|
[1] T. Lizhu, "Effects of gas composition, focus ring and blocking capacitor on capacitively coupled RF Ar/H 2 plasmas," Japanese Journal of Applied Physics, vol. 54, p. 06GA01, 2015. [2] P. Diomede, M. Capitelli, and S. Longo, "Effect of discharge voltage on capacitively coupled, parallel plate rf hydrogen plasmas," Plasma Sources Science and Technology, vol. 14, p. 459, 2005. [3] H. B. Profijt, S. E. Potts, M. C. M. van de Sanden, and W. M. M. Kessels, "Plasma-Assisted Atomic Layer Deposition: Basics, Opportunities, and Challenges," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 29, p. 050801, 2011. [4] H.-B.-R. Lee, S.-H. Bang, W.-H. Kim, G. H. Gu, Y. K. Lee, T.-M. Chung, et al., "Plasma-Enhanced Atomic Layer Deposition of Ni," Japanese Journal of Applied Physics, vol. 49, p. 05FA11, 2010. [5] K. Mistry, C. Allen, C. Auth, B. Beattie, D. Bergstrom, M. Bost, et al., A 45nm logic technology with high-k plus metal gate transistors, strained silicon, 9 Cu interconnect layers, 193nm dry patterning, and 100% Pb-free packaging. New York: Ieee, 2007. [6] J. A. Kittl, A. Lauwers, O. Chamirian, M. Van Dal, A. Akheyar, M. De Potter, et al., "Ni- and Co-based silicides for advanced CMOS applications," Microelectronic Engineering, vol. 70, pp. 158-165, Nov 2003. [7] 張登彥, "應用於電漿輔助原子層沉積製程之間接式電容 耦合氫氣/氬氣電漿之研究," ed: 國立清華大學工程與系統科學系碩士論文, 2015. [8] M. Leskela and M. Ritala, "Atomic layer deposition chemistry: Recent developments and future challenges," Angewandte Chemie-International Edition, vol. 42, pp. 5548-5554, 2003. [9] D. Kwan-Woo, Y. Chung-Mo, K. Ik-Su, K. Kyung-Min, B. Kyoung-Hum, C. Hyun-Ick, et al., "Formation of Low-Resistivity Nickel Silicide with High Temperature Stability from Atomic-Layer-Deposited Nickel Thin Film," Japanese Journal of Applied Physics, vol. 45, p. 2975, 2006. [10] K. De Bleecker, A. Bogaerts, R. Gijbels, and W. Goedheer, "Numerical investigation of particle formation mechanisms in silane discharges," Physical Review E, vol. 69, 2004 2004. [11] J. Perrin, O. Leroy, and M. C. Bordage, "Cross-Sections, Rate Constants and Transport Coefficients in Silane Plasma Chemistry," Contributions to Plasma Physics, vol. 36, pp. 3-49, 1996. [12] A. Matsuda, "Growth mechanism of microcrystalline silicon obtained from reactive plasmas," Thin Solid Films, vol. 337, pp. 1-6, 1/11/ 1999. [13] G. J. Nienhuis, W. J. Goedheer, E. A. G. Hamers, W. vanSark, and J. Bezemer, "A self-consistent fluid model for radio-frequency discharges in SiH4-H-2 compared to experiments," Journal of Applied Physics, vol. 82, pp. 2060-2071, Sep 1997. [14] A. Bogaerts and R. Gijbels, "Hybrid Monte Carlo—fluid modeling network for an argon/hydrogen direct current glow discharge," Spectrochimica Acta Part B: Atomic Spectroscopy, vol. 57, pp. 1071-1099, 6/28/ 2002. [15] A. T. Hjartarson, E. G. Thorsteinsson, and J. T. Gudmundsson, "Low pressure hydrogen discharges diluted with argon explored using a global model," Plasma Sources Science and Technology, vol. 19, p. 065008, 2010. [16] T. Kimura and H. Kasugai, "Properties of inductively coupled rf Ar/H2 plasmas: Experiment and global model," Journal of Applied Physics, vol. 107, p. 083308, 2010. [17] L. Olivier, G. Gérard, A. Luís Lemos, P. Jérôme, and J. Jacques, "Two-dimensional modelling of - radio-frequency discharges for a-Si:H deposition," Plasma Sources Science and Technology, vol. 7, p. 348, 1998. [18] I. Méndez, F. J. Gordillo-Vázquez, V. J. Herrero, and I. Tanarro, "Atom and Ion Chemistry in Low Pressure Hydrogen DC Plasmas," The Journal of Physical Chemistry A, vol. 110, pp. 6060-6066, 2006/05/01 2006.
|