度提升汲極操作電流。
第三部分,調變金屬氮化物層後的退火溫度與環境分析對Core規格鰭式電晶體影響,增加退火溫度與降低環境氮源分壓導致等效氧化層厚度增加造成次臨界擺幅、汲極引致能障下降等退化。推測增加退火溫度界面層成長大於脫附能力,降低退火環境的氮源分壓將使更多氧從金屬氮化物擴散造成界面層成長。
There are several challenges about gate dielectric thickness scaling in MOSFET, such as increased equivalent oxide thickness(EOT) value due to the growth of interfacial layer(IL)、reliability, and oxygen vacancies induced threshold voltage(Vt) variation. This thesis consists of three parts to discuss the impacts on characteristics of gate stack process of 16 nm FinFET, which are interfacial layer desorption by high temperature annealing to reduce IL thickness and defects、reducing Vt variation by passivaMetal nitrideg oxygen vacancy at interface and reducing EOT by incorporating few oxygen vacancy into high-K with modulating oxygen content in atomic layer deposition(ALD), and scavenging IL by increasing oxygen diffusion with a post metal annealing(PMA) and effects of PMA temperature and nitrogen gas flow ratio on metal cap.
In the first parts, desorption of IL was carried out at high temperature for different annealing periods in N2 ambient. The desorption of IL in I/O FinFET can be obtained, which in confirmed by the reduced EOT. With increasing annealing time the on current and transconductance of devices increase. Reduced off current、enhanced mobility and reliability for PFinFET are achieved. The improvement may be attributed to the densification of IL after annealing. However, off current、subthreshold swing(S.S.), and mobility in NFinFET degrade after annealing. Which may be due to more diffusion in source draun junctions and defect generation at interface caused by a high temperature annealing.
In the second part, high-K deposition is formed with different Oxygen precursor and Metal precursor cycle time in ALD to tune the oxygen vacancy distribution. Results of Core FinFET show that the EOT decreases, but S.S.、mobility and reliability degrade for sample with oxygen vacancy rich at both interface and bulk. Sample with oxygen vacancy deficiency at interface shows improved Vt variance 、off current and reliability, but increased EOT induced degraded S.S. and on current. Sample oxygen vacancy rich at interface shows the reduced Vt roll off、reduced Vt variation and S.S. , and improved reliability. The on current also increases due to reduced EOT.
In the third part, PMA on metal nitride cap were performed at varies temperatures and gas ambients. EOT slightly increases with increasing anneal temperature and decreasing flow ratio of nitrogen gas, which induced S.S. and DIBL degradation. It may be attributed to interfacial layer regrowth with increasing the annealing temperature. IL regroeth caused by oxygen diffusion from metal nitride cap is more by decreasing nitrogen gas flow ratio in ambient.
目錄
摘要 I
Abstract II
致謝 IV
目錄 V
表目錄 VIII
圖目錄 IX
第一章 序論 1
1.1前言 1
1.2臨界尺度微縮議題 1
1.3 FinFET、high-K/Metal Gate、Raised strain S/D、Gate Last介紹 3
1.4 界面層脫附(Interfacial Layer Dissolve) 5
1.5 Interfacial Layer Scavenge 6
1.6 氧空缺(Oxygen Vacancy) 7
1.7論文架構 9
第二章 元件製程與量測 21
2.1 FinFET製造流程 21
2.1.1 FinFET標準製程 21
2.1.2 本論文研究製程 23
2.2電容與電晶體電性量測 23
2.2.1 電容電性量測 23
2.2.2 電晶體電性量測 24
2.2.3 可靠度量測 25
第三章 高溫氮環境退火脫附界面層對鰭式電晶體電特性研究 26
3.1研究動機 26
3.2製程與量測 27
3.2.1 製程條件 27
3.2.2 量測參數 28
3.3實驗結果與討論 28
3.3.1 1000°C 氮環境退火I/O電容電特性 28
3.3.2 1000°C 氮環境退火I/O電晶體電特性 29
3.3.3 1000°C 氮環境退火I/O電晶體可靠度量測 32
3.4結論 32
第四章 調變原子層沉積高介電層前驅物的沉積時間改變氧空缺分佈對鰭式電晶體電特性研究 48
4.1研究動機 49
4.2製程與量測 50
4.2.1 製程條件 50
4.2.2 量測參數 51
4.3實驗結果與討論 51
4.3.1 調變高介電氧空缺分佈 Core 電容電特性 51
4.3.2調變高介電氧空缺分佈Core 電晶體電特性 52
4.3.3調變高介電氧空缺分佈Core 電晶體可靠度量測 55
4.4結論 57
第五章 調變金屬後退火溫度與環境對鰭式電晶體電特性研究 75
5.1研究動機 75
5.2製程與量測 76
5.2.1 製程條件 76
5.2.2 量測參數 77
5.3實驗結果與討論 77
5.3.1 調變金屬後退火溫度與環境Core電容電特性 77
5.3.2 調變金屬後退火溫度與環境Core電晶體電特性 78
5.4結論 80
第六章 結論與未來展望 94
6.1結論 94
6.2未來展望 95
參考文獻 96

[1]Chenming Calvin Hu,” Modern Semiconductor Devices For Integrated Circuits”, Pearson, 2010 Chap7 , Fig 7-4.
[2]Kaushik Roy et al,” Leakage Current Mechanisms And Leakage Reduction Techniques In Deep-Submicrometer CMOS Circuits”, Proceedings of the IEEE, pp.305-327, 2003.
[3] Gennadi Bersuker et al,” Origin of the Flatband-Voltage Roll-Off Phenomenon
in Metal/High-k Gate Stacks”, IEEE Transactions on Electron Devices, pp.2047-2056, 2010.
[4]Shien-Yang Wu et al,” Advancing Foundry Technology with Scaling and Innovations”, IEEE Proceedings of Technical Program VLSI-TSA, 2014.
[5]Shien-Yang Wu et al, “ A 16nm FinFET CMOS Technology for Mobile SoC and Computing Applications”, IEEE International Electron Devices Meeting, pp.224-227, 2013.
[6]Chenming Hu et al,” FinFET—A Self-Aligned Double-Gate MOSFET Scalable to 20 nm”, IEEE Transactions on Electron Devices, pp.2320-2325, 2000.
[7]G. D. Wilk et al,” High-κ gate dielectrics: Current status and materials properties considerations”, ,J. Appl. Phys, pp.5243-5273, 2001.
[8]Yee-Chia Yeo et al,” Metal gate technology for nanoscale transistors—material selection and Process integration issues”, Thin Solid Films, pp.34-41, 2004.
[9]Jakub Kedzierski et al,” Extension and Source/Drain Design for High-Performance FinFET Devices”, IEEE Transactions on Electron Devices, pp.952-958, 2003.
[10]K. Mistry et al, “ Delaying Forever: Uniaxial Strained Silicon Transistors in a 90nm CMOS Technology”, IEEE Proceedings of Technical Program VLSI-TSA, pp. 50-51, 2004.
[11]L.-Å. Ragnarsson et al,” Ultra Low-EOT (5Å) Gate-First and Gate-Last High Performance CMOS Achieved by Gate-Electrode Optimization”, IEEE International Electron Devices Meeting, pp.663-666, 2009.
[12]S.Migita et al,” Structural Metastability and Size Scalability of Phase-Controlled HfO2 Formed through Cap-PDA”, ECS Transactions, pp.563-575, 2009.
[13]Min Dai et al, “ A Novel Atomic Layer Oxidation Technique for EOT Scaling in Gate-Last
High-κ/Metal Gate CMOS Technology”, IEEE International Electron Devices Meeting, pp.650-653, 2011.
[14]Dun-Bao Ruan , Kuei-Shu Chang-Liao et al “ Improved electrical characteristics of high-k gated MOSFETs with Post-growth treatment on interfacial layer”, Microelectronic Engineering, pp.81-85, 2015.
[15]Takashi Ando, “ Review Ultimate Scaling of High-κ Gate Dielectrics: Higher-κ or
Interfacial Layer Scavenging?” , Materials, pp.478-500, 2012.
[16]Changhwan Choi et al,” Scaling equivalent oxide thickness with flat band voltage (VFB ) modulation using in situ Ti and Hf interposed in a metal/high- k gate stack”, Applied Physics Letters , pp. 1-3, 2010.
[17]Xueli Ma et al, “ Electrical Properties and Interfacial Structures of High-k/Metal Gate MOSCAP Using Ti/TiN Scavenging Stack between High-k Dielectric and Metal Gate”, ECS Transactions, pp.117-121, 2013.
[18]M. Copel et al,” Decomposition of interfacial SiO2 during HfO2 deposition”, Applied Physics Letters , pp.3398-3400, 2003.
[19]L. Wu et al,” Thermal stability of TiN metal gate prepared by atomic layer deposition or physical Vapor deposition on HfO2 high-K dielectric”, Applied Physics Letters, pp.11350 1-3, 2010.
[20]Takashi Ando et al,” A Simulation Study of Oxygen Vacancy-Induced Variability in HfO2/Metal Gated SOI FinFET”, IEEE Transactions on lectron Devices, pp.1262-1269, 2014.
[21]Katrina A. Morgan et al,” The Effect of Atomic Layer Deposition Temperature on Switching Properties of HfOx Resistive RAM Devices”, IEEE Symposium on Circuits and Systems, pp.432-435, 2014.
[22]Chung-Hao Fu, Kuei-Shu Chang-Liao et al,” An Ultralow EOT Ge MOS Device with Tetragonal HfO2 and High Quality HfxGeyO Interfacial Layer”, IEEE Transactions on Electron Devices, pp.2662-2667, 2014.
[23]E.Cartier et al,” pFET Vt control with HfO2/TiN/poly-Si gate stack using a lateral oxygenation process”, IEEE Proceedings of Technical Program VLSI-TSA, pp.42-43, 2009.
[24]Jae Hyuck Jang et al,” Investigation of oxygen-related defects and the electrical properties of atomic layer Deposited HfO2 films using electron energy-loss spectroscopy”, Applied Physics Letters, pp.23718 1-6, 2011.
[25]Szu-Chun Yu “ Threshold Voltage Tunning and Oxygen Vacancy Passivation for Advanced FinFET” ,National Tsing Hua University, 2015.
[26]Krishna C. Saraswat, et al., “ A Group IV Solution for 7 nm FinFET CMOS: Stress Engineering Using Si, Ge and Sn”,IEEE International Electron Devices Meeting, pp 224-227, 2013.
[27]T. Miyashita et al,” High Voltage I/O FinFET Device Optimization for 16nm System-on-a-Chip (SoC) Technology”,IEEE Proceedings of Technical Program VLSI-TSA, pp.152-153, 2015.
[28]Patrick S. Lysaght et al,” Physicochemical properties of HfO2 in response to rapid thermal anneal”, Applied Physics Letters, pp.1266-1268, 2003.
[29]Chen-Chien Li, Kuei-Shu Chang-Liao et al,” Low inversion equivalent oxide thickness and enhanced mobility in MOSFETs with chlorine plasma interface engineering”et al, Solid-State-Electronics, pp.33-37, 2014.
[30]Hong Bae Park et al, “ Comparison of HfO2 films grown by atomic layer deposition using HfCl4 and H2O or O3 as the oxidant”, Applied Physics Letters, pp.3641-3647, 2003.
[31]J. D Plummer, M. D. Deal and P. B. Griffin,” Silicon VLSI Technology Fundamentals Practice, and Modeling”, Prentice Hall, ,table 7-5, 2000.
[32]Kaupo Kukli et al, “ Comparison of hafnium oxide films grown by atomic layer deposition
from iodide and chloride precursors” ,Thin Solid Films, pp.72-79, 2002.
[33]Yuniarto Widjaja et al, “Atomic layer deposition of hafnium oxide: A detailed reaction mechanism from first principles” , Journal of Chemical Physics, pp.1931-1934, 2002.
[34]E.P. Gusev et al, “ Ultrathin high-K gate stacks for advanced CMOS devices”, IEEE International Electron Devices Meeting, pp. 451-454 , 2001.
[35]Takashi Ando et al, “ Mechanism of Carrier Mobility Degradation Induced by Crystallization of HfO2 Gate Dielectrics ” Applied Physics Express 2 , pp.1-3, 2009.
[36]Nathalie Capron et al, “ Migration of oxygen vacancy in HfO2 and across the HfO2 /SiO2 interface: A first-principles investigation” , Applied Physics Letter, pp.192905, 2007.
[37]Kenji Shiraishi et al, “ Oxygen-vacancy-induced threshold voltage shifts in Hf-related high-k gate stacks” Thin Solid Films , pp. 305-310, 2006.
[38]Byoung Hun Lee et al, “ Metal Electrode/High-k Dielectric Gate-Stack Technology for Power Management” , IEEE Transactions on Electron Devices, pp. 8-20, 2008.
[39]Xingsheng Wang “Statistical Variability and Reliability in Nanoscale FinFETs ” , IEEE International Electron Devices Meeting , pp. 103-106, 2011.
[40]E. Cartier et al, “ Oxygen passivation of vacancy defects in metal-nitride gated HfO2 /SiO2 /Si devices” Applied Physics Letters, pp. 042901 1-3 , 2009.
[41]H.-H. Tseng et al, “ Improved Short Channel Device Characteristics with Stress Relieved Pre-Oxide (SRPO) And a Novel Tantalum Carbon Alloy Metal Gate/Hf02 Stack” ,IEEE International Electron Devices Meeting , pp. 821-824, 2004.
[42]Yunsang Shin et al, “ Demonstration of Ge pMOSFETs with 6 A EOT using TaN/Zr02/Zr-cap/n-Ge(lOO) Gate Stack Fabricated by Novel Vacuum Annealing and in-situ Metal Capp ing Method” , IEEE VLSI Technology, pp.1-2 , 2014.
[43]Changhwan Choi , Jack C. Lee et al, “ Aggressively Scaled UltraThin Undoped HfO2 Gate Dielectric (EOT < 0:7 nm) With TaN Gate Electrode Using Engineered Interface Layer” IEEE Electron Device Letters, pp.454-457, 2005.
[44]Hyoungsub Kim et al, “ Engineering chemically abrupt high- k metal oxide∕silicon interfaces using an oxygengettering metal overlayer” Applied Physics Letters, pp.3467-3472, 2004.
[45]John R. Hauser et al, ” A New and Improved Physics-Based Model for MOS Transistors” ,IEEE Transactions on Electron Devices, pp.2640-2647, 2005.
[46]Xinyuan Zhao and David Vanderbilt, “ First-principles study of structural, vibrational, and lattice dielectric properties of hafnium oxide” Physical Review B, Vol 65, pp. 233106 1-4, 2002
[47]K. Choi et al,” Extremely Scaled Gate-First High-k/Metal Gate Stack with EOT of 0.55 nm Using Novel Interfacial Layer Scavenging Techniques for 22nm Technology Node and Beyond” , Symposium on VLSI Technology Digest of Technical Papers , pp. 138-139, 2009.
[48]Choong-Ki Lee et al, “ First-principles study on doping and phase stability of HfO2”, Physical Review B, pp. 012102-4, 2008.
[49]Takanori Mori et al, “ HfO thin films prepared by ion beam assisted deposition”, ELSEVIER Surface and Coatings Technology, pp.528-531, 2003.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *