帳號:guest(3.141.27.207)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):徐晧
作者(外文):Hsu, Hao
論文名稱(中文):滲透式軟性致動器的設計與三維列印
論文名稱(外文):3D Printed, Programmable Osmotic Actuators for Dental Application
指導教授(中文):蘇育全
指導教授(外文):Su, Yu Chuan
口試委員(中文):陳宗麟
王翔郁
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:103011533
出版年(民國):105
畢業學年度:105
語文別:中文
論文頁數:76
中文關鍵詞:滲透式軟性致動器三維列印
外文關鍵詞:3D PrintedProgrammable Osmotic Actuators
相關次數:
  • 推薦推薦:0
  • 點閱點閱:80
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
齒列不整對人來說不只是美觀上的問題,長久下來亦會對健康造成影響,因此矯正牙齒是不容忽視的。以往的齒列矯正裝置因為不需大量生產,得配合每個患者的需求來客製化設計,因此不僅照價昂貴,也因使用記憶金屬線來矯正的關係,使患者在配戴初期會產生強烈的疼痛感,也因矯正器為被動裝置,必須隨著患著矯正的階段不同來最多次的更換,大幅提升了矯正患者的不便。本論文所設計的齒列矯正器有著以往無法達成的功能,因為齒列矯正的時間動輒數年,因此在矯正過程中舒適感及美觀程度對患者來說相對重要,此論文所設計的齒列矯正器配戴位置不同於傳統記憶金屬矯正配戴於外部牙齒表面,而是配戴在舌側,因此其裝置在外部來說是幾乎看不到的,大大提升了美觀程度。另外,由於裝置是利用半透膜的滲透作用來驅動,進而造就了一個會隨時間變化的主動式矯正裝置,也因為滲透作用較為緩慢的關係,在矯正全程都不會有以往強烈的不適感。且裝置的設計是利用防水透濕半透膜無孔質親水性膜層的熱收縮特性,能幫助裝置氣密,再配合光固化樹脂的流動性,使其產生機械投錨理論以及擴散理論所提到的接著力,讓裝置的氣密程度進一步提升,使內部能抵抗的壓力增大,減少了矯正器更換次數。此矯正器的製作結合了三維列印的特色,將生產成本以及時間大幅降低,可以設計出以往機械加工較不易製作的元件,讓裝置能產生齒列矯正所不可或缺的伸長、收縮、彎曲以及扭轉的變形結果。因利用其特殊的內外雙層六角型支架,使此滲透裝置可以利用內外滲透壓差的不同,達到吸水膨脹或抽水收縮的不同效果
We have successfully demonstrated a new type of 3D printed osmotic actuators that can generate preprogrammed locomotion and force output, and presented their application in dentistry. When the osmotic actuator is placed in an aqueous medium, it drives water to flow and generates the required pressure gradient for dental treatment. Conventional orthodontic devices employ wires of shape-memory alloys or plastic aligners to guide the movement of teeth. The forces applied on teeth are not steady, usually jump abruptly right after each adjustment (or replacement) and drop slowly afterwards. The periodic actuation is likely to cause the distress of many patients, and potentially the delay of orthodontic treatment. The demonstrated osmotic actuators can guide the teeth into proper alignment in a preprogrammed manner, which provide solutions for the problems caused by periodic actuation. In the demonstration, 3D printing with multiple extruders and DLP stereolithography is employed to fabricate the individual components made of composite materials, and to facilitate the assembly of the orthodontic devices as well. MATLAB and COMSOL are employed to facilitate the analysis, design and optimization of the osmotic actuators and orthodontic devices. The presented osmotic actuators can provide steady locomotion and force output, which are desired for modern orthodontic treatment.
摘要 i
Abstract iii
致謝 iv
圖目錄 ix
第一章 簡介 1
1.1. 前言 1
1.2. 3D印表機的介紹 2
1.2.1. 3D印表機的種類 2
1.2.2. 3D印表機的工作原理 4
1.3. 研究動機與目的 5
第二章 文獻回顧 7
2.1. 滲透作用應用 7
2.2. 防水透濕半透膜 10
2.2.1. 防水透濕織物原理 11
2.2.2. 防水透濕布料生產方式 11
2.2.3. 微多孔疏水性膜層與無孔質親水性膜層比較 13
2.3. 半透模與其他材料氣密性整合 14
2.4. Bourdon tube原理及應用 15
2.5. 牙齒矯正裝置 17
2.5.1. 隱適美 17
2.5.2. 舌側矯正 19
2.6. 接著劑的原理 20
2.6.1. 接著劑定義 20
2.6.2. 接著力的產生 21
第三章 原理設計 24
3.1. 滲透作用原理 24
3.2. Bourdan tube工作原理 25
3.3. 支架孔洞設計 26
3.4. 牙托設計 26
3.4.1. 改變皺褶圈數 27
3.4.2. 改變皺褶厚度 29
3.5. 熱塑性材料於封裝應用 30
第四章 實驗製程與設計 33
4.1. 實驗儀器、工具 33
4.2. 半透模封裝及結構製程 34
4.2.1. 圓蓋狀 34
4.2.2. 圓筒狀 39
4.3. 牙托設計及製作 44
4.3.1. 皺褶結構 45
4.3.2. 半皺褶結構 47
4.3.3. 螺紋結構 49
4.3.1. 皺褶結構應用 50
4.4. 量測裝置 51
第五章 結果與討論 54
5.1. Bourdon tube 54
5.2. 半皺褶結構 56
5.3. 皺褶結構 58
5.4. 螺紋結構 60
5.5. 皺褶結構應用 61
5.6. 半透膜透水速率 63
5.7. 裝置作動 64
第六章 結論與未來工作 68
6.1. 本論文研究結果 68
6.1.1. 裝置氣密情形 68
6.1.2. 半透膜透水面積 68
6.1.3. 裝置變形情形 69
6.2. 未來工作 69
6.2.1. 材料特性提升 69
6.2.2. 多重材料的引用 70
6.2.3. 半透膜及透水速率 72
第七章 參考文獻 73
[1]. Gregory T. Kovacs, “Micromachined Transducers Sourcebook(1st Edition),” McGraw-Hill, 1998.
[2]. A. Manz and H. Becker, “Microsystem Technology in Chemistry and Life Sciences(1st Edition),” Springer-Verlag Berlin Heidelberg, 1998.
[3]. P. Dario, M.C. Carrozza, A. Benvenuto and A. Menciassi, “Micro-systems in biomedical applications,” Journal of Micromechanics and Microengineering, vol. 10, pp. 235-244, 2000.
[4]. Steven S. Saliterman, “Fundamentals of BioMEMS and Medical Microdevices(1st Edition),” SPIE Publications, 2006.
[5]. T. Bourouina, A. Bosseboeuf and J. P. Grandchamp, “Design and simulation of an electrostatic micropump for drug-delivery applications,” Journal of Micromechanics and Microengineering, vol. 7, pp. 186-188, 1997.
[6]. M. M. Teymoori and E. Abbaspour-Sani, “ Design and simulation of a novel electrostatic peristaltic micromachined pump for drug delivery applications,” Sensors and Actuators A, vol. 117, pp. 222-229, 2005.
[7]. J. Kan, Z. Yang, T. Peng, G. Cheng and B. Wu, “Design and test of a high-performance piezo-electric micropump for drug delivery,” Sensors and Actuators A, vol. 121, pp. 156-161, 2005.
[8]. Q. Cui, C. Liu and X. F. Zha, “Study on a piezoelectric micropump for the controlled drug delivery system,” Microfluidics and Nanofluidics, vol. 3, pp. 377-390, 2007.
[9]. C. G. Cooney and B. C. Towe, “A thermopneumatic dispensing micropump,” Sensors and Actuators A, vol. 116, pp. 519-524, 2004.
[10]. D. Reynaerts, J. Peirs and H. V. Brussel, “An implantable drug-delivery system based on shape memory alloy micro-actuation,” Sensors and Actuators A, vol. 61, pp. 455-462, 1997.
[11]. S. D. Senturia, “Microsystem Design,” Springer US, 2001.
[12]. Charles J. Burstone, “Application of Bioengineering to Clinical Orthodontics,”
[13]. S. Vogel, “Cats’ Paws and Catapults,” W. W. North & Company, 2000.
[14]. F. Theeuwes, S. I. Yum, “Principles of design and operation of generic osmotic pumps for delivery of semisolid or liquid drug formulations,” Annals of Biomedical Engineering, vol. 4, pp. 343-353, 1976.
[15]. F. Theeuwes, “Elementary osmotic pump,” Journal of Pharmaceutical Sciences, vol. 64, pp. 1987-1991, 1975.
[16]. R. K. Verma, S. Arora, S. Garg, “Osmotic micropumps for drug delivery,” Advanced Drug Delivery Review, vol. 64, pp. 1617-1627, 2012.
[17]. Y. H. LI and Y. C. SU, “Miniature osmotic actuators for controlled maxillofacial distraction osteogenesis,” Journal of Micromechanics and Microengineering, vol. 20, pp. 1-8, 2010.
[18]. Nicola Ng Pak, Robert J. Webster III, Arianna Menciassi and Paolo Dario, “Electrolytic Silicone Bourdon Tube Microactuator for Reconfigurable Surgical Robots,” Proceedings 2007 IEEE International Conference on Robotics and Automation, pp. 3371-3376, Roma, 2007.
[19]. Y. C. Su, L. W. Lin, “A water-powered micro drug delivery system,” Journal of Microelectromechanical Systems, vol. 13, pp. 75-82, 2004.
[20]. Y. C. Su, L. W. Lin, A. P. Pisano, “A water-powered osmotic microactuator,” Journal of Microelectromechanical Systems, vol. 13, pp. 736-742, 2002.
[21]. T. Deem, P. M. Ligrani, D. Tower, J. Connelly, “Osmotic dispense pump for operation at different temperatures and pressures,” Sensors and Actuators A, vol. 136, pp. 742-748, 2007.
[22]. H. K. Muller and B. S. Nau, “Fluid Sealing Technology,” CRC Press, 1998.
[23]. P. J. Peng, Y. C. Su, “Preprogrammed, rate-switchable osmotic pumping on a chip,” Microfluidics and Nanofluidics, vol. 18, pp. 267-277, 2015.
[24]. 楊宗樺,「牙齒矯正之三維有限元素分析」,國立台灣科技大學機械工程學系碩士論文,2005。
[25]. D. A. LaVan, D. M. Lynn and R. Langer, “Moving smaller in drug discovery and delivery,” Nature Review Drug Discovery, vol. 1, pp. 77-84, 2002.
[26]. Benson H. Wong, “Invisalign A to Z,” American Journal of Orthodontics and Dentofacial Orthopedics, vol. 121, pp. 540-541, 2002.
[27]. Thomas Creekmore, “Lingual orthodontics – its renaissance,” American Journal of Orthodontics and Dentofacial Orthopedics, vol. 96, pp. 120-137, 1989.
[28]. 吳文政,「接著劑的原理」,科學新天地,2006,第46-51頁。
[29]. 陳進來,「透溼防水紡織品」,2004。
[30]. 蔡聰明,「蜜蜂與數學」,科學月刊。
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *