帳號:guest(18.116.62.177)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):胡柏偉
作者(外文):Hu, Po Wei
論文名稱(中文):具電控可調式液態透鏡應用在光學同調光斷層掃描術
論文名稱(外文):AN ELECTRICALLY TUNABLE ASYMMETRICAL LIQUID LENS SYSTEM FOR OPTICAL COHERENT TOMOGRAPHY
指導教授(中文):曾繁根
王本誠
指導教授(外文):Tseng, Fan Gang
Wang, Pen Cheng
口試委員(中文):蔡孟燦
洪國永
口試委員(外文):Tsai, Meng Tsan
Hung, Kuo Yung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:103011540
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:87
中文關鍵詞:液態透鏡光學同調光斷層掃描術介電泳
外文關鍵詞:Liquid lensOptical Coherent TomographyDielectrophoresis
相關次數:
  • 推薦推薦:0
  • 點閱點閱:234
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本文探討使用介電泳式(Dielectrophoresis, DEP)驅動液態透鏡的設計與製作,操縱微米等級的液珠在玻璃晶片上作不規則形變,改變曲率半徑使其具有同時變焦及折射光線的能力,透過電控液態透鏡來改變焦距或是偏折光線,進一步取代傳統光學同調光斷層掃描術中的旋轉鏡組合聚焦鏡組,以達到縮小光學同調光斷層掃描術前端設備尺寸的目的。
本研究以耐熱玻璃當做基材,經由微機電製程(MEMS)製作出具有不相連多個不相連電極環繞在液態透鏡的周邊,對稱的電極可以施予驅動電壓,使液態透鏡進行變焦和偏折,達到和傳統固態透鏡系統相同之效果,以此來結合同調光斷層掃描術重建組織三維影像並大大縮小整體前端系統尺寸,微米級液珠利用DEP來驅動液珠產生不規則形變,藉由給予不同的高頻驅動電壓,來觀察液珠表面接觸角變化和光線偏折能力並藉由此晶片去取代光學同調光斷層掃描術之前段設備。本文探討以不同的高頻驅動電壓來觀測微小液珠的接觸角變化,以及光線曲折的能力,實驗結果顯示:(1)液珠的接觸角隨著電壓的增大,會有遞減的趨勢變化,亦即如果未超過其液珠的頻率響應值,電壓增大角度變化亦遞增;(2)經由實驗得知,液珠在其輸入頻率為5K Hz時有著對此液珠的驅動最大效果,可以使接觸角變化約20°;(3)不同波形對液珠的影響亦不相同;(4)液珠在驅動後可以有效的將光線曲折約4.76°,在其驅動最佳條件下。此研究不僅經實驗證實微米級液珠在晶片上可以具備有變焦和曲折光線的能力,更配合實驗的結果印證,找出其驅動的最佳參數,能有效的降低驅動電壓的需求。此一技術進一步可以應用結合同調光斷層掃描術,能夠廣泛應用在生醫成像術和癌症早期檢測上頭。
This paper reports a novel design of an electrically tunable asymmetrical liquid lens that can deflects optical beam by controlling the lens curvature through driving voltages, which can be integrated with axicon prisms for Optical coherent tomography (OCT) application. Conventionally, clinical verification of cancer tumors routinely depends on biopsying a small piece of tissues for microscopy investigation, however, this is not only a invasive process but also confronted with some risks of the taken tissues containing no cancer cells. To improve the accuracy of diagnosis and reduce patient burden on invasive biopsy, low-invasive OCT system has been proposed to replace the traditionally way in cancer diagnosis. Currently most of the OCT systems employing rotational or vibrational solid lens incorporated with prism system for obtaining three dimensional scanning of surrounding tissues for diagnosis, however, the scanning speed and the convenience to use the system in a curved vessel is greatly limited by the solid mechanism design. For this purpose, we propose the application of a morphology tunable liquid lens integrated with an axicon prism to circumvent the aforementioned problems. This abstract reports the preliminary result of the manipulation of the liquid lens for the basic functions of light beam deflecting/scanning under various electrical energy applications on one side of the lens. The property of the lens for light deflection can be accomplished using non-uniform driving voltages on different electrodes to manipulate the surface morphology of a hemi-spherical liquid lens into a ramp-shaped lens (RSL). A spot light shift of 0.9 cm (scanning angle of 4.76°) on a paper screen by actuating a 500 μm liquid lens at 109.7 volts and 5KHz on one electrode of the six was successfully demonstrated, while the lens one-side contact angle varied from 85° to 65° accordingly. As shown before we demonstrating the functionality of the focal length charging and the laser beam deflecting. The scanning speed and focused spot can approach 10k Hz and 150μm, respectively, which are suitable for OCT application.
目錄 5
表目錄 8
圖目錄 8
第一章 緒論 14
1.1 研究背景前言: 14
1.2 研究動機: 15
1.3 研究目的: 16
第二章文獻探討 18
2.1.1 同調光斷層掃描術(Optical coherence tomography;OCT): 18
2.1.2 固態鏡頭結合旋轉鏡組之同調光斷層掃描系統: 21
2.1.3 液態鏡頭之同調光斷層掃描系統: 22
2.2.1 液態透鏡: 23
2.2.2 液壓驅動(fluidic pressure) : 23
2.2.3 熱效應驅動(Thermal effect)[20]: 25
2.2.4 介電泳(Dielectrophoresis): 27
2.2.5 電濕潤(Electrowetting): 28
2.2.6 介電質電濕潤(Electrowetting on dielectric layer): 29
2.3.1 介電質電濕潤(EWOD)和介電泳(DEP)液態透鏡介紹: 31
2.3.2 Fabrication, and characterization of a tunable electrowetting-based lens with a wedge-shaped PDMS dielectric layer [34]: 32
2.3.2 A MEMS-based variable micro-lens system driven by EWOD [35]: 34
2.3.3 An adaptive liquid lens with radial interdigitated electrode [36]: 37
2.3.4 Tunable Focus Liquid Lens with Radial-Patterned Electrode [37]: 39
2.4 電濕潤(EWOD)和介電泳(DEP)液態透鏡比較[38]: 41
第三章 實驗原理與製程 43
3.1 實驗原理: 43
3.2 實驗藥品及儀器介紹: 45
3.2.1 實驗藥品: 45
3.2.2 實驗儀器: 45
3.3.1 第一代液態透鏡晶片設計: 48
3.3.2 液態透鏡晶片製作流程: 49
3.3.3 實際完成圖和疏水區測試: 51
3.3.4 第二代液態透鏡晶片設計: 52
3.3.5 第三代液態透鏡晶片設計: 53
第四章 實驗設計與量測 55
4.1.1 500μm liquid lens驅動測試: 55
4.1.2 找尋液態透鏡晶片的最佳驅動頻率: 56
4.1.3 找尋液態透鏡晶片最佳驅動波形: 58
4.2.1 光線曲折示意圖和儀器架設: 61
4.2.2 單邊來回掃描速度量測: 64
4.2.3 雙邊來回掃描速度量測: 66
4.3.1掃頻式光學同調光斷層掃描術原理及架構: 68
4.3.2 液態透鏡晶片結合SS-OCT架構示意圖 69
4.3.3 軸像解析度及掃描成像測試: 70
4.3.4 膠帶和手指皮膚掃描測試及比較: 72
第五章 結果與討論 75
5.1 500μm liquid lens驅動測試: 75
5.2光線折射測試: 76
5.3 液態透鏡晶片掃描成像: 77
第六章 未來工作 79
參考文獻 81

表目錄
表一:電濕潤和介電泳液態透鏡比較表 42
表二:驅動頻率對角度變化關係表 錯誤! 未定義書籤。
表三:波形對角度變化關係表 錯誤! 未定義書籤。
表四:外加電壓對光斑位移量和曲折角度表 63

圖目錄
圖2-1 基本架構圖和OCT使用低同調長度之光源以增加軸向解析度[8]。 18
圖2-2 視網膜成像 圖2-3 大腸粘膜成像 20
圖2-4 傳統之鏡組設計 21
圖2-5 壓力式液態透鏡 圖2-6 液態透鏡鏡組設計 23
圖2-7 液壓驅動式液態透鏡改變曲率半徑示意圖: 24
圖2-8 液態透鏡示意圖,(a)為無聚焦能力 R=r0時、(b)為有聚焦能力R圖2-9 可變焦微流道式薄膜液態透鏡 25
圖2-10 (a)熱效應液態透鏡設計示意圖 (b)整體結構剖面示意圖 26
(c)(d)(e)(f)隨溫度變化油-水介面變化圖 26
圖2-11 介電泳的液態透鏡設計示意圖和電極圖 28
圖2-12電濕潤原理(a)(b)分別為施予電壓前後電荷分佈和力量平衡圖 29
圖2-13 介電質電濕潤原理和角度變化示意圖 30
圖2-14 早期液態鏡頭設計和實際圖 圖2-15 商業化液態透鏡 31
圖2-16腔體設計(a) 3D示意圖(b)側面橫切圖2-17外部腔體和底部示意圖 32
圖2-18 曲率模擬計算圖 33
圖 2-19 電壓對曲率半徑作圖 34
圖 2-20 電壓對焦距長度作圖 34
圖2-21 V型凹陷液態透鏡示意圖 35
圖2-22 V型凹陷液態透鏡製程設計 36
圖2-23 液態透鏡完成圖 圖2-24 電壓對焦距作圖 37
圖2-25 新型電極設計 37
圖2-26 (a)(b)為施加電壓前後之對照圖 38
圖2-27 儀器架設圖 38
圖2-28 實驗結果圖 39
圖2.29 交叉微型電極設計 40
圖2.30 交錯電極和封裝後測試示意圖 40
圖2.31 不同電壓之接觸角側視圖 41
圖2.32-33 驅動電壓對接觸角液珠半徑和焦距作圖 41
圖3-1 正介電泳力和負介電泳力的移動示意圖[39] 44
圖3-2 旋轉塗怖機 圖3-3 雙面對準曝光機 45
圖3-4 電子槍蒸鍍機 46
圖3-5 反應式離子蝕刻機 46
圖3-6 接觸角測量機 46
圖3-7 三用電錶 46
圖3-8 電壓訊號放大器 47
圖3-9 雷射光和針孔 47
圖3-11 第一代液態透鏡晶片設計示意圖 49
圖3-12 液態透鏡製程流程圖 50
圖3-13 Teflon lift-off Process 51
圖3-14 實際完成晶片 52
圖3-15 鐵氟龍疏水區域 圖3-16 去離子水液珠侷限測試 52
圖3-20 一代二代晶片驅動效果比較圖 53
圖3-21 實際晶片圖 圖3-22 不同直徑透鏡設計 54
圖3-23 外加電壓對焦距作圖 54
圖4-1 驅動前後液態透鏡形變圖 55
圖4-2 沒施加電壓和頻率5k、100k時的液珠圖 57
圖4-3 頻率對數值對角度變化作圖 58
圖4-4 Sine wace和Square wave 外加電壓對角度變化作圖 59
圖4-5 外加電壓對角度變化作圖 60
圖4-6 外加電壓對曲率半徑變化作圖 61
圖4-7 外加電壓對焦距作圖 61
圖4-8 折射光線架設測量示意圖 62
圖4-9 光線折射示意圖 圖4-10 光斑位移前後圖(V=177V) 63
圖4-11 驅動電壓對掃描角度作圖 63
圖4-12 特殊Sine wave驅動波形 64
圖4-13 掃描速度對角度作圖 65
圖4-14 電壓對接觸角和焦距作圖 66
圖4-14 掃描速度對角度作圖 67
圖4-15 遲滯效應測試 68
圖4-16 SS-OCT系統架構示意圖 69
圖4-17 液態透鏡結合SS-OCT之示意圖 70
圖4-18 軸像解析度測試 71
圖4-19 玻璃底材掃描圖 71
圖4-20 原先鏡組掃描成像圖 圖4-21 掃描速度=50Hz 72
圖4-22 掃描速度=100Hz 圖4-23掃描速度=200Hz 73
圖4-24 人體皮膚組成示意圖 圖4-25 原先系統掃描成像圖 73
圖4-26、27 液態透鏡系統掃描成像圖 74






[1] D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, k. Gregory, C. A. Puliafito, and J. G. Fujimoto. “Optical Coherence Tomography.” Science, 254, pp. 1178-1181 (1991).
[2] M. Ohmi, T. Kurata, M. Sekimoto, and M. Haruna. “Quasi in-focus optical coherence tomography.” Japanese Journal of Applied Physics Part 1—Regular Papers Short Notes & Review Papers, 43, 845-849 (2004).
[3] C. C. Cheng, C. A. Chang and J. A. Yeh, “Variable focus dielectric liquid droplet lens,” Opt. Express, 14, pp. 4101 (2006).
[4] C. C. Cheng and J. A Yeh. “Dielectrically actuated liquid lens.” Opt. Express 15, pp. 7140-7145 (2007).
[5] K. Y. Hung, C. W. Chen, C. T. Chen, and F. G. Tseng. “Electrostatic Force Driven Reshapable Micro Aspherical Lens.” Journal of Microelectromechanical Systems, VOL. 17, NO. 2, pp. 370-380, APRIL (2008).
[6] W. Drexler, U. Morgner, F. X. Kartner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto. “In vivo vltrahigh-resolution optical coference tomography.” Optics Letters, 24, pp. 1221-1223 (1999).
[7] J. G. Fujimoto, “Optical Coherence Tomography”, Applied Physics, vol.2, issue 8, pp.1099~1111, 12,OCT, 2001.
[8] B. E. Bouma and G. J. Tearney, “Hand book of Optical Coherence Tomography”, Marcel Dekker, Inc., New York, 2003.
[9] R. Huber, D. C. Adler, V. J. Srinivasan, and J. G. Fujimoto, “Fourier domain mode locking at 1050 nm for ultra-high-speed optical coherence tomography of the human retina at 236,000 axial scans per second”, Optics Letters, Vol. 32, Issue 14, pp. 2049-2051, 2007.
[10] D. C. Adler, C. Zhou, T.H. Tsai, Joe Schmitt, Qin Huang, Hiroshi Mashimo, and James G. Fujimoto, “Three-dimensional endomicroscopy of the human colon using optical coherence tomography”, Optics Express, vol. 17, Issue 2, pp. 784-796, 2009.
[11] J. M. Schmitt *, S. L. Lee, K. M. Yung, “An optical coherence microscope with enhanced resolving power in thick tissue”, Optics Communications 142 (1997) 203-207
[12] J. M. Schmitt. M. J. Yadlowsky, R.F. Bonner, Dermatology 191 (1995) 93.
[13] H. J. Böhringer, E. Lankenau, F. Stellmacher, E. Reusche, G. Hüttmann and A. Giese, “Imaging of human brain tumor tissue by near-infrared laser coherence tomography”, and Acta Neurochir, 151, (2009),Page:507–517
[14] K. Aljasem, A. Seifert, and Hans Zappe Laboratory for Micro-optics, Department of Microsystems Engineering – IMTEK, University of Freiburg, “Tunable Multi-micro-lens System for High Lateral Resolution Endoscopic Optical Coherence Tomography”, Georges-K¨ohler-Allee 102, 79110 Freiburg, Germany
[15] H. Ren and S. T. Wu, “Tunable-focus liquid microlens array using dielectrophoretic effect”, Optics Express 16, 2646-2652 (2008).
[16] H. W. Ren, D. Fox, P. A. Anderson, B. Wu, and S. T. Wu, “Tunable-focus liquid lens controlled using a servo motor”, Optics Express 14, 8031-8036 (2006).
[17] H. Ren and S. T. Wu, “Variable-focus liquid lens by changing aperture”, Appl. Phys. Lett. 86, 211107 (2005).
[18] K. H. Jeong, G. L. Liu, N. Chronis and L. P. Lee, “Liquid Lenses and Driving Mechanisms: A Review”, Opt. Express 12, 2494 (2004).
[19] P. M. Moran, S. Dharmatilleke, A. H. Khaw, K.W. Tan, M. L. Chan and I. Rodriguez, “Fluidic lenses with variable focal length”, Appl. Phys.Lett. 88, 041120 (2006).
[20] L. Dong, A. K. Agarwal, David J. Beebe & Hongrui Jiang, “Adaptive liquid microlenses activated by stimuliresponsive hydrogels”, Vol 442|3 August 2006.
[21] H. Morgan and N. G. Green, “AC Electrokinetics: Colloids and Nanoparticles.” ,Research Studies Press, Baldock, UK (2003).
[22] H. A. Pohl, “Dielectrophoresis. ”, Cambridge University Press, New York (1978).
[23] C. C. Cheng and J. A. Yeh, “Dielectrically actuated liquid lens”, Opt. Express 15, 7140 (2007).
[24] C.-C. Cheng, C. A. Chang and J. A. Yeh, “Variable focus dielectric liquid droplet lens”, Opt. Express 14, 4101 (2006).
[25] G. Lippmann, Annals Chim. “Relations entre les phénomènes électriques et capillaires”, Phys. 5, 494 (1875).
[26] H. Moona and S. K. Cho, R. L. Garrell, C. J. Kim, “Low voltage electrowetting-on-dielectric”, JOURNAL OF APPLIED PHYSICS VOLUME 92, NUMBER 7 1 OCTOBER 2002
[27] S. K. Fan, P. W. Huang, T. T. Wang and Y. H. Peng, “Cross-scale electric manipulations of cells and droplets by frequency-modulated dielectrophoresis and electrowetting”, Lab Chip 8, 1325 (2008).
[28] S. K. Fan, H. Yang, T. T. Wang and W. Hsu, “Asymmetric electrowetting—moving droplets by a square wave”, Lab Chip 7, 1330 (2007).
[29] B. H. W. Hendriks, S. Kuiper, M. A. J. Van As, C. A. Renders, and T. W. Tukker, “Electrowetting-based variable-focus lens for miniature systems”, Optical Review 12.255-259 (2005).
[30] Varioptic, http://www.varioptic.com/en/index.php.
[31] J. Godin, V. Lien, and Y. H. Lo, “Demonstration of twodimensional fluidic lens for integration into microfluidic flow cytometers”, Appl. Phys. Lett. 89, 061106 (2006).
[32] Z. Wang, J. El-Ali, M. Engelund, T. Gotsaed, I. R. Perch- Nielsen, K. B. Mogensen, D. Snakenborg, J. P. Kutter, and A.Wolff, “Measurements of scattered light on a microchip flow cytometer with integrated polymer based optical elements”,
Lab Chip 4, 372–377 (2004).
[33] J. Wenger, D. Gérard, H. Aouani, and H. Rigneault, “Disposable microscope objective lenses for fluorescence correlation spectroscopy using latex microspheres”, Anal. Chem. 80, 6800–6804 (2008).
[34] M. S. Moghaddam, H. Latifi, H. Shahraki, and M. Sadegh Cheri, “Simulation, fabrication, and characterization of a tunable electrowetting-based lens with a wedge-shaped PDMS dialectic layer”, 1 April 2015 / Vol. 54, No. 10 / APPLIED OPTICS, p.3010-p.3015.
[35] F. Krogmann, W. M¨onch and H. Zappe, “AMEMS-based variable micro-lens system”, J. Opt. A: Pure Appl. Opt. 8 (2006) S330–S336
[36] C. C. Yang, L. Yang, C. G. Tsai, P. H. Jou, J. A. Yeh. “Fully developed contact angle change of a droplet in liquid actuated by dielectric force”, Applied Physics Letters, 101(18), 182903.
[37] M. Xu, X. Wang and H. Ren, “Tunable Focus Liquid Lens with Radial-Patterned Electrode”, Micromachines 2015, 6, 1157-1165
[38] M. Xu, D. Xu, H. Ren, I. Yoo and Q. H. Wang, “An adaptive liquid lens with radial interdigitated electrode”, J. Opt. 16 (2014) 105601
[39] H. A. Pohl., “Some Effects of Nonuniform Fields on Dielectrics,” J. Appl. Phys. 29, 1182-1188(1985)
[40] M. P. Hughes, Nanoelectromechanics in Engineering and Biology (CRC, New York, 2003).
[41] 鄭至成. "介電液體變焦透鏡."
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *