帳號:guest(3.144.224.37)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張進榮
作者(外文):Chang, Chin Jung
論文名稱(中文):沉積本質非晶矽薄膜之矽烷/氫氣電漿數值模擬與實驗研究
論文名稱(外文):Numerical and Experimental Study of Silane/Hydrogen Plasma for Intrinsic Amorphous Silicon Film Deposition
指導教授(中文):柳克強
指導教授(外文):Keh-Chyang Leou
口試委員(中文):陳信良
王敏全
口試委員(外文):Chen, Hsin Liang
Wang, Min Cyuan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:103011555
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:131
中文關鍵詞:電容式耦合電漿電漿光譜異質接面太陽能電池非晶矽薄膜瞬態電漿電漿製程模擬電漿輔助化學氣相沉積
外文關鍵詞:CCPPlasma spectrumSilicon-based heterojunction solar cellamorphous silicon thin filmtransient plasmaplasma simulationPECVD
相關次數:
  • 推薦推薦:0
  • 點閱點閱:46
  • 評分評分:*****
  • 下載下載:15
  • 收藏收藏:0
本研究旨為探討在本質非晶矽薄膜製程中,電漿特性對薄膜特性之影響,內容包含模擬與實驗。模擬利用二維流體模型模擬在電漿輔助化學氣相沉積(Plasma enhance chemical vapor deposition, PECVD)系統中的電漿行為,並透過分析模擬結果比較電漿特性與操作參數之關聯性,實驗則利用電漿光譜分析特徵譜線與非晶矽薄膜特性的關聯性,同時以實驗結果與模擬配合相互驗證。
模擬結果顯示,當降低功率時,可使往基板方向之Si4H9/SiH3減少,並可降低鞘層電位差,使離子轟擊效應減少;然而,H/SiH3通量密度比隨功率降低而減少。而當氫氣稀釋比提升時,到達表面之H/SiH3會提升;而Si4H9/SiH3為先上升後下降的趨勢變化。另一方面,當射頻頻率增加時,往基板方向之H/SiH3、Si4H9/SiH3粒子通量密度皆變多,而鞘層電位差降低,預估離子轟擊效應將會降低。
實驗結果顯示,使用頻率為27.12 MHz PECVD來沉積與模擬參數相同之非晶矽薄膜中,其中鈍化效果最好的參數為在功率密度為0.048 W/cm2、氫氣稀釋比為1.5的條件下沉積非晶矽薄膜,其少數載子壽命為5.061 ms。欲瞭解電漿與其放射光譜之關聯,利用穩態電漿光譜分析可觀察到H2 Fulcher與模擬中電子密度隨參數變化的趨勢相似。當分析薄膜鈍化效果與光譜間之關係,可發現少數載子壽命與電漿光譜積分強度比SiH/Hβ*(5 nm)趨勢相似。在模擬與薄膜特性間之關聯性中,發現H/SiH3與薄膜的結晶率以及微結構的趨勢相似;而Si4H9/SiH3則是與孔洞比率的趨勢符合。根據模擬與實驗的結果,若操作在較低功率、適當的氫氣稀釋比例、射頻頻率下,推測可獲得較好的薄膜品質。
The purpose of this study is to investigate the influence of the plasma property on the thin film property. This study includes both experimental and simulation analysis, the simulation part used a two-dimensional fluid model for PECVD (Plasma enhanced chemical vapor deposition) system with silane/hydrogen plasma for the process of the intrinsic amorphous silicon thin film layer through computer simulation, also we can understand the mechanisms of physical and chemical reactions, and comparing the properties of plasma with different process conditions through the simulation results. The experimental part used the plasma spectrum to analyze the correlation between the characteristic spectrums and the properties of the amorphous silicon film layer. At the same time, using the experiment result to match and prove the simulation.
In the simulation result, the flux density ratio of Si4H9/SiH3 decrease as power decrease, also it decreases the ion bombardment effect due to the lower potential gradient in the sheath. However, the flux density ratio of Si4H9/SiH3 decrease as power decrease. As the hydrogen dilution ratio increases, the H/SiH3 increases; and the Si4H9/SiH3 has a trend of rise first then fall. As radio frequency increases, the H/SiH3 and the Si4H9/SiH3 increase. The ion bombardment effect is proportional to frequency.
In the experimental results, depositing the amorphous silicon thin layer by PECVD under the same parameters from simulation at frequency 27.12 MHz. The best passivation quality was deposited under condition are power is 30 W, hydrogen dilution ratio is 1.5. The minority carrier lifetime is 5.061 ms..
To understand the correlation between the properties and the emission spectrum of the plasma more, using plasma spectrums, H2 Fulcher can observe the similar trend with electron number density at the steady-state plasma. To analyze the correlation between a-Si passivation quality and plasma spectrum, it could find the trends of the plasma spectrum SiH/Hβ*(5 nm) is proportional to the minority carrier lifetime.
Comparing the simulation result with properties of a-Si, it could find that the flux density ratio H/SiH3 is similar with the crystallinity and microstructure of the film. The trend of the flux density ratio Si4H9/SiH3 matches with the voids fraction. In conclusion, we could get the better film quality when operating with a lower power, moderate hydrogen dilution ratio and frequency.
摘要 i
Abstract ii
目錄 v
圖目錄 x
表目錄 x
第一章 論文介紹 1
1.1引言 1
1.2研究動機 4
1.3研究目的 5
第二章 文獻回顧 6
2.1 矽烷/氫氣混合電漿 7
2.2非晶矽薄膜之主要鍍膜粒子 9
鍍膜前驅物 9
對鍍膜有不良影響的粒子 10
高階矽烷粒子/缺陷的影響 11
2.3 RF功率對本質非晶矽薄膜層的影響 12
2.4氫氣稀釋比例之影響 15
2.5射頻頻率之影響 17
2.6電漿放射光譜(Optical emission spectroscopy, OES) 20
2.6.1分析電漿基本放電特性 20
2.6.2薄膜特性與電漿特性之關聯 21
2.6.3薄膜特性分析 26
2.7 文獻回顧結論 28
第三章 模擬物理模型與研究方法 29
3.1模擬軟體簡介 29
3.2模擬之物理模型 30
流體模型 30
3.2.1. 電子 30
3.2.2 離子、中性粒子 32
3.2.3. 電磁場 34
3.3模擬幾何結構 35
3.3.1邊界條件 35
3.4反應式資料庫 37
3.4.1粒子與電子碰撞 37
3.4.2粒子氣體化學反應 37
3.5粒子表面反應 42
第四章 模擬研究結果與討論 44
4.1 電漿放電基本特性 46
4.1.2 主要鍍膜粒子 48
4.1.3 主要鍍膜粒子密度 49
4.1.4 主要鍍膜粒子行為探討 52
4.2 輸入功率之影響 53
4.2.1 電漿基本放電特性-探討輸入功率之影響 54
4.2.2 主要鍍膜粒子-探討輸入功率之影響 56
4.2.3 主要鍍膜粒子行為-探討輸入功率之影響 58
4.2.4 粒子通量密度比-探討輸入功率之影響 60
4.3 氫氣稀釋比例之影響 61
4.3.1 電漿基本放電特性-探討氫氣稀釋比例之影響 62
4.3.2 主要鍍膜粒子-探討氫氣稀釋比例之影響 64
4.3.3 主要鍍膜粒子行為-探討氫氣稀釋比例之影響 67
4.3.4 粒子通量密度比-探討氫氣稀釋比例之影響 68
4.4 射頻頻率之影響 69
4.4.1 電漿基本放電特性-探討射頻頻率之影響 70
4.4.2 主要鍍膜粒子-探討射頻頻率之影響 70
4.4.3 主要鍍膜粒子行為-探討射頻頻率之影響 74
4.4.4 粒子通量密度比-探討射頻頻率之影響 75
第五章 實驗設備與研究方法 76
5.1 研究方法 76
5.2 實驗流程 76
5.3實驗設備與分析方法 78
5.3.1電漿輔助化學氣相沉積(PECVD)系統 78
5.3.2光學放射光譜儀(Optical Emission Spectroscopy, OES) 78
5.3.3 OES 實驗裝置 79
橢圓偏振測厚儀 84
傅立葉轉換紅外光譜(FTIR) 85
第六章 實驗結果與討論 87
6.1 實驗條件 87
6.2電漿放射光譜強度分析-探討功率對電漿的影響 89
6.2.1 電漿放射光譜隨時間的變化 90
6.2.2 薄膜鈍化效果分析 94
6.2.3鈍化品質與OES ratio之關聯性 100
6.3 電漿放射光譜強度分析-探討氫氣稀釋比例對電漿的影響 102
6.3.1 電漿放射光譜隨時間的變化 103
6.2.2 薄膜鈍化效果分析 107
6.3.3鈍化品質與OES ratio之關聯性 113
6.4 模擬結果與薄膜特性的關聯性 115
6.4.1隨功率變化 115
6.4.2隨氫氣稀釋比變化 117
6.5模擬與電漿光譜的相關性 119
第七章 結論 120
7.1總結 120
參考文獻 122
附錄 126
[1] S. Tohoda, D. Fujishima, A. Yano, A. Ogane, K. Matsuyama, Y. Nakamura, et al., "Future directions for higher-efficiency HIT solar cells using a Thin Silicon Wafer," Journal of Non-Crystalline Solids, vol. 358, pp. 2219-2222, 9/1/ 2012.
[2] T. Mishima, M. Taguchi, H. Sakata, and E. Maruyama, "Development status of high-efficiency HIT solar cells," Solar Energy Materials and Solar Cells, vol. 95, pp. 18-21, 1// 2011.
[3] K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, et al., "Achievement of More Than 25% Conversion Efficiency With Crystalline Silicon Heterojunction Solar Cell," IEEE Journal of Photovoltaics, vol. 4, pp. 1433-1435, 2014.
[4] W. Shinohara, Y. Aya, S. Yata, M. Matsumoto, and A. Terakawa, "The outline and recent progress of thin-film solar cells and heterojunction with intrinsic thin-layer (HIT) solar cells," in Junction Technology (IWJT), 2013 13th International Workshop on, 2013, pp. 6-10.
[5] H. Meddeb, T. Bearda, W. Dimassi, Y. Abdulraheem, H. Ezzaouia, I. Gordon, et al., "Ultra high amorphous silicon passivation quality of crystalline silicon surface using in-situ post-deposition treatments," physica status solidi (RRL) – Rapid Research Letters, vol. 9, pp. 53-56, 2015.
[6] K.-S. Lee, C. B. Yeon, S. J. Yun, K. H. Jung, and J. W. Lim, "Improved Surface Passivation Using Dual-Layered a-Si:H for Silicon Heterojunction Solar Cells," ECS Solid State Letters, vol. 3, pp. P33-P36, January 1, 2014 2014.
[7] M. Akihisa, "Thin-Film Silicon –Growth Process and Solar Cell Application–," Japanese Journal of Applied Physics, vol. 43, p. 7909, 2004.
[8] A. Matsuda, "Plasma and surface reactions for obtaining low defect density amorphous silicon at high growth rates," Journal of Vacuum Science & Technology A, vol. 16, pp. 365-368, 1998.
[9] M. Takai, T. Nishimoto, M. Kondo, and A. Matsuda, "Chemical-reaction dependence of plasma parameter in reactive silane plasma," Science and Technology of Advanced Materials, vol. 2, pp. 495-503, 9/12/ 2001.
[10] M. Takai, T. Nishimoto, M. Kondo, and A. Matsuda, "Effect of higher-silane formation on electron temperature in a silane glow-discharge plasma," Applied Physics Letters, vol. 77, pp. 2828-2830, 2000.
[11] H. Fujiwara and M. Kondo, "Effects of a‐Si:H layer thicknesses on the performance of a‐Si:H∕c‐Si heterojunction solar cells," Journal of Applied Physics, vol. 101, p. 054516, 2007.
[12] A. Descoeudres, L. Barraud, R. Bartlome, G. Choong, S. De Wolf, F. Zicarelli, et al., "The silane depletion fraction as an indicator for the amorphous/crystalline silicon interface passivation quality," Applied Physics Letters, vol. 97, p. 183505, 2010.
[13] B. Strahm, A. A. Howling, L. Sansonnens, and H. Ch, "Plasma silane concentration as a determining factor for the transition from amorphous to microcrystalline silicon in SiH 4 /H 2 discharges," Plasma Sources Science and Technology, vol. 16, p. 80, 2007.
[14] H. Meddeb, T. Bearda, Y. Abdelraheem, H. Ezzaouia, I. Gordon, J. Szlufcik, et al., "Structural, hydrogen bonding and in situ studies of the effect of hydrogen dilution on the passivation by amorphous silicon of n-type crystalline (1 0 0) silicon surfaces," Journal of Physics D: Applied Physics, vol. 48, p. 415301, 2015.
[15] J. Ge, Z. P. Ling, J. Wong, R. Stangl, A. G. Aberle, and T. Mueller, "Analysis of intrinsic hydrogenated amorphous silicon passivation layer growth for use in heterojunction silicon wafer solar cells by optical emission spectroscopy," Journal of Applied Physics, vol. 113, p. 234310, 2013.
[16] S. Kim, V. Ai Dao, Y. Lee, C. Shin, J. Park, J. Cho, et al., "Processed optimization for excellent interface passivation quality of amorphous/crystalline silicon solar cells," Solar Energy Materials and Solar Cells, vol. 117, pp. 174-177, 10// 2013.
[17] M. M. de Jong, J. de Koning, J. K. Rath, and R. E. I. Schropp, "An optical analysis tool for avoiding dust formation in very-high frequency hydrogen diluted silane plasmas at low substrate temperatures," Physics of Plasmas, vol. 19, p. 020703, 2012.
[18] V. Massereau-Guilbaud, I. Géraud-Grenier, and A. Plain, "Determination of the electron temperature by optical emission spectroscopy in a 13.56 MHz dusty methane plasma: Influence of the power," Journal of Applied Physics, vol. 106, p. 113305, 2009.
[19] T. Madoka, N. Tomonori, K. Michio, and M. Akihisa, "Chemical-reaction dependence of plasma parameter in reactive silane plasma," Science and Technology of Advanced Materials, vol. 2, p. 495, 2001.
[20] U. Fantz, "Spectroscopic diagnostics and modelling of silane microwave plasmas," Plasma Physics and Controlled Fusion, vol. 40, p. 1035, 1998.
[21] H. Meddeb, T. Bearda, Y. Abdulraheem, W. Dimassi, H. Ezzaouia, I. Gordon, et al., "In-situ optical emission spectroscopy diagnostic of plasma ignition impact on crystalline silicon passivation by a-Si:H films," Superlattices and Microstructures, vol. 96, pp. 253-258, 8// 2016.
[22] G. Wang, L. Zhao, R. Hu, H. Diao, and W. Wang, "Improving surface passivation capability of silicon heterojunction solar cells with amorphous silicon by optical emission spectrometry," in Photovoltaic Specialist Conference (PVSC), 2015 IEEE 42nd, 2015, pp. 1-4.
[23] "CFD-ACE V2010.0 Modules Manua," 2010.
[24] G. J. Nienhuis, W. J. Goedheer, E. A. G. Hamers, W. vanSark, and J. Bezemer, "A self-consistent fluid model for radio-frequency discharges in SiH4-H-2 compared to experiments," Journal of Applied Physics, vol. 82, pp. 2060-2071, Sep 1 1997.
[25] J. Perrin, O. Leroy, and M. C. Bordage, "Cross-sections, rate constants and transport coefficients in silane plasma chemistry," Contributions to Plasma Physics, vol. 36, pp. 3-49, 1996.
[26] M. J. Kushner, "A MODEL FOR THE DISCHARGE KINETICS AND PLASMA CHEMISTRY DURING PLASMA ENHANCED CHEMICAL VAPOR-DEPOSITION OF AMORPHOUS-SILICON," Journal of Applied Physics, vol. 63, pp. 2532-2551, Apr 15 1988.
[27] M. J. Kushner, "Simulation of the gas-phase processes in remote-plasma-activated chemical-vapor deposition of silicon dielectrics using rare gas-silane-ammonia mixtures," Journal of Applied Physics, vol. 71, pp. 4173-4189, May 1992.
[28] M. Kurachi and Y. Nakamura, "ELECTRON COLLISION CROSS-SECTIONS FOR THE MONOSILANE MOLECULE," Journal of Physics D-Applied Physics, vol. 22, pp. 107-112, Jan 1989.
[29] E. Krishnakumar and S. K. Srivastava, "IONIZATION CROSS-SECTIONS OF SILANE AND DISILANE BY ELECTRON-IMPACT," Contributions to Plasma Physics, vol. 35, pp. 395-404, 1995 1995.
[30] J. Perrin, J. P. M. Schmitt, G. Derosny, B. Drevillon, J. Huc, and A. Lloret, "DISSOCIATION CROSS-SECTIONS OF SILANE AND DISILANE BY ELECTRON-IMPACT," Chemical Physics, vol. 73, pp. 383-394, 1982 1982.
[31] S. J. Buckman and A. V. Phelps, "VIBRATIONAL-EXCITATION OF D2 BY LOW-ENERGY ELECTRONS," Journal of Chemical Physics, vol. 82, pp. 4999-5011, 1985 1985.
[32] O. Leroy, G. Gousset, L. L. Alves, J. Perrin, and J. Jolly, "Two-dimensional modelling of SiH4-H-2 radio-frequency discharges for a-Si : H deposition," Plasma Sources Science & Technology, vol. 7, pp. 348-358, Aug 1998.
[33] A. Matsuda, "Growth mechanism of microcrystalline silicon obtained from reactive plasmas," Thin Solid Films, vol. 337, pp. 1-6, 1/11/ 1999.
[34] G. J.-H. Wu Chen-Yang, Feng Ya-Yang, Xue Yuan, Lu Jing-Xiao, "The characterization of hydrogenated amorphous silicon and epitaxial silicon thin films grown on crystalline silicon substrates by using spectroscopic ellipsometry," Acta Physica Sinica, vol. 61, pp. 157803-157803, 2012-08-05 2012.
[36] Pulsed crossed-beam study of the ionisation of atomic hydrogen by electron impact, M B Shah, D S Elliott and H B Gilbody, J. Phys. B: At. Mol. Phys., 1987
[37] Absolute cross sections for electron-impact ionization of the rare-gas atoms by the fast-neutral-beam method, R. C. Wetzel et al, 1986
[38] Atom and Ion Chemistry in Low Pressure Hydrogen DC Plasmas, Me´ndez et al., J. Phys. Chem., 2006
[39] Hybrid Monte Carlo—fluid modeling network for an argony hydrogen direct current glow discharge., A. Bogaerts, R. Gijbels, Spectrochimica Acta Part B, 2002
[40] 連頌恩, 碩士論文, 國立清華大學工程與系統科學系, 2013.
[41] 王俊荃, 碩士論文, 國立清華大學工程與系統科學系, 2016.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *