帳號:guest(18.217.133.91)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):簡亦祥
作者(外文):Chien,Yi Hsiang
論文名稱(中文):高敏感度與高收集效率之背向散射電子偵檢器開發
論文名稱(外文):Fabrication of High Sensitivity and High Collecting Efficiency Backscattered Electron Detector
指導教授(中文):陳福榮
李志浩
指導教授(外文):Chen,Fu Rong
Lee,Chih-Hao
口試委員(中文):曾繁根
莊昀儒
口試委員(外文):Tseng,Fan Gang
Chuang, Yun Ju
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:103011546
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:89
中文關鍵詞:背向散射電子偵檢器
外文關鍵詞:Backscattered Electron Detector
相關次數:
  • 推薦推薦:0
  • 點閱點閱:589
  • 評分評分:*****
  • 下載下載:4
  • 收藏收藏:0
本研究 為製作 高敏感 度及高 收集 效率 之背向散射電子偵檢器, 射電子偵檢器, 該偵 檢器主要是 置於 掃描 式電子顯微鏡 中,當 電子束 掃描 於樣品時 會產生背向散射電子 ,可藉由偵檢器 收集 電子並產生訊號 ,而提高敏感度與收集效率 可以 改善其效能。 其效能。 利用側向 空乏 的結 構增加 表面之敏感度 ,而使 ,而使 用網狀鋁線 能夠提升收集 效率 。藉由這 。藉由這 些方 式來提升 過去背向散射 電子偵檢器的不足之處 ,讓其 在 SEMSEM 觀測 影像時 效能有所改善。
側向 空乏 的方式 能使 空乏區外 側沿伸至偵檢器之表面,以克服在製作 側沿伸至偵檢器之表面,以克服在製作 側沿伸至偵檢器之表面,以克服在製作 偵檢器時 因為 無感 層所造成無法接收到 表層低能量之背向散射電子 的難題,而藉此 難題,而藉此 難題,而藉此 可提高敏感度 。現 今的研究 多使用低能量電子束,以避免對樣品造成傷害所產生的背 多使用低能量電子束,以避免對樣品造成傷害所產生的背 多使用低能量電子束,以避免對樣品造成傷害所產生的背 多使用低能量電子束,以避免對樣品造成傷害所產生的背 多使用低能量電子束,以避免對樣品造成傷害所產生的背 向散射電 子能量也 相對較低,而增加 偵檢器的敏 感度可 以有效的收集這些低能量 的背向散射 電子。
利用網狀的鋁線增加電極與工作區域接觸面積, 並降低串聯阻利用網狀的鋁線增加電極與工作區域接觸面積, 並降低串聯阻利用網狀的鋁線增加電極與工作區域接觸面積, 並降低串聯阻利用網狀的鋁線增加電極與工作區域接觸面積, 並降低串聯阻使工作區受背 向散射電子 撞擊所產生的-電洞對更 易經由鋁網導出, 以提 升收集 效率,可增加 偵 檢器收集 背向散射電子的能力 。
利用黃光微影、離子佈 用黃光微影、離子佈 用黃光微影、離子佈 植、濺鍍等製程步驟作 、濺鍍等製程步驟作 元件。完 成元件後, 成元件後, 量測 I-V曲線 及暗電流等基本性 。製備原子序 敏感度 試片, 試片, 並量測元件 的原子序敏感度 原子序敏感度 。最 後將 本 研究設計的 高敏感度與高收集效率的背 向散射電子偵檢器裝上 SEMSEM 做上機測試, 並與 本研究團隊先前所研發的典型多片環背向散射電子偵檢器做比較 ,可以發現 改良過的 背向散射電子偵檢器在低能量的收集 效率上確實有所提升 。
The purpose of this research is to fabricate a high sensitivity and high collecting efficiency backscattered electron detector. The detector is set in the Scanning Electron Microscope. The detector can collect the backscattered electrons and produce the signals during operation. Increasing the sensitivity and collecting efficiency of the backscattered electron detector improves the effect of the detector. This research uses the lateral P-N junctions to enhance the sensitivity of the detector. It also uses the Al grids to improve the collecting efficiency.
The structure of the lateral P-N junctions can make the outer depletion region extend to the surface of the active areas. It can get rid of the dead layers on the surface of the active areas. The detector can collect the low energy electrons and improve its sensitivity. Nowadays, many researches use low energy electron beam to scan the samples to reduce the radiation damage to the samples. The backscattered electrons from the samples may have low energy due to the low energy electron beam. As a result, increasing the sensitivity of the detector can make the detector collect more low energy backscattered electrons effectively.
The Al grids can increase more areas of the Al electrodes to contact the active areas. This structure may reduce the series resistance. Therefore, the electron-hole pairs produced from the active areas can be collected by the Al electrodes more easily. It can improve the collecting efficiency of the detector.
After finishing the detector, the I-V curve and the dark current of the detector are measured to ensure its basic electric properties. The dynamic range and the collecting efficiency are also measured. Furthermore, the atomic number sensitivity is measured, too. The new backscattered electron detector has better collecting efficiency and atomic number sensitivity than the multi-annular shape backscattered electron detector which our research group made before.
摘要 i
Abstract ii
誌謝詞 iii
總目錄 v
表目錄 viii
圖目錄 x
第一章 序論 1
1.1前言 1
1.2研究動機 1
第二章 掃描式電子顯微鏡及半導體物理 2
2.1掃描式電子顯微鏡之發展 2
2.2掃描式電子顯微鏡之原理 2
2.3電子束與物質作用 3
2.3.1二次電子 4
2.3.2 特徵X光 6
2.3.3背向散射電子 6
2.4電子能譜圖 8
2.5偵檢器系統 9
2.6背向散射電子偵檢器之分類 9
2.6.1 E-T偵檢器 10
2.6.2閃爍背向散射電子偵檢器 11
2.6.3固態背向散射電子偵檢器 11
2.7 背向散射電子的應用 15
2.8文獻回顧 19
2.9背向散射電子半導體偵檢器(Backscattered Electron Semiconductor Detectors) 26
2.9.1空乏區(Depletion Region) 26
2.9.2 游離能(Ionization Energy, Ei) 28
2.9.3 效率(Efficiency,εBS) 29
2.9.4 反應時間(Response Time) 32
2.9.5 雜訊(Noise) 32
第三章 背向散射電子偵檢器之設計與製程 35
3.1背向散射電子偵檢器之設計與製程 35
3.1.1 矽基材 37
3.1.2 離子佈植參數設定 40
3.1.3光罩設計 45
3.1.4鋁接線 48
3.2背向散射電子偵檢器製程 49
3.2.1黃光微影(Lithography) 51
3.2.2二氧化矽蝕刻(Silicon Dioxide Etching) 53
3.2.3離子佈植(Ion implantation) 54
3.2.4快速熱退火(Rapid Thermal Annealing, RTA) 55
3.2.5濺鍍(Sputtered) 56
3.2.6鋁蝕刻(Aluminum Etching) 57
第四章 背向散射電子偵檢器理論計算與量測 59
4.1晶片測試之規劃 59
4.2理論計算 60
4.3電流-電壓曲線圖 61
4.4背向散射電子偵檢器角度計算 66
4.5偵檢器的增益 67
4.6 原子序敏感度 72
4.7影像結果 78
第五章 結論與建議 83
5.1結論 83
5.2 建議 84
5.2.1鋁蝕刻 84
5.2.2鋁網犧牲工作區域面積 85
5.2.3側向空乏區佈植寬度以及間距調整 85
5.3.4 CVD表面沉積硼 85
參考文獻 86
1. Reimer, L., Scanning electron microscopy: physics of image formation and microanalysis. 1998: Springer Verlag.
2. 陳力俊, 材料電子顯微鏡學. 1994: 國家實驗研究院儀器科技研究中心.
3. Bongeler, R., et al., Electron-specimen interactions in low voltage scanning electron microscopy. 1993. 15: p. 1-1.
4. Heinrich, K., In Proceedings of the 4th International Conference on X-ray Optics and Microanalysis. 1966: p. 159.5、Hunger, H.J. and L. Kuchler, Measurements of the electron backscattering coefficient for quantitative EPMA in the energy range of 4 to 40 keV. physica status solidi (a), 1979. 56(1): p. 45-48.
5. Hunger, H.J. and L. Kuchler, Measurements of the electron backscattering coefficient for quantitative EPMA in the energy range of 4 to 40 keV. physica status solidi (a), 1979. 56(1): p. 45-48.
6. Reimer, L., “Image formation in low-voltage scanning electron microscopy”. Tutorial texts in optical engineering. 1993, Bellingham, Wash.: SPIE Optical Engineering Press. Xii, 143 p.
7. Spieler, H., Semiconductor detector systems. 2005: Oxford University Press, USA.
8. Everhart, T.E. and R.F.M. Thornley, “Wide-band detector for micro-microampere low-energy electron currents”. Journal of Science Instruments, 1960. 37: p. 246-248.
9. Robinson, V., “The construction and uses of an efficient backscattered electron detector for scanning electron microscopy”. Journal of Physics E: Scientific Instruments, 1974. 7: p. 650.
10. Erlandsen, S., et al., “High-resolution backscatter electron imaging of colloidal gold in LVSEM”. Journal of Microscopy, 2003. 211(3): p. 212-218.
11. Knoll, G.F., Radiation detection and measurement. Vol. 2. 1989: Wiley New York.
12. Newbury, D., H. Yakowitz, and R. Myklebust, “Monte Carlo calculations of magnetic contrast from cubic materials in the scanning electron microscope”. Applied Physics Letters, 1973. 23(8): p. 488-490
13. Goldstein, J., et al., Scanning electron microscopy and X-ray microanalysis. 2003: Springer Us.
14. 陳力俊, 材料電子顯微鏡學. 1994: 國家實驗研究院儀器科技研究中心.
15. Goldstein, J., et al., Scanning electron microscopy and X-ray microanalysis. 2003: Springer Us.
16. Munden, A. and D. Walker, “A silicon detector for the Stereoscan scanning electron microscope”. Journal of Physics E: Scientific Instruments, 1973. 6: p. 916.
17. Stephen, J., et al., “Applications of a semiconductor backscattered electron detector in a scanning electron microscope”. Journal of Physics E: Scientific Instruments, 1975. 8: p. 607.
18. Gedcke, D., J. Ayers, and P. DeNee,” A solid state backscattered electron detector capable of operating at TV scan rates”. Scan Electron Microsc, 1978. 1: p. 581-594.
19. Fritz, G., et al.,” Lateral pn-junctions as a novel electron detector for microcolumn systems”. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 1999. 17: p. 2836.
20. Wei-Kuo Huang, Yu-Chang Liu and Yue-Ming Hsin, “A high speed and high responsivity photodiode in standard CMOS technology”. IEEE Photonics Technology Letters.
21. Meier, G., et al., “Characterization and application of a low profile metal-semiconductor-metal detector for low energy backscattered electrons”. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 1996. 14(6): p. 3821-3824.
22. Fan Ji, Mikko Juntunen, et al,” Electrical crosstalk in front illuminated photodiode array with different guard ring designs for medical CT applications”. Nuclear Instruments and Methods in Physics Research A, 2009, pp. 150-153.
23. L.K. Nanver, T. L. M. Scholtes, “Pure-Boron Chemical-Vapor-Deposited Layers:
a New Material for Silicon Device Processing”.
24. Agata Sakic, Student Member, et al, “High-Efficiency Silicon Photodiode Detector for Sub-keV Electron Microscopy”. IEEE Transactions on Electron Devices, Vol. 59, No. 10, October 2012.
25. S. Kalthom Tasirin, P. Susthitha Menon, et al, “High performance silicon lateral PIN photodiode”. IOP Conf. Series: Earth and Environmental Science 16 (2013) 012032.
26. E. Valtonen, T. Eronen, et al, “Fabrication of a thin silicon detector with excellent
thickness uniformity”. Nuclear Inst. and Methods in Physics Research, A, 2015.
27. K.R.C. Mok, L. Qi, et al, “Self-aligned two-layer metallization with low series resistance for litho-less contacting of large-area photodiodes”. Solid-State Electronics 111 (2015) 210–217.
28. Sze, S. and K. Ng, Physics of semiconductor devices. 2007: Wiley-Blackwell.
29. Leamy, H.J., “Charge collection scanning electron microscopy”. Journal of Applied Physics, 1982. 53(6): p. R51-R80.
30. Kang-Decc Suh, Soon-Won Hong, et al, “An Analysis for the potential of floating
guard rings”. Solid-State electronics Vol. 33, No. 9, pp. 1125-l 129, 1990.
31. A. V. Gostev, S. A. Ditsman, V. V. Zabrodskii, et al, “Characterization of Semiconductor Detectors of (1–30)-keV Monoenergetic and Backscattered Electrons”. Bulletin of the Russian Academy of Sciences: Physics, 2008, Vol. 72, No. 11, pp. 1456–1461.
32. Cowley, A. and S. Sze, “Surface States and Barrier Height of Metal Semiconductor Systems”. Journal of Applied Physics, 1965. 36(10): p. 3212-3220.
33. Hu, C.C., Modern semiconductor devices for integrated circuits. 2009: Prentice Hall.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *