|
[1] S. Tohoda, D. Fujishima, A. Yano, A. Ogane, K. Matsuyama, Y. Nakamura, et al., "Future directions for higher-efficiency HIT solar cells using a Thin Silicon Wafer," Journal of Non-Crystalline Solids, vol. 358, pp. 2219-2222, 9/1/ 2012. [2] T. Mishima, M. Taguchi, H. Sakata, and E. Maruyama, "Development status of high-efficiency HIT solar cells," Solar Energy Materials and Solar Cells, vol. 95, pp. 18-21, 1// 2011. [3] K. Masuko, M. Shigematsu, T. Hashiguchi, D. Fujishima, M. Kai, N. Yoshimura, et al., "Achievement of More Than 25% Conversion Efficiency With Crystalline Silicon Heterojunction Solar Cell," IEEE Journal of Photovoltaics, vol. 4, pp. 1433-1435, 2014. [4] W. Shinohara, Y. Aya, S. Yata, M. Matsumoto, and A. Terakawa, "The outline and recent progress of thin-film solar cells and heterojunction with intrinsic thin-layer (HIT) solar cells," in Junction Technology (IWJT), 2013 13th International Workshop on, 2013, pp. 6-10. [5] H. Meddeb, T. Bearda, W. Dimassi, Y. Abdulraheem, H. Ezzaouia, I. Gordon, et al., "Ultra high amorphous silicon passivation quality of crystalline silicon surface using in-situ post-deposition treatments," physica status solidi (RRL) – Rapid Research Letters, vol. 9, pp. 53-56, 2015. [6] K.-S. Lee, C. B. Yeon, S. J. Yun, K. H. Jung, and J. W. Lim, "Improved Surface Passivation Using Dual-Layered a-Si:H for Silicon Heterojunction Solar Cells," ECS Solid State Letters, vol. 3, pp. P33-P36, January 1, 2014 2014. [7] M. Akihisa, "Thin-Film Silicon –Growth Process and Solar Cell Application–," Japanese Journal of Applied Physics, vol. 43, p. 7909, 2004. [8] A. Matsuda, "Plasma and surface reactions for obtaining low defect density amorphous silicon at high growth rates," Journal of Vacuum Science & Technology A, vol. 16, pp. 365-368, 1998. [9] M. Takai, T. Nishimoto, M. Kondo, and A. Matsuda, "Chemical-reaction dependence of plasma parameter in reactive silane plasma," Science and Technology of Advanced Materials, vol. 2, pp. 495-503, 9/12/ 2001. [10] M. Takai, T. Nishimoto, M. Kondo, and A. Matsuda, "Effect of higher-silane formation on electron temperature in a silane glow-discharge plasma," Applied Physics Letters, vol. 77, pp. 2828-2830, 2000. [11] H. Fujiwara and M. Kondo, "Effects of a‐Si:H layer thicknesses on the performance of a‐Si:H∕c‐Si heterojunction solar cells," Journal of Applied Physics, vol. 101, p. 054516, 2007. [12] A. Descoeudres, L. Barraud, R. Bartlome, G. Choong, S. De Wolf, F. Zicarelli, et al., "The silane depletion fraction as an indicator for the amorphous/crystalline silicon interface passivation quality," Applied Physics Letters, vol. 97, p. 183505, 2010. [13] B. Strahm, A. A. Howling, L. Sansonnens, and H. Ch, "Plasma silane concentration as a determining factor for the transition from amorphous to microcrystalline silicon in SiH 4 /H 2 discharges," Plasma Sources Science and Technology, vol. 16, p. 80, 2007. [14] H. Meddeb, T. Bearda, Y. Abdelraheem, H. Ezzaouia, I. Gordon, J. Szlufcik, et al., "Structural, hydrogen bonding and in situ studies of the effect of hydrogen dilution on the passivation by amorphous silicon of n-type crystalline (1 0 0) silicon surfaces," Journal of Physics D: Applied Physics, vol. 48, p. 415301, 2015. [15] J. Ge, Z. P. Ling, J. Wong, R. Stangl, A. G. Aberle, and T. Mueller, "Analysis of intrinsic hydrogenated amorphous silicon passivation layer growth for use in heterojunction silicon wafer solar cells by optical emission spectroscopy," Journal of Applied Physics, vol. 113, p. 234310, 2013. [16] S. Kim, V. Ai Dao, Y. Lee, C. Shin, J. Park, J. Cho, et al., "Processed optimization for excellent interface passivation quality of amorphous/crystalline silicon solar cells," Solar Energy Materials and Solar Cells, vol. 117, pp. 174-177, 10// 2013. [17] M. M. de Jong, J. de Koning, J. K. Rath, and R. E. I. Schropp, "An optical analysis tool for avoiding dust formation in very-high frequency hydrogen diluted silane plasmas at low substrate temperatures," Physics of Plasmas, vol. 19, p. 020703, 2012. [18] V. Massereau-Guilbaud, I. Géraud-Grenier, and A. Plain, "Determination of the electron temperature by optical emission spectroscopy in a 13.56 MHz dusty methane plasma: Influence of the power," Journal of Applied Physics, vol. 106, p. 113305, 2009. [19] T. Madoka, N. Tomonori, K. Michio, and M. Akihisa, "Chemical-reaction dependence of plasma parameter in reactive silane plasma," Science and Technology of Advanced Materials, vol. 2, p. 495, 2001. [20] U. Fantz, "Spectroscopic diagnostics and modelling of silane microwave plasmas," Plasma Physics and Controlled Fusion, vol. 40, p. 1035, 1998. [21] H. Meddeb, T. Bearda, Y. Abdulraheem, W. Dimassi, H. Ezzaouia, I. Gordon, et al., "In-situ optical emission spectroscopy diagnostic of plasma ignition impact on crystalline silicon passivation by a-Si:H films," Superlattices and Microstructures, vol. 96, pp. 253-258, 8// 2016. [22] G. Wang, L. Zhao, R. Hu, H. Diao, and W. Wang, "Improving surface passivation capability of silicon heterojunction solar cells with amorphous silicon by optical emission spectrometry," in Photovoltaic Specialist Conference (PVSC), 2015 IEEE 42nd, 2015, pp. 1-4. [23] "CFD-ACE V2010.0 Modules Manua," 2010. [24] G. J. Nienhuis, W. J. Goedheer, E. A. G. Hamers, W. vanSark, and J. Bezemer, "A self-consistent fluid model for radio-frequency discharges in SiH4-H-2 compared to experiments," Journal of Applied Physics, vol. 82, pp. 2060-2071, Sep 1 1997. [25] J. Perrin, O. Leroy, and M. C. Bordage, "Cross-sections, rate constants and transport coefficients in silane plasma chemistry," Contributions to Plasma Physics, vol. 36, pp. 3-49, 1996. [26] M. J. Kushner, "A MODEL FOR THE DISCHARGE KINETICS AND PLASMA CHEMISTRY DURING PLASMA ENHANCED CHEMICAL VAPOR-DEPOSITION OF AMORPHOUS-SILICON," Journal of Applied Physics, vol. 63, pp. 2532-2551, Apr 15 1988. [27] M. J. Kushner, "Simulation of the gas-phase processes in remote-plasma-activated chemical-vapor deposition of silicon dielectrics using rare gas-silane-ammonia mixtures," Journal of Applied Physics, vol. 71, pp. 4173-4189, May 1992. [28] M. Kurachi and Y. Nakamura, "ELECTRON COLLISION CROSS-SECTIONS FOR THE MONOSILANE MOLECULE," Journal of Physics D-Applied Physics, vol. 22, pp. 107-112, Jan 1989. [29] E. Krishnakumar and S. K. Srivastava, "IONIZATION CROSS-SECTIONS OF SILANE AND DISILANE BY ELECTRON-IMPACT," Contributions to Plasma Physics, vol. 35, pp. 395-404, 1995 1995. [30] J. Perrin, J. P. M. Schmitt, G. Derosny, B. Drevillon, J. Huc, and A. Lloret, "DISSOCIATION CROSS-SECTIONS OF SILANE AND DISILANE BY ELECTRON-IMPACT," Chemical Physics, vol. 73, pp. 383-394, 1982 1982. [31] S. J. Buckman and A. V. Phelps, "VIBRATIONAL-EXCITATION OF D2 BY LOW-ENERGY ELECTRONS," Journal of Chemical Physics, vol. 82, pp. 4999-5011, 1985 1985. [32] O. Leroy, G. Gousset, L. L. Alves, J. Perrin, and J. Jolly, "Two-dimensional modelling of SiH4-H-2 radio-frequency discharges for a-Si : H deposition," Plasma Sources Science & Technology, vol. 7, pp. 348-358, Aug 1998. [33] A. Matsuda, "Growth mechanism of microcrystalline silicon obtained from reactive plasmas," Thin Solid Films, vol. 337, pp. 1-6, 1/11/ 1999. [34] G. J.-H. Wu Chen-Yang, Feng Ya-Yang, Xue Yuan, Lu Jing-Xiao, "The characterization of hydrogenated amorphous silicon and epitaxial silicon thin films grown on crystalline silicon substrates by using spectroscopic ellipsometry," Acta Physica Sinica, vol. 61, pp. 157803-157803, 2012-08-05 2012. [36] Pulsed crossed-beam study of the ionisation of atomic hydrogen by electron impact, M B Shah, D S Elliott and H B Gilbody, J. Phys. B: At. Mol. Phys., 1987 [37] Absolute cross sections for electron-impact ionization of the rare-gas atoms by the fast-neutral-beam method, R. C. Wetzel et al, 1986 [38] Atom and Ion Chemistry in Low Pressure Hydrogen DC Plasmas, Me´ndez et al., J. Phys. Chem., 2006 [39] Hybrid Monte Carlo—fluid modeling network for an argony hydrogen direct current glow discharge., A. Bogaerts, R. Gijbels, Spectrochimica Acta Part B, 2002 [40] 連頌恩, 碩士論文, 國立清華大學工程與系統科學系, 2013. [41] 王俊荃, 碩士論文, 國立清華大學工程與系統科學系, 2016.
|