|
[1] D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, k. Gregory, C. A. Puliafito, and J. G. Fujimoto. “Optical Coherence Tomography.” Science, 254, pp. 1178-1181 (1991). [2] M. Ohmi, T. Kurata, M. Sekimoto, and M. Haruna. “Quasi in-focus optical coherence tomography.” Japanese Journal of Applied Physics Part 1—Regular Papers Short Notes & Review Papers, 43, 845-849 (2004). [3] C. C. Cheng, C. A. Chang and J. A. Yeh, “Variable focus dielectric liquid droplet lens,” Opt. Express, 14, pp. 4101 (2006). [4] C. C. Cheng and J. A Yeh. “Dielectrically actuated liquid lens.” Opt. Express 15, pp. 7140-7145 (2007). [5] K. Y. Hung, C. W. Chen, C. T. Chen, and F. G. Tseng. “Electrostatic Force Driven Reshapable Micro Aspherical Lens.” Journal of Microelectromechanical Systems, VOL. 17, NO. 2, pp. 370-380, APRIL (2008). [6] W. Drexler, U. Morgner, F. X. Kartner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto. “In vivo vltrahigh-resolution optical coference tomography.” Optics Letters, 24, pp. 1221-1223 (1999). [7] J. G. Fujimoto, “Optical Coherence Tomography”, Applied Physics, vol.2, issue 8, pp.1099~1111, 12,OCT, 2001. [8] B. E. Bouma and G. J. Tearney, “Hand book of Optical Coherence Tomography”, Marcel Dekker, Inc., New York, 2003. [9] R. Huber, D. C. Adler, V. J. Srinivasan, and J. G. Fujimoto, “Fourier domain mode locking at 1050 nm for ultra-high-speed optical coherence tomography of the human retina at 236,000 axial scans per second”, Optics Letters, Vol. 32, Issue 14, pp. 2049-2051, 2007. [10] D. C. Adler, C. Zhou, T.H. Tsai, Joe Schmitt, Qin Huang, Hiroshi Mashimo, and James G. Fujimoto, “Three-dimensional endomicroscopy of the human colon using optical coherence tomography”, Optics Express, vol. 17, Issue 2, pp. 784-796, 2009. [11] J. M. Schmitt *, S. L. Lee, K. M. Yung, “An optical coherence microscope with enhanced resolving power in thick tissue”, Optics Communications 142 (1997) 203-207 [12] J. M. Schmitt. M. J. Yadlowsky, R.F. Bonner, Dermatology 191 (1995) 93. [13] H. J. Böhringer, E. Lankenau, F. Stellmacher, E. Reusche, G. Hüttmann and A. Giese, “Imaging of human brain tumor tissue by near-infrared laser coherence tomography”, and Acta Neurochir, 151, (2009),Page:507–517 [14] K. Aljasem, A. Seifert, and Hans Zappe Laboratory for Micro-optics, Department of Microsystems Engineering – IMTEK, University of Freiburg, “Tunable Multi-micro-lens System for High Lateral Resolution Endoscopic Optical Coherence Tomography”, Georges-K¨ohler-Allee 102, 79110 Freiburg, Germany [15] H. Ren and S. T. Wu, “Tunable-focus liquid microlens array using dielectrophoretic effect”, Optics Express 16, 2646-2652 (2008). [16] H. W. Ren, D. Fox, P. A. Anderson, B. Wu, and S. T. Wu, “Tunable-focus liquid lens controlled using a servo motor”, Optics Express 14, 8031-8036 (2006). [17] H. Ren and S. T. Wu, “Variable-focus liquid lens by changing aperture”, Appl. Phys. Lett. 86, 211107 (2005). [18] K. H. Jeong, G. L. Liu, N. Chronis and L. P. Lee, “Liquid Lenses and Driving Mechanisms: A Review”, Opt. Express 12, 2494 (2004). [19] P. M. Moran, S. Dharmatilleke, A. H. Khaw, K.W. Tan, M. L. Chan and I. Rodriguez, “Fluidic lenses with variable focal length”, Appl. Phys.Lett. 88, 041120 (2006). [20] L. Dong, A. K. Agarwal, David J. Beebe & Hongrui Jiang, “Adaptive liquid microlenses activated by stimuliresponsive hydrogels”, Vol 442|3 August 2006. [21] H. Morgan and N. G. Green, “AC Electrokinetics: Colloids and Nanoparticles.” ,Research Studies Press, Baldock, UK (2003). [22] H. A. Pohl, “Dielectrophoresis. ”, Cambridge University Press, New York (1978). [23] C. C. Cheng and J. A. Yeh, “Dielectrically actuated liquid lens”, Opt. Express 15, 7140 (2007). [24] C.-C. Cheng, C. A. Chang and J. A. Yeh, “Variable focus dielectric liquid droplet lens”, Opt. Express 14, 4101 (2006). [25] G. Lippmann, Annals Chim. “Relations entre les phénomènes électriques et capillaires”, Phys. 5, 494 (1875). [26] H. Moona and S. K. Cho, R. L. Garrell, C. J. Kim, “Low voltage electrowetting-on-dielectric”, JOURNAL OF APPLIED PHYSICS VOLUME 92, NUMBER 7 1 OCTOBER 2002 [27] S. K. Fan, P. W. Huang, T. T. Wang and Y. H. Peng, “Cross-scale electric manipulations of cells and droplets by frequency-modulated dielectrophoresis and electrowetting”, Lab Chip 8, 1325 (2008). [28] S. K. Fan, H. Yang, T. T. Wang and W. Hsu, “Asymmetric electrowetting—moving droplets by a square wave”, Lab Chip 7, 1330 (2007). [29] B. H. W. Hendriks, S. Kuiper, M. A. J. Van As, C. A. Renders, and T. W. Tukker, “Electrowetting-based variable-focus lens for miniature systems”, Optical Review 12.255-259 (2005). [30] Varioptic, http://www.varioptic.com/en/index.php. [31] J. Godin, V. Lien, and Y. H. Lo, “Demonstration of twodimensional fluidic lens for integration into microfluidic flow cytometers”, Appl. Phys. Lett. 89, 061106 (2006). [32] Z. Wang, J. El-Ali, M. Engelund, T. Gotsaed, I. R. Perch- Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A.Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements”, Lab Chip 4, 372–377 (2004). [33] J. Wenger, D. Gérard, H. Aouani, and H. Rigneault, “Disposable microscope objective lenses for fluorescence correlation spectroscopy using latex microspheres”, Anal. Chem. 80, 6800–6804 (2008). [34] M. S. Moghaddam, H. Latifi, H. Shahraki, and M. Sadegh Cheri, “Simulation, fabrication, and characterization of a tunable electrowetting-based lens with a wedge-shaped PDMS dialectic layer”, 1 April 2015 / Vol. 54, No. 10 / APPLIED OPTICS, p.3010-p.3015. [35] F. Krogmann, W. M¨onch and H. Zappe, “AMEMS-based variable micro-lens system”, J. Opt. A: Pure Appl. Opt. 8 (2006) S330–S336 [36] C. C. Yang, L. Yang, C. G. Tsai, P. H. Jou, J. A. Yeh. “Fully developed contact angle change of a droplet in liquid actuated by dielectric force”, Applied Physics Letters, 101(18), 182903. [37] M. Xu, X. Wang and H. Ren, “Tunable Focus Liquid Lens with Radial-Patterned Electrode”, Micromachines 2015, 6, 1157-1165 [38] M. Xu, D. Xu, H. Ren, I. Yoo and Q. H. Wang, “An adaptive liquid lens with radial interdigitated electrode”, J. Opt. 16 (2014) 105601 [39] H. A. Pohl., “Some Effects of Nonuniform Fields on Dielectrics,” J. Appl. Phys. 29, 1182-1188(1985) [40] M. P. Hughes, Nanoelectromechanics in Engineering and Biology (CRC, New York, 2003). [41] 鄭至成. "介電液體變焦透鏡."
|