帳號:guest(3.144.227.146)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):劉亮巖
作者(外文):Liu, Liang Yen
論文名稱(中文):可程式化數位壓力控制器之設計與三維列印
論文名稱(外文):Design and 3D printing of Programmable Digital Pressure Controller
指導教授(中文):蘇育全
指導教授(外文):Su, Yu Chuan
口試委員(中文):陳宗麟
陳紹文
口試委員(外文):Chen, Tsung Lin
Chen, Shao Wen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:103011535
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:81
中文關鍵詞:數位壓力控制器彈性體複合3D結構DLP-立體光刻微流體系統經濟的選擇
外文關鍵詞:Digital pressure control3D structure with an elastomer diaphragmDLP-Stereolithographymicrofluidic systemseconomic alternative
相關次數:
  • 推薦推薦:0
  • 點閱點閱:61
  • 評分評分:*****
  • 下載下載:8
  • 收藏收藏:0
我們已經成功實現了利用程式化和自動控制的方式在晶片上製作一個具有數位型的控制壓力系統,以及實現了具有復雜功能混合結構的3D製造和集成的方案。並且配合製作一個夾雜在輸入壓力和參考壓力之間的彈性體複合3D結構隔膜,用於過濾掉不穩定高壓壓力所產生的波動,引導壓力輸出後的穩定性及精確值之範圍。由D / A轉換的方式設定出固定的參考壓力,因此壓力的輸出可以在這之間快速和精確地切換。為了製造所需的3D混合結構,本系統利用了DLP-立體光刻的方式製作此3D混合結構,並且將此結構使用於PDMS複製的PMMA部件和模具。對於目前現有的微流體系統而言,通常都是藉由調節多個注射器泵來推動流體的流動,然而此方式的成本昂貴,並且難以放大。為了解決對於具有可擴展性的方式而我們也證明了使用氣動致動器的方式驅動流體流動,可以針對此控制方式進行改進。並且提出了在晶片上完成一個具有數位化的壓力控制系統,其中,取代了其龐大和昂貴的裝置問題,對於微流體系統之關鍵相當重要。相較於先前所開發出的裝置結構結果相比,我們所開發出的結構裝置顯示了此精度並且提升了結構的功能。在某些壓力水平之間的切換僅需要少於0.1秒即可完成所有作動。此外,展現的製造和集成過程為聚合物微加工模式,提供了強大和經濟的選擇,增加了其克制畫畫的多樣性。因此,可以藉由本系統所開發的數位型壓力弄置系統,並且利用氣體動驅動的方式以實現微流體在芯片上和軟機器人的複雜和自動化之控制。
We have successfully demonstrated an on-chip digital pressure control scheme that can be readily automated and programmed, and a 3D fabrication and integration scheme that can realize hybrid structures with sophisticated functions. A composite 3D structure with an elastomer diaphragm sandwiched between input and reference pressures is utilized to filter out fluctuation and guide the pressure output. The reference pressure, which is set by a D/A converter, and therefore the pressure output can switch rapidly and precisely between levels on demand. To fabricate the desired 3D hybrid structures, a DLP-Stereolithography process is developed, which prints PMMA parts and molds for PDMS duplication. For many existing microfluidic systems, their functions are achieved passively by adjusting the flows driven by multiple syringe pumps, which are costly and difficult to scale up. To address the need for scalability and improved controllability, active schemes using pneumatic actuation have been demonstrated. The presented on-chip pressure controllers, which can replace their bulky and costly counterparts, are crucial for microfluidic systems. Compared to the previously published results, our scheme shows improvements in accuracy and functionality. It takes less than 0.1 seconds to switch between certain pressure levels. Furthermore, the demonstrated fabrication and integration process provides a powerful and economic alternative for polymer microfabrication. As such, sophisticated and automated control of pneumatically driven microfluidic chips and soft robots can potentially be realized.
摘要 II
Abstract III
致謝 IV
表目錄 X
圖目錄 X
第一章 簡介 1
1.1. 前言 1
1.2. 3D列印技術的發展歷程 2
1.3. 3D列印機之類型及其工作原理 4
1.3.1. 3D列印與微影製成的差異 4
1.3.2. 3D列印機的種類 5
1.3.3. 光聚合型3D print的工作原理 6
1.4. 研究動機與目的 7
第二章 文獻回顧 9
2.1. 多層微流道的結構裝置 9
2.1.1. 多層微流道結合閥門之裝置 9
2.1.2. 3D列印製作閥門裝置系統 11
2.2. 以樹脂為模具翻模使用 13
2.2.1. 利用3D列印的方式製作微流道的系統 14
2.2.2. 3D列印製作複雜的幾何形狀 17
2.3. 改變材料親水性的效果 18
2.3.1. 經由表面改質後的結果觀察 18
2.3.2. 利用表面改質將高分子樹脂印製在玻璃表面上 19
2.4. PDMS-Dragon Skin®20複合材料 21
2.5. 數位化之壓力調節裝置系統 23
第三章 原理設計 25
3.1. 調壓作用原理及其系統設計 25
3.1.1. 數位壓力控制系統的轉換 25
3.1.2. 洩壓作用原理 27
3.2. 氣閥裝置設計 30
3.3. PDMS薄膜厚度對轉速的影響 32
第四章 微型流道裝置的設計與實驗系統 34
4.1. 將樹脂當作模具使其PDMS翻模使用 38
4.2. 利用3-(三甲氧基矽)進行玻璃之表面改質 42
4.3. 平面的製作 43
4.3.1. PDMS製作步驟 44
4.3.2. PDMS-Dragon Skin®20混合之膈膜製作 46
4.4. 氣壓配置流程 47
4.5. 利用光固化3D print製作洩壓閥裝置系統 48
4.6. 氣閥開關裝置系統 50
4.6.1. 直接型控制閥門開關之裝置 50
4.6.2. 間接型控制閥門開關種系統 52
4.6.3. 常閉型電磁線圈開關控制系統 53
4.7. 裝置系統及其量測裝置 55
4.7.1. 裝置系統 55
4.7.2. 量測系統 58
第五章 結果與討論 60
5.1. 壓力感測裝置 60
5.2. 輸入壓力-輸出壓力之靜態變化關係 61
5.3. 輸出壓力-時間之動態變化關係 62
5.3.1. Bit=000數位控制開關系統 62
5.3.2. Bit=111數位控制開關系統 64
5.3.3. Bit=0101相互切換數位控制開關系統 65
第六章 結論與未來工作 66
6.1. 本論文研究結果 66
6.1.1. 利用3D print定位流道入出口 66
6.1.2. 裝置氣密及薄膜的影響 66
6.1.3. 裝置運作的情形 67
6.2. 未來工作 67
6.2.1. 提高壓力作用的最高解析度 67
6.2.2. 互補壓力調節裝置 69
6.2.3. 軟性機械手臂之應用 71
6.2.4. 常開型開關裝置系統 73
第七章 參考文獻 77
附錄 81
[1] Jia Min Lee, Meng Zhang, Wai Yee Yeong, “Characterization and evaluation of 3D printed microfluidic chip for cell processing, ” Microfluid Nanofluid, pp. 1-15, Dec. 2015.
[2] Justyna Skowyra, Katarzyna Pietrzak, Mohamed A. Alhnan, “Fabrication of extended-release patient-tailored prednisolone tablets via fused deposition modelling (FDM) 3D printing, ” ELSVIER, pp. 11-17, Feb. 2015.
[3] Aliaa I. Shallan, Petr Smejkal, Monika Corban, Rosanne M. Guijt, and Michael C. Breadmore, “Cost-Effective Three-Dimensional Printing of Visibly Transparent Microchips within Minutes, ” American Chemical Society, pp. 3124-3130, vol.86, Feb. 2014.
[4] T.Bourouina, A. Bosseboeuf and J. P. Grandchamp, “Design and simulation of an electrostatic micropump for drug-delivery applications, ”Journal of Micromechanics and Microengineering, vol. 7, pp. 186-188, 1997.
[5] M. M. Teymoori and E. Abbaspour-Sani, “Design and simulation of a novel electrostatic peristaltic micromachined pump for drug-delivery applications, ” Sensors and Actuators A, vol. 117, pp. 222-229, 2005.
[6] J. Kan, Z. Yang, T. Peng, G. Cheng and B. Wu, “Design and test of a high-performanc piezo-electric micropump for drug-delivery, ” Sensors and Actuators A, vol. 121, pp. 151-161, 2005.
[7] Q. Cui, C. Liu and X. F. Zha, “Study on a piezoelectric micropump for the controlled drug-delivery system, ” Microfluidics and Nanofluidics, vol. 3, pp. 377-390, 2007.
[8] Chih-Hao Wang and Gwo-Bin Lee, “ Automatic bio-sampling chips integrated with micro-pumps and micro-valves for disease detection, ” ELSVIER, vol. 21, pp. 419-425, Dec. 2004.
[9] Ali Asgar S. Bhagat, Preetha Jothimuthu and Ian Papautsky, “ Photodefinable polydimethylsiloxane (PDMS) for rapid lab-on-a-chip prototyping, ” The Royal Society of Chemistry, vol. 7, pp. 1192-1197, Jun. 2007.
[10] Steven J. Keating1, Maria Isabella Gariboldi1, William G. Patrick1, Sunanda Sharma1, David S. Kong, Neri Oxman, “3D Printed Multimaterial Microfluidic Valve, ”PLOS ONE, vol. 10, pp. 1-12, Aug. 2016.
[11]  Hiroyuki Moriguchi, Takayuki Kawaiab and Yo Tanaka, “Simple bilayer on-chip valves using reversible sealability of PDMS, ” The Royal Society of Chemistry, vol. 5, pp. 5237-5243, Dec. 2014.
[12] Bobak Mosadegh, Tommaso Bersano-Begey, Joong Yull Park, Mark A. Burnsc and Shuichi Takayama, “Next-generation integrated microfluidic circuits, ”Lab on a Chip, vol. 11, pp. 2813-2818, July. 2011.
[13] Bo-Chih Lin and Yu-Chuan Su, “On-demand liquid-in-liquid droplet metering and fusion utilizing pneumatically actuated membrane valves,” MICROMECHANICS AND MICROENGINEERING , Sep. 2008.
[14] Anthony K. Au, Nirveek Bhattacharjee, Lisa F. Horowitz, Tim C. Chang and Albert Folch, “3D-printed microfluidic automation,”Lab on a Chip, vol. 15, pp. 1934-1941, Feb. 2015.
[15] Martin D. Brennan, Megan L. Rexius-Hall and David T. Eddington, “A 3D-Printed Oxygen Control Insert for a 24-Well Plate,” PLOS ONE, vol. 10, pp. 1-9, Sep. 2015.
[16]  Ho Nam Chan, Yangfan Chen, Yiwei Shu, Yin Chen, Qian Tian and Hongkai Wu, “Direct, one‑step molding of 3D‑printed structures for convenient fabrication of truly 3D PDMS microfluidic chips,” Microfluid Nanofluid, vol. 19, pp. 9-18, Jan. 2015.
[17] Yongha Hwang, Omeed H. Paydar and Robert N. Candle, “3D printed molds for non-planar PDMS microfluidic channels,” ELSVIER, vol. 226, pp. 137-142, Feb. 2015.
[18] Roni Ginzburg-Turgeman, Jean-Baptiste Guion and Daniel Mandler, “Improving the adhesion of polymethacrylate thin films onto indium tin oxide electrodes using a silane-based“Molecular Adhesive” ,”Springer, vol. 15, pp. 2401-2407, Jun. 2011.
[19] Chad I. Rogers, Kamran Qaderi, Adam T. Woolley and Gregory P. Nordin, “3D printed microfluidic devices with integrated valves,” Publishing LLC, vol. 9, pp. 016501-1-016501-9, Feb. 2015.
[20] Chad I. Rogers, Joseph B. Oxborrow, Ryan R. Anderson, Long-Fang Tsai, Gregory P. Nordin and Adam T. Woolley, “Microfluidic valves made from polymerized polyethylene glycol diacrylate,” ELSVIER, vol. 191, pp. 438-444, Oct. 2013.
[21] S. Russo1, T. Ranzani1, J. Gafford1, C.J. Walsh and R.J. Wood, “Soft pop-up mechanisms for micro surgical tools: design and characterization of compliant millimeter-scale articulated structures,” Robotics and Automation (ICRA), pp. 750-757, Jun. 2016.
[22] Feiqiao Yu, Mark A. Horowitzb and Stephen R. Quake, “Microfluidic serial digital to analog pressure converter for arbitrary pressure generation and contaminationfree flow control,” Lab on a chip, vol. 13, pp. 1911-1918, Mar. 2013.
[23] Shen, Feng; Du, Wenbin; Kreutz, Jason E, “Digital PCR on a SlipChip,” Lab on a chip, vol. 10, pp. 2666-2672, Jun. 2010.
[24] W.Y . Zhang, G. S. Ferguson and S. Tatic-Luci, “ELASTOMER-SUPPOR CT OE LD D WELDING FOR ROOMT EMPERATURWEA FER-LEVEL BONDING,” IEEE, pp. 741-744, 2004.
[25] Brandon R. Bruhn, Thomas B. H. Schroeder, Suyi Li, Yazan N. Billeh, K.W. Wang and Michael Mayer, “Osmosis-Based Pressure Generation: Dynamics and Application,” PLOS ONE, vol. 9, pp. 1-10, Mar. 2014.
[26] Daniela Rus and Michael T. Tolley, “Design, fabrication and control of soft robots,” NATURE vol. 521, pp. 467-475, May. 2015.
[27] 徐晧,「滲透式軟性致動器的設計與三維列印」,國立清華大學工程與系統科學系碩士論文,2016

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *