帳號:guest(3.12.36.175)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):廖宏倫
作者(外文):Liao, Hung Lun
論文名稱(中文):奈米碳管薄膜表面改質之製備與應用及其特性分析
論文名稱(外文):Study on the Preparation and Characterization of Surface Treatment on Transparent Carbon Nanotubes Thin films
指導教授(中文):王本誠
指導教授(外文):Wang, Pen Cheng
口試委員(中文):林滄浪
陳燦耀
口試委員(外文):Lin, Tsang Lang
Chen, Tsan Yao
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:103011550
出版年(民國):105
畢業學年度:104
語文別:中文英文
論文頁數:68
中文關鍵詞:奈米碳管官能基化共軛高分子拉曼疊氮苯氨分散性
外文關鍵詞:carbon nanotubesfunctionalizedconjugated polymerRamanazidoanilinedispersibility
相關次數:
  • 推薦推薦:0
  • 點閱點閱:111
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究分別以(i)非共價改質法和(ii)共價改質法,兩個方向對我們奈米碳管進行表面改質。
在非共價改質法中,我們使碳管表面改質上羧基,和基材上修飾氨基,設計簡易自組裝流程,欲使基材與碳管薄膜間產生共價鍵結,進而達到提升薄膜附著力與均勻性之目的,我們藉由SEM、AFM分析奈米碳管薄膜之形貌,並利用水槍噴灑的方式測試薄膜的附著性,其中方均跟粗糙度由原本未處理前的211nm降至21.3nm,造成薄膜樣品粗糙度與附著力的改善,我們推測是因為碳管與基材間產生共價鍵結,使樣品在成膜時,產生的形貌差異。本研究也討論改質碳管在有機太陽能電池元件上的應用潛力,利用Raman、 AFM與SEM等儀器量測結果,對改質奈米碳管做更深入的物化特性分析。
而在共價改質法中,我們使用4-叠氮苯氨在紫外光照射時產生的自由基,與我們碳管管壁反應,得到管壁官能基化具苯氨的奈米碳管,再藉由表面的官能基去與2-氨基苯磺酸、2-氨基-1,4-苯二磺酸以及(3-氨基苯基)磷酸做後續接枝聚合反應,期待導入共軛高分子優異的導電特性至碳管結構中,藉此改善碳管整體之電性。此外碳管管壁修飾上具親水的官能基團(如氨基、磷酸、磺酸等),使得共價改質後的碳管,在酒精溶劑中靜置一個月,仍然表現相當優異的分散性質,這樣的結果也說明了,搭配適當的表面改質技術,能使奈米碳管有更多元的應用空間。本研究利用FTIR、XPS與Raman對改質後的碳管做結構上的分析,以及利用TGA以及四點探針,討論改質後碳管薄膜之熱性質與導電特性及其應用潛力分析。
Abstract
This study is working on the two-parts modification of carbon nanotubes(CNTs). (I) Non-covalent (II) Covalent modification
(I) Pyrene derivatives attach to the surface of CNTs via physisorption, which is the result of a π-π stacking interaction between the pyrene moiety and the CNTs sidewall. We present a simple self-assembly technique to fabricate robust CNTs thin films on glass surface. By employing a cross-linking reagent such as DIC, between the CNT-pyrene complex and the APTES-modified glass substrate with amino groups, it leads to the formation of a strong bonding between CNTs thin films and glass substrate. Characterization by AFM and SEM reveal the morphology of the thin films. The best RMS roughness of our sample is 21.3 nm, which has significant difference compared to the one without APTES-treatment (211nm). We also used water jet to test the interfacial adhesion of the sample and found that the films treated with APTES were robust. Our results on smooth and robust CNTs thin films that show promising potential in industrial applications.
(II) We obtained sidewall functionalized CNTs after radical reacted with 4-azidoaniline hydrochloride by UV source. Modified CNTs were prepared by in situ oxidative polymerization with three different monomers. It was found that the dispersion stability of modified CNTs were significantly improved compared to those of the raw SWCNTs. We used FTIR, XPS and Raman spectra to explain the bonding and quality of modified CNTs. Characterized by TGA and four-point probe to discuss the thermal and electrical properties of modified CNTs.
摘要 I
Abstract II
誌謝 III
目錄 IV
表目錄 VI
圖目錄 VII
第一章 緒論 1
1-1 前言 1
1-2 奈米碳管之簡介與應用 1
1-3 研究動機 3
第二章 文獻回顧 6
2-1奈米碳管的結構 6
2-2奈米碳管的合成 9
2-3 奈米碳管的電學性質 12
2-4 單壁奈米碳管的拉曼光譜分析 13
2-5 奈米碳管複合材料 16
2-6 奈米碳管的表面改質 16
2-6-1化學共價改質法: 18
2-6-2化學非共價改質法: 19
第三章 儀器設備與操作原理 22
3-1 掃描式電子顯微鏡分析[40] 22
3-2共軛聚焦顯微拉曼光譜儀 23
3-3 四點探針量測儀 24
3-4 光譜儀器設備 25
3-4-1 紫外光-可見光-近紅外光光譜儀 26
3-4-2傅立葉轉換紅外光光譜儀[40] 28
3-5光電子發射能譜術 29
3-5-1超高真空系統 30
3-5-2 X光光電子發射能譜術 30
3-6原子力顯微鏡 32
3-7熱重分析儀 33
第四章 實驗方法與步驟 34
4-1 實驗方法 34
4-2 Part.I 非共價改質法實驗流程 35
4-2-1 芘衍生物改質奈米碳管之處理 35
4-2-2 玻璃基材親水處理 36
4-2-3 玻璃基材接枝APTES處理 36
4-2-4 碳管與基材接枝處理 37
4-2-5 Py-CNT/PEDOT:PSS/P3HT:PCBM薄膜製作 38
4-3 Part.II 共價改質法實驗流程 38
4-3-1 奈米碳管管壁改質流程步驟(4-叠氮苯氨鹽酸鹽) 39
4-3-2 奈米碳管側鏈聚合接枝反應流程 40
第五章 結果與討論 42
5-1 Part I. Non-covalent modification 42
5-1-1接觸角測試 42
5-1-2 芘衍生物改質後碳管分散情形 42
5-1-3 奈米碳管薄膜表面形貌觀察(SEM、AFM) 43
5-1-4 拉曼結晶性測試 48
5-1-5 吸附力測試(Adhesion test) 53
5-1-6 奈米碳管薄膜電性測試 53
5-2 Part II. Covalent modification 54
5-2-1共價改質後碳管分散情形 54
5-2-2紅外光光譜儀分析 55
5-2-3 XPS能譜分析 57
5-2-4拉曼光譜儀分析 58
5-2-5熱重(TGA)性質分析 60
5-2-6奈米碳管薄膜導電度分析 61
第六章 結論 63
第七章 參考資料 65


[1] S. Iijima, "Helical Microtubules of Graphitic Carbon," Nature, vol. 354, pp. 56-58, Nov 7 1991.
[2] A. B. Dalton, S. Collins, E. Munoz, J. M. Razal, V. H. Ebron, J. P. Ferraris, et al., "Super-tough carbon-nanotube fibres - These extraordinary composite fibres can be woven into electronic textiles.," Nature, vol. 423, pp. 703-703, Jun 12 2003.
[3] B. E. Kilbride, J. N. Coleman, J. Fraysse, P. Fournet, M. Cadek, A. Drury, et al., "Experimental observation of scaling laws for alternating current and direct current conductivity in polymer-carbon nanotube composite thin films," Journal of Applied Physics, vol. 92, pp. 4024-4030, Oct 1 2002.
[4] J. K. W. Sandler, J. E. Kirk, I. A. Kinloch, M. S. P. Shaffer, and A. H. Windle, "Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites," Polymer, vol. 44, pp. 5893-5899, Sep 2003.
[5] M. J. Biercuk, M. C. Llaguno, M. Radosavljevic, J. K. Hyun, A. T. Johnson, and J. E. Fischer, "Carbon nanotube composites for thermal management," Applied Physics Letters, vol. 80, pp. 2767-2769, Apr 15 2002.
[6] C. Y. Wei, D. Srivastava, and K. J. Cho, "Thermal expansion and diffusion coefficients of carbon nanotube-polymer composites," Nano Letters, vol. 2, pp. 647-650, Jun 2002.
[7] C. L. Cheung, J. H. Hafner, and C. M. Lieber, "Carbon nanotube atomic force microscopy tips: Direct growth by chemical vapor deposition and application to high-resolution imaging," Proceedings of the National Academy of Sciences of the United States of America, vol. 97, pp. 3809-3813, Apr 11 2000.
[8] C. H. Poa, S. R. P. Silva, P. C. P. Watts, W. K. Hsu, H. W. Kroto, and D. R. M. Walton, "Field emission from nonaligned carbon nanotubes embedded in a polystyrene matrix," Applied Physics Letters, vol. 80, pp. 3189-3191, Apr 29 2002.
[9] C. Y. Su, A. Y. Lu, Y. L. Chen, C. Y. Wei, P. C. Wang, and C. H. Tsai, "Chemically-treated single-walled carbon nanotubes as digitated penetrating electrodes in organic solar cells," Journal of Materials Chemistry, vol. 20, pp. 7034-7042, 2010.
[10] R. F. Service, "Superstrong nanotubes show they are smart, too," Science, vol. 281, pp. 940-942, Aug 14 1998.
[11] M. A. L. Manchado, L. Valentini, J. Biagiotti, and J. M. Kenny, "Thermal and mechanical properties of single-walled carbon nano tubes-polypropylene composites prepared by melt processing," Carbon, vol. 43, pp. 1499-1505, Jun 2005.
[12] B. J. Landi, R. P. Raffaelle, S. L. Castro, and S. G. Bailey, "Single-wall carbon nanotube-polymer solar cells," Progress in Photovoltaics, vol. 13, pp. 165-172, Mar 2005.
[13] P. C. Wang, L. H. Liu, D. A. Mengistie, K. H. Li, B. J. Wen, T. S. Liu, et al., "Transparent electrodes based on conducting polymers for display applications," Displays, vol. 34, pp. 301-314, Oct 2013.
[14] P. C. Wang, E. C. Venancio, D. M. Sarno, and A. G. MacDiarmid, "Simplifying the reaction system for the preparation of polyaniline nanofibers: Re-examination of template-free oxidative chemical polymerization of aniline in conventional low-pH acidic aqueous media," Reactive & Functional Polymers, vol. 69, pp. 217-223, Apr 2009.
[15] G. Wang, Y. Ding, F. Wang, X. Li, and C. Li, "Poly(aniline-2-sulfonic acid) modified multiwalled carbon nanotubes with good aqueous dispersibility," Journal of Colloid and Interface Science, vol. 317, pp. 199-205, Jan 1 2008.
[16] K. Zhang, L. L. Zhang, X. S. Zhao, and J. S. Wu, "Graphene/Polyaniline Nanofiber Composites as Supercapacitor Electrodes," Chemistry of Materials, vol. 22, pp. 1392-1401, Feb 23 2010.
[17] O. K. Park, T. Jeevananda, N. H. Kim, S. I. Kim, and J. H. Lee, "Effects of surface modification on the dispersion and electrical conductivity of carbon nanotube/polyaniline composites," Scripta Materialia, vol. 60, pp. 551-554, Apr 2009.
[18] N. M. Rodriguez, "A Review of Catalytically Grown Carbon Nanofibers," Journal of Materials Research, vol. 8, pp. 3233-3250, Dec 1993.
[19] C. Liu, H. T. Cong, F. Li, P. H. Tan, H. M. Cheng, K. Lu, et al., "Semi-continuous synthesis of single-walled carbon nanotubes by a hydrogen arc discharge method," Carbon, vol. 37, pp. 1865-1868, 1999.
[20] M. Ishigami, J. Cumings, A. Zettl, and S. Chen, "A simple method for the continuous production of carbon nanotubes," Chemical Physics Letters, vol. 319, pp. 457-459, Mar 24 2000.
[21] T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, and R. E. Smalley, "Catalytic Growth of Single-Walled Nanotubes by Laser Vaporization," Chemical Physics Letters, vol. 243, pp. 49-54, Sep 8 1995.
[22] M. Yudasaka, T. Komatsu, T. Ichihashi, and S. Iijima, "Single-wall carbon nanotube formation by laser ablation using double-targets of carbon and metal," Chemical Physics Letters, vol. 278, pp. 102-106, Oct 24 1997.
[23] P. R. Birkett, A. J. Cheetham, B. R. Eggen, J. P. Hare, H. W. Kroto, and D. R. M. Walton, "Transition metal surface decorated fullerenes as possible catalytic agents for the creation of single walled nanotubes of uniform diameter," Chemical Physics Letters, vol. 281, pp. 111-114, Dec 19 1997.
[24] H. M. Cheng, F. Li, G. Su, H. Y. Pan, L. L. He, X. Sun, et al., "Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons," Applied Physics Letters, vol. 72, pp. 3282-3284, Jun 22 1998.
[25] C. T. White and T. N. Todorov, "Carbon nanotubes as long ballistic conductors," Nature, vol. 393, pp. 240-242, May 21 1998.
[26] Z. H. Zhang, J. C. Peng, and H. Zhang, "Low-temperature resistance of individual single-walled carbon nanotubes: A theoretical estimation," Applied Physics Letters, vol. 79, pp. 3515-3517, Nov 19 2001.
[27] M. Bockrath, D. H. Cobden, J. Lu, A. G. Rinzler, R. E. Smalley, L. Balents, et al., "Luttinger-liquid behaviour in carbon nanotubes," Nature, vol. 397, pp. 598-601, Feb 18 1999.
[28] S. Frank, P. Poncharal, Z. L. Wang, and W. A. de Heer, "Carbon nanotube quantum resistors," Science, vol. 280, pp. 1744-1746, Jun 12 1998.
[29] H. J. Dai, "Probing electrical transport in nanomaterials: Conductivity of individual carbon nanotubes (vol 272, pg 523, 1996)," Science, vol. 272, pp. 1861-1861, Jun 28 1996.
[30] L. Langer, V. Bayot, E. Grivei, J. P. Issi, J. P. Heremans, C. H. Olk, et al., "Quantum transport in a multiwalled carbon nanotube," Physical Review Letters, vol. 76, pp. 479-482, Jan 15 1996.
[31] M. S. Dresselhaus, G. Dresselhaus, R. Saito, and A. Jorio, "Raman spectroscopy of carbon nanotubes," Physics Reports-Review Section of Physics Letters, vol. 409, pp. 47-99, Mar 2005.
[32] J. P. Salvetat, G. A. D. Briggs, J. M. Bonard, R. R. Bacsa, A. J. Kulik, T. Stockli, et al., "Elastic and shear moduli of single-walled carbon nanotube ropes," Physical Review Letters, vol. 82, pp. 944-947, Feb 1 1999.
[33] C. C. Teng, C. C. M. Ma, Y. W. Huang, S. M. Yuen, C. C. Weng, G. H. Chen, et al., "Effect of MWCNT content on rheological and dynamic mechanical properties of multiwalled carbon nanotube/polypropylene composites," Composites Part a-Applied Science and Manufacturing, vol. 39, pp. 1869-1875, Dec 2008.
[34] H. Ago, T. Kugler, F. Cacialli, W. R. Salaneck, M. S. P. Shaffer, A. H. Windle, et al., "Work functions and surface functional groups of multiwall carbon nanotubes," Journal of Physical Chemistry B, vol. 103, pp. 8116-8121, Sep 23 1999.
[35] R. Graupner, J. Abraham, A. Vencelova, T. Seyller, F. Hennrich, M. M. Kappes, et al., "Doping of single-walled carbon nanotube bundles by Bronsted acids," Physical Chemistry Chemical Physics, vol. 5, pp. 5472-5476, Dec 15 2003.
[36] R. J. Chen, Y. G. Zhang, D. W. Wang, and H. J. Dai, "Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization," Journal of the American Chemical Society, vol. 123, pp. 3838-3839, Apr 25 2001.
[37] N. Nakashima, Y. Tomonari, and H. Murakami, "Water-soluble single-walled carbon nanotubes via noncovalent sidewall-functionalization with a pyrene-carrying ammonium ion," Chemistry Letters, pp. 638-639, Jun 5 2002.
[38] H. Z. Geng, K. K. Kim, K. P. So, Y. S. Lee, Y. Chang, and Y. H. Lee, "Effect of acid treatment on carbon nanotube-based flexible transparent conducting films," Journal of the American Chemical Society, vol. 129, pp. 7758-+, Jun 27 2007.
[39] H. Tantang, J. Y. Ong, C. L. Loh, X. C. Dong, P. Chen, Y. Chen, et al., "Using oxidation to increase the electrical conductivity of carbon nanotube electrodes," Carbon, vol. 47, pp. 1867-1870, Jun 2009.
[40] D. R. Ulrich, "Multifunctional Macromolecular Ultrastructures - Introductory Comments Speciality Polymers 86," Polymer, vol. 28, pp. 533-542, Apr 1987.
[41] S. A. Contera, T. Yoshinobu, H. Iwasaki, and K. Kisoda, "Mesoscopic scanning tunneling and atomic force microscopy study of the misfit-layer compounds (LaSe)(x)NbSe2 and (PbSe)(x)NbSe2," Surface Science, vol. 441, pp. 384-390, Nov 1 1999.
[42] M. J. Moghaddam, S. Taylor, M. Gao, S. M. Huang, L. M. Dai, and M. J. McCall, "Highly efficient binding of DNA on the sidewalls and tips of carbon nanotubes using photochemistry," Nano Letters, vol. 4, pp. 89-93, Jan 2004.
[43] M. Holzinger, O. Vostrowsky, A. Hirsch, F. Hennrich, M. Kappes, R. Weiss, et al., "Sidewall functionalization of carbon nanotubes," Angewandte Chemie-International Edition, vol. 40, pp. 4002-+, 2001.
[44] J. K. Wu, C. S. Yang, Y. S. Wu, P. C. Wang, and F. G. Tseng, "Continuous affinity-gradient nano-stationary phase served as a column for reversed-phase electrochromatography and matrix carrier in time-of-flight mass spectrometry for protein analysis," Analytica Chimica Acta, vol. 889, pp. 166-171, Aug 19 2015.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *