帳號:guest(18.218.180.238)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):羅培修
作者(外文):Luo,Pei Siou
論文名稱(中文):間接式電容耦合氫氣/氬氣電漿研究 -實驗探討與電漿模擬分析
論文名稱(外文):Study of Indirect Capacitively Coupled Hydrogen/Argon Plasma Discharge -Experimental Study and Simulation Analysis
指導教授(中文):柳克強
指導教授(外文):Keh-Chyang Leou
口試委員(中文):林明緯
張家豪
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:103011568
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:105
中文關鍵詞:電容式耦合電漿系統氫氣/氬氣電漿模擬原子層沉積
外文關鍵詞:Capacitively Coupled PlasmaHydrogen/Argon Plasma SimulationAtomic Layer Deposition
相關次數:
  • 推薦推薦:0
  • 點閱點閱:621
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
電漿由氣體外加能量,使氣體分子解離成離子態,電漿在最新的半導體製程中佔有很重要的關鍵,本研究所探討的是氫氣/氬氣電漿,使用電容式耦合電漿(CCP)的結構,在平行電極板中間外加上一層接地的網狀電極。本研究包含電漿流體模擬和電容式耦合電漿實驗。
模擬中利用二維流體模型模擬電漿,藉由模擬瞭解電漿特性,此模擬總共考慮8種粒子和35條反應式,所獲得的結果有三點,第一點氫氣比例上升得條件下,氫原子到達基本表面的通量也會隨之上升,第二點氣壓較小的條件下,電漿在下半腔體較多通過率,最後一點孔洞較小的網狀電極,可以較完整的阻擋電漿在上半腔體,網狀電極的孔洞電子密度上升會產生hollow cathode effect,導致電漿集中於孔洞附近,造成電漿不均勻的情況。
實驗上研製一個CCP電漿裝置,以便探討數值模擬中電漿的特性,由於模擬中有分為上下腔體,實驗著重於上腔體的電漿特性,再透過光學放射光譜儀(OES)分析電漿中的Ar/H2相關之譜線,進而得知電漿中的相關粒子的強度,透過改變氣體比例和操作氣壓,透過觀測光譜強度,來驗證模擬所得到的結果。
根據本研究的結果,根據本研究可以得知讓降低氣壓和提高氫氣比例可以使H 粒子通量密度提高,改變網狀電極的孔洞會影響電漿分布,考慮上述條件便可得到高品質的薄膜,但除了提高 H 粒子通量密度也必須同時考慮離子轟擊的影響,故需找到最佳的平衡點,使氫氣/氬氣電漿可以在半導體製程中有較大的效果。
Plasma whichs adding additional energy on gas decomposes gas molecules being ionized. Ions are accelerated and produce ion bombardment by adding an applied electric field. Ion bombardment have an important influence in the semiconductor manufacturing process. On the sputtering process, atoms on the target can be stroken by ion bombardment in plasma, and then deposited on the substrate by sputter. In the etching process, we can remove non-volatile residue eliminations by ion bombardment. In the coating process , however, the effect of ion bombardment will make surface defect to cause nonuniformity coating quality. In my study, I add a mesh which grounds in the middle of parallel electrode plates to reduce the ion flux to substrate and decrease ion bombardment by CCP.
The purpose of this study is to investigate the argon/hydrogen plasma discharge for atomic layer deposition process. This plasma simulation using 2D-fluid model Included 8 reactive particles and 35 reactions. When using different pressure, the change of the H radical flux. This is main part of this study is simulation. In simulation studies, RF plasma was operated at 13.56 MHz. The electron density, electron temperature, and H number density were reached to steady state after 0.2 second. The plasma potential near two electrodes will accelerate electron and ions.
There are three pressures of the simulation, changing different total pressure (400Pa、300Pa、200Pa) of the simulation. The simulation results show the pressure increasing, cause electron temperature and average potential increasing. It’s worth to mention. This case electron density is reversed. Pressure increases as the electron density increases in top chamber. Pressure increases as the electron density decrease in bottom chamber. H radicals flux are also increase when power increase. Representative more precursors reacted with the active radicals, so that the uniformity of the films can be improved. But relative to other ion flux increase, it means the ion bombardment effect increases.
There is another simulation which is changing input gas ratio of H2/Ar. The simulation result is that the ratio of H2/Ar increase the H radicals flux increase.
In this simulation study, if we want to let the films more uniform, in addition to increasing H radicals flux but also need to consider the ion bombardment. So it should be find an optimum balance.
This study constructs a CCP system in order to create H2/Ar plasma discharge. During H2/Ar plasma discharge, Optical Emission Spectroscopy can record plasma spectrum. Those plasma spectrums are used to understand reactive particles feature.
目錄
摘要 i
Abstract ii
目錄 iv
圖目錄 vii
表目錄 x
第一章 簡介 1
1.1 研究背景 1
1.2 研究目的 3
第二章 文獻回顧 4
2.1 原子層沉積的介紹 4
2.2 腔體結構 7
2.2.1 Radical-enhance ALD 7
2.2.2 Direct plasma ALD 8
2.2.3 Remote plasma ALD 9
2.3 金屬矽化物 10
2.3.1金屬矽化物 10
2.3.2 ALD方式沉積金屬鎳膜 12
2.4 電漿模擬文獻回顧 14
2.4.1氫氣電漿模擬文獻 14
2.4.2氫氣混和氬氣電漿模擬文獻 17
第三章 研究方法與物理模型 19
3.1 電子與中性粒子 19
3.1.1 電子 19
3.1.2離子、中性粒子 20
3.1.3電磁場 22
3.2 幾何結構與邊界條件 23
3.2.1幾何結構 23
3.2.2 邊界條件 24
3.3 反應式資料庫 26
3.4 起始條件 30
3.5 軟體簡介 31
3.6 實驗方法 36
3.6.1 實驗設備 36
3.6.2 電漿光譜理論 37
3.6.3 光學放射光譜儀 39
第四章 模擬結果與實驗結果 40
4.1 模擬條件及起始狀況 40
4.2 隨時變之模擬結果 41
4.2.1 基本放電特性 41
4.2.2 一個電壓週期內電位與電場的變化 47
4.2.3 H 粒子分析 48
4.3操作氣壓之影響 51
4.3.1操作氣壓對基本放電特性的影響 51
4.3.2操作氣壓對H粒子的影響 58
4.4氫氣比例之影響 64
4.4.1氫氣比例對基本放電特性的影響 65
4.4.2操作氣壓對H粒子的影響 70
4.5 輸入功率之影響 76
4.5.1 初始條件 76
4.5.2輸入功率對基本放電特性之影響 77
4.6 網層孔洞大小之影響 82
4.6.1 初始條件 82
4.6.2 網層孔徑為0.5 mm 83
4.6.3 網層孔徑為1 mm 85
4.6.4 網層孔徑為2 mm 89
4.6實驗結果 93
第五章 結論及未來工作 96
5.1總結 96
5.2未來工作 97
參考文獻 98

[1] T. Lizhu, "Effects of gas composition, focus ring and blocking capacitor on capacitively coupled RF Ar/H 2 plasmas," Japanese Journal of Applied Physics, vol. 54, p. 06GA01, 2015.
[2] P. Diomede, M. Capitelli, and S. Longo, "Effect of discharge voltage on capacitively coupled, parallel plate rf hydrogen plasmas," Plasma Sources Science and Technology, vol. 14, p. 459, 2005.
[3] H. B. Profijt, S. E. Potts, M. C. M. van de Sanden, and W. M. M. Kessels, "Plasma-Assisted Atomic Layer Deposition: Basics, Opportunities, and Challenges," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 29, p. 050801, 2011.
[4] H.-B.-R. Lee, S.-H. Bang, W.-H. Kim, G. H. Gu, Y. K. Lee, T.-M. Chung, et al., "Plasma-Enhanced Atomic Layer Deposition of Ni," Japanese Journal of Applied Physics, vol. 49, p. 05FA11, 2010.
[5] K. Mistry, C. Allen, C. Auth, B. Beattie, D. Bergstrom, M. Bost, et al., A 45nm logic technology with high-k plus metal gate transistors, strained silicon, 9 Cu interconnect layers, 193nm dry patterning, and 100% Pb-free packaging. New York: Ieee, 2007.
[6] J. A. Kittl, A. Lauwers, O. Chamirian, M. Van Dal, A. Akheyar, M. De Potter, et al., "Ni- and Co-based silicides for advanced CMOS applications," Microelectronic Engineering, vol. 70, pp. 158-165, Nov 2003.
[7] 張登彥, "應用於電漿輔助原子層沉積製程之間接式電容 耦合氫氣/氬氣電漿之研究," ed: 國立清華大學工程與系統科學系碩士論文, 2015.
[8] M. Leskela and M. Ritala, "Atomic layer deposition chemistry: Recent developments and future challenges," Angewandte Chemie-International Edition, vol. 42, pp. 5548-5554, 2003.
[9] D. Kwan-Woo, Y. Chung-Mo, K. Ik-Su, K. Kyung-Min, B. Kyoung-Hum, C. Hyun-Ick, et al., "Formation of Low-Resistivity Nickel Silicide with High Temperature Stability from Atomic-Layer-Deposited Nickel Thin Film," Japanese Journal of Applied Physics, vol. 45, p. 2975, 2006.
[10] K. De Bleecker, A. Bogaerts, R. Gijbels, and W. Goedheer, "Numerical investigation of particle formation mechanisms in silane discharges," Physical Review E, vol. 69, 2004 2004.
[11] J. Perrin, O. Leroy, and M. C. Bordage, "Cross-Sections, Rate Constants and Transport Coefficients in Silane Plasma Chemistry," Contributions to Plasma Physics, vol. 36, pp. 3-49, 1996.
[12] A. Matsuda, "Growth mechanism of microcrystalline silicon obtained from reactive plasmas," Thin Solid Films, vol. 337, pp. 1-6, 1/11/ 1999.
[13] G. J. Nienhuis, W. J. Goedheer, E. A. G. Hamers, W. vanSark, and J. Bezemer, "A self-consistent fluid model for radio-frequency discharges in SiH4-H-2 compared to experiments," Journal of Applied Physics, vol. 82, pp. 2060-2071, Sep 1997.
[14] A. Bogaerts and R. Gijbels, "Hybrid Monte Carlo—fluid modeling network for an argon/hydrogen direct current glow discharge," Spectrochimica Acta Part B: Atomic Spectroscopy, vol. 57, pp. 1071-1099, 6/28/ 2002.
[15] A. T. Hjartarson, E. G. Thorsteinsson, and J. T. Gudmundsson, "Low pressure hydrogen discharges diluted with argon explored using a global model," Plasma Sources Science and Technology, vol. 19, p. 065008, 2010.
[16] T. Kimura and H. Kasugai, "Properties of inductively coupled rf Ar/H2 plasmas: Experiment and global model," Journal of Applied Physics, vol. 107, p. 083308, 2010.
[17] L. Olivier, G. Gérard, A. Luís Lemos, P. Jérôme, and J. Jacques, "Two-dimensional modelling of - radio-frequency discharges for a-Si:H deposition," Plasma Sources Science and Technology, vol. 7, p. 348, 1998.
[18] I. Méndez, F. J. Gordillo-Vázquez, V. J. Herrero, and I. Tanarro, "Atom and Ion Chemistry in Low Pressure Hydrogen DC Plasmas," The Journal of Physical Chemistry A, vol. 110, pp. 6060-6066, 2006/05/01 2006.

(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *