帳號:guest(3.15.235.239)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):許昶逸
作者(外文):Hsu, Chang Yi
論文名稱(中文):甲醇雙氧水混合蒸發器應用於後端甲醇重組反應
論文名稱(外文):The evaporator of Methanol and hydrogen peroxide appling to the rear end of the methanol reforming reactor
指導教授(中文):曾繁根
蘇育全
指導教授(外文):Tseng,Fan-gang
Su,Yu-chuan
口試委員(中文):薛康琳
陳紹文
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:103011534
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:75
中文關鍵詞:燃料電池蒸發器重組器
外文關鍵詞:Fuel cellevaporatorreformer
相關次數:
  • 推薦推薦:0
  • 點閱點閱:115
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
甲醇重組式燃料電池為一整合系統,包括甲醇重組器及質子交換膜燃料電池兩種元件。其中前端甲醇重組器為燃料轉換器,目的是將含氫之甲醇經重組反應後轉換成氫氣提供給質子交換膜燃料電池使用。而後端質子交換膜燃料電池為發電元件,可將氫氣燃料包含的化學能轉為電能。
本重組器所使用之甲醇氧化蒸氣重組反應(OSRM)屬於複合式放吸熱反應,反應物為氣態甲醇、氧氣、水,此反應可視為甲醇部分氧化及甲醇蒸汽重組反應的結合,可藉由調整進料中氧氣的比例,使甲醇部分氧化反應所產生的熱量,能提供甲醇蒸汽重組反應所需要的能量,使反應熱ΔH°≦0,不需額外提供熱量便可進行反應。目前實驗進度與結果已確定甲醇與雙氧水反應機制不會造成矽晶圓腐蝕,而甲醇與雙氧水混合情形也已經透過四種結構比較得到最佳結果,希望透過甲醇與雙氧水混合情形之改善進而增加後端重組器產氫之轉換率與產氫率。
本實驗研究重點在如何提高OSRM反應物的混和性以提高效率,我們利用甲醇與雙氧水的混合蒸發器來蒸發甲醇與雙氧水並且提升供給氣體燃料的穩定性,本實驗做了四種流道比較氣泡大小與分布之分析,結果顯示本實驗流道在220℃時氣泡佔總流道之體積為65%為最高,氣泡大小分布為本實驗流道平均6.8um^2為最小,由於氣泡大小最小及氣泡比例為最高故可連續提供進料給後端重組器使用。
Recombinant methanol fuel cell is a system integration including two elements that methanol reformer and Phosphoric acid fuel cell. The purpose of methanol reformer is doing reforming reaction that convert methanol into hydrogen for Phosphoric acid fuel cell[1]. The purpose of Phosphoric acid fuel cell is transforming chemical energy into electrical energy .The reforming of this research is OSRM(oxidative steam reforming of methanol),the reaction is combine POM with SRM. First of the research, we have to make sure the fuel of OSRM won’t corrode the channel of silicon. We use the gas-liquid map to analyze four different kind structure for which one is best for OSRM. In our research, we want use evaporator to vapor the fuel into gas phase to feed the fuel continuously. So we have to make sure the bubble of fuel is very small and uniformly distribute.
In our research, we compare the four different structure to find out which structure is the best for our experiment. The four structure is empty, line, herringbone, herringbone with line. After we test the four different structure, we get the best structure for us is herringbone with line channel because the gases ratio is 65% and the bubble size distribution is 6-8 〖mm〗^2 which is the best result in our four different structure.

摘要 I
致謝 II
目錄 III
第一章 緒論 1
1.1. 前言 1
1.2. 燃料電池的發展 2
1.3. 甲醇重組製氫工作原理 5
1.4. 甲醇進料流道板 8
1.5. 研究動機與目的 10
第二章 文獻回顧 11
2.1 被動式進料板與蒸發器 12
2.1.1毛細現象及毛細壓差 12
2.1.2漸擴管 13
2.2.甲醇產氫反應 14
2.2.1甲醇分解反應 Methanol decomposition 14
2.2.2甲醇部分氧化反應 Partial oxidation of methanol 14
2.2.3甲醇蒸氣重組反應 Steam reforming of methanol 15
2.2.4複合式甲醇蒸氣重組反應 Oxidative steam reforming of methanol 16
2.2.5產氫重組反應優缺點比較 17
第三章 微型產氫裝置製作與實驗系統 18
3.1被動式甲醇進料反應板 18
3.1.1毛細管壓差與抗回衝原理 18
3.1.2微結構致動機制-diffuser 21
3.1.3進料流道板設計規劃 23
3.1.4各種漸擴流道板設計 24
3.1.5 四種不同流道對於燃料氣泡大小與氣泡多寡之比較 25
3.1.6 被動蒸發器流道熱效率測試系統 27
3.2微型產氫裝置整合 28
3.2.1微型產氫裝置流道設計 28
3.2.2微型產氫裝置測試系統 32
第四章 微型產氫裝置理論分析 33
4.1整合型產氫裝置進料與產物分析 33
4.1.1整合型產氫裝置進料比例計算 33
第五章實驗結果與討論 34
5.1甲醇與過氧化氫(雙氧水)加熱混合對於被動式進料板之腐蝕影響 34
5.1.1 SEM拍攝甲醇與過氧化氫對於矽腐蝕情形 35
5.1.2電化學測試腐蝕情形 46
5.2甲醇與過氧化氫混和均勻性測試 49
5.2.1甲醇與過氧化氫氣泡與流道總體積比 49
5.2.2氣體分布分析 51
5.3被動式流道被動機制測試 52
5.4被動流道之熱效率分析 56
第六章 結論與未來工作 59
6.1本論文研究結果 59
6.1.1甲醇與過氧化氫(雙氧水)對於矽流道之腐蝕影響 59
6.1.2甲醇與過氧化氫氣泡在流道分布均勻情形 59
6.2未來研究工作 60
參考文獻 61

[1] J. Wiley&Sons, Fuel cell systems explained, second edition, James Larm. .
[2] L. Carrette, K. a Friedrich, and U. Stimming, “Fuel cells: principles, types, fuels, and applications.,” Chemphyschem, vol. 1, no. 4, pp. 162–93, Dec. 2000.
[3] J. Zhang, Y. Tang, C. Song, J. Zhang, and H. Wang, “PEM fuel cell open circuit voltage (OCV) in the temperature range of 23°C to 120°C,” J. Power Sources, vol. 163, no. 1, pp. 532–537, Dec. 2006.
[4] A. Dufour, “Fuel cells-a new contributor to stationary power,” J. Power Sources, vol. 71, no. 1–2, pp. 19–25, 1998.
[5] S. Srinivasan and R. Mosdale, “Fuel cells: reaching the era of clean and efficient power generation in the twenty-first century,” Annu. Rev. Energy Env., vol. 24, pp. 281–328, 1999.
[6] B. Lindström, “Development of a methanol reformer for fuel cell vehicles.” 2003.
[7] G. Park, D. Seo, S. Park, and Y. Yoon, “Development of microchannel methanol steam reformer,” Chem. Eng. J., vol. 101, pp. 87–92, 2004.
[8] C. Lamy, J. Léger, and S. Srinivasan, “Direct methanol fuel cells: from a twentieth century electrochemist’s dream to a twenty-first century emerging technology,” Mod. Asp. Electrochem., 2001.
[9] A. Heinzel and V. M. Barragan, “A review of the state-of-the-art of the methanol crossover in direct methanol fuel cells,” J. Power Sources, vol. 84, pp. 70–74, 1999.
[10] B. Lindström and L. Pettersson, “Development of a methanol fuelled reformer for fuel cell applications,” J. Power Sources, vol. 118, pp. 71–78, 2003.
[11] K. Jensen, “Microreaction engineering—is small better?,” Chem. Eng. Sci., vol. 56, pp. 293–303, 2001.
[12] 江炳坤, 「燃料电池双即板流场数值模拟及膜型实验研究」, 武漢理工大
[13] 王志煒,「甲醇於CuO/ZnO/ZrO2/Al2O3之SRM、OSRM 產氫反應研究─ZrO2的影響」,國立中央大學碩士論文 2010

[14] Meiqiang Fan , Ya Xu , Junya Sakurai , Masahiko Demura ,
Toshiyuki Hirano , Yuden Teraoka , Akitaka Yoshigoe
“Spontaneous activation behavior of Ni3Sn, an intermetallic catalyst, for hydrogen production via methanol decomposition” ,Hydrogen Energy, vol. 40, Issue. 37, pp. 12663–12673, 5 Oct. 2015.

[15] B. Tsyntsarski , I. Stoycheva , T. Tsoncheva , I. Genova , M. Dimitrov, B. Petrova , D. Paneva , Z. Cherkezova-Zheleva , T. Budinova , H. Kolev , A. Gomis-Berenguer , C.O. Ania c, I.Mitov , N. Petrov “Activated carbons from waste biomass and low rank coals as catalyst supports for hydrogen production by methanol decomposition”, Fuel processing technology, vol.137, pp.139-147, Sep 2015.

[16] M. Turco , G. Bagnasco , U. Costantino , F. Marmottini , T. Montanari , G. Ramis , G. Busca , “Production of hydrogen from oxidative steam reforming of methanol II. Catalytic activity and reaction mechanism on Cu/ZnO/Al2O3
hydrotalcite-derived catalysts” , Journal of Catalysis, Sep 2004

[17] S. Velu, K. Suzuki _ and T. Osaki, “A comparative study of reactions of methanol over catalysts derived from NiAl- and CoAl-layered double hydroxides and their Sn-containing analogues”, Catalysis Letters, July 2000

[18] S. Velu , K. Suzuki , M.P. Kapoor , F. Ohashi , T. Osaki, “Selective production of hydrogen for fuel cells via oxidative steam reforming of methanol over CuZnAl(Zr)-oxide catalysts”, Applied Catalysis A: General, Nov 2001

[19] S. Velu, K. Suzuki and T. Osaki, “Oxidative steam reforming of methanol over CuZnAl(Zr)-oxide catalysts; a new and efficient method for the production of CO-free hydrogen for fuel cells” , Chemcomm , Oct 1999

[20] Hsueh-Sheng Wang, Kuo-Yang Huang , Yuh-Jeen Huang , Yu-Chuan Su , Fan-Gang Tseng, “A low-temperature partial-oxidation-methanol micro reformer with high fuel conversion rate and hydrogen production yield” , Applied Energy , Vol 138, Pages 21–30, 15 January 2015

[21] Martin Zimmermann, Heinz Schmid , Patrick Hunziker and Emmanuel Delamarche,” Capillary pumps for autonomous capillary systems”, Lab on a Chip,

[22] Nils Paust A Christian Litterst A Tobias Metz A,Michael Eck A Christoph Ziegler A Roland Zengerle A,Peter Koltay, “Capillary-driven pumping for passive degassing and fuel supply in direct methanol fuel cells”, Micro-fluid Nano-fluid,


[23] Celina E. Barrios, Marta V. Bosco, Miguel A. Baltanas , Adrian L. Bonivardi , “Hydrogen production by methanol steam reforming: Catalytic performance of supported-Pd on zinc–cerium oxides’ nanocomposites” , Applied Catalysis B: Environmental , Vol 179, December 2015, Pages 262–275

[24] 方逸騏, 「被動式微型直接甲醇燃料電池陽極進料反應板之研製」,
國立清華大學碩士論文. 2012.

[25] 傅詩貽, 「積體化毛細管與微漸擴流道進料腔之甲醇微型重組器」, 國立清華大學碩士論文.2014

[26] Hong-Yue Tang, Jason Greenwood, Paul Erickson, “Modeling of a fixed-bed copper-based catalyst for reforming methanol: Steam and auto-thermal reformation”,
Vol 40, 6 July 2015, Pages 8034–8050

[27] David Juncker, Heinz Schmid, Ute Drechsler, Heiko Wolf, Marc Wolf, Bruno Michel,Nico de Rooij, and Emmanuel Delamarche,” Autonomous Microfluidic Capillary System”, Anal. Chem.

[28] Enk Stemme, Goran Stemme, “A valveless diffuser/nozzle-based fluid pump”, Sensors and Actuators A
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *