帳號:guest(3.147.140.99)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):高啟豪
作者(外文):Kao,Chi Hao
論文名稱(中文):毛細結構幾何參數與真空度對熱管最大熱傳量之實驗 與HPPS理論之比對
論文名稱(外文):Effect of heat pipe wick geometric parameters and vacuum pressure to the heat transfer rate of heat pipe and comparison of the HPPS theoretical model
指導教授(中文):林唯耕
指導教授(外文):Lin,Wei Keng
口試委員(中文):鄒蘊明
林鴻文
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:103011531
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:58
中文關鍵詞:熱管真空度最大熱傳量填充量
外文關鍵詞:heat pipethe degree of vacuumthe maximum heat transferfilling volume
相關次數:
  • 推薦推薦:0
  • 點閱點閱:227
  • 評分評分:*****
  • 下載下載:13
  • 收藏收藏:0
熱管的性能不僅取決於幾何參數,如壁厚、管材料,還有工作流體之熱力性能,如潛熱,蒸汽壓力,粘度。熱管之操作參數壓力和真空也是很重要之影響性能之參數。本研究初步建立包括毛細結構的滲透度(Permeability),最大毛細半徑(Maximum Capillary Diameter)與孔隙比(Porosity)及熱管最大熱傳量之量測。此實驗數據將與HPPS軟體做比對。HPPS(Heat pipe program software熱管性能模擬軟體)是由台灣清華大學的先進冷卻散熱實驗室所發展的以毛細理論預測熱管性能之軟體,其設定參數包括輸入不同熱管材質、不同工作流體、真空度、填充量以及操作的溫度等,並計算出該熱管之最大熱傳量,以探討各項參數對性能影響的重要性。
本實驗量測H廠商與C廠商之毛細結構幾何參數,其滲透度為2.57×10-13m2、0.327×10-13m2,最大毛細半徑為8.08×10-6m、9.09×10-6m,孔隙比為0.559、0.621,本實驗室模擬散熱水平量測毛細結構之熱管最大熱傳量,以H廠商外徑6φ的銅粉之燒結毛細結構熱管比較實驗室自製的熱管,其工作流體為水,固定操作溫度50℃,填充量30%時,最大熱傳量為45W;H廠商生產的熱管在同樣條件下之最大熱傳量為25W。真空度從1torr到10-4torr時最大熱傳量從35W增加到45W。
Performance of heat pipe not only depends on geometry, such as wall thickness, pipe material, but also the thermal properties of the working fluid, such as latent heat, vapor pressure, viscosity, pressure and vacuum. We develop a experiment for Permeability, Maximum Capillary Diameter, Porosity, and the maximum of heat transfer. These experimental data will compare with HPPS. HPPS (heat pipe performance Simulation program software) is a software made by the advanced cooling heat laboratory Taiwan Tsinghua University to predict heat pipe performance with capillary structure theory , and its parameters include various heat pipe materials, different working fluids, vacuum degree, filling volume and operating temperature setting. Maximum heat transfer in different condition such as vacuum different degrees, or filling volume can be measured by experiments. importance of each parameters can also be discussed.
Experiment for heat pipe’s wick geometric parameters of H company and C company. The Permeability of two company is 2.57×10-13m2、0.327×10-13m2 The Maximum Capillary Diameter of two company is 8.08×10-6m、9.09×10-6m The Porosity of two company is 0.559、0.621. Experiment the maximum of heat transfer with standard way, compare with 6φ sintered copper heat pipe of H company and the self made heat pipe. When the working fluid is water in 50℃ with filing volume 30% the maximum heat transfer is 45W; Under the same conditions the maximum heat transfer is 25W of H company. When vacuum from 1torr to 10-4torr, the maximum heat transfer will from 35W to 45W.
摘要 II
Abstract I
致謝 II
目錄 III
圖目錄 IV
表目錄 VI
符號表 VI
第一章 緒論 1
1-1前言 1
1-2文獻回顧恩 4
第二章 毛細結構幾何參數 10
2-1毛細結構物特性與熱力性質 10
2-1-1燒結結構之理論滲透度Kw模式與傳導性Kwick 12
2-1-2溝槽結構之理論滲透度Kw模式與傳導性Kwick 14
2-1-3金屬結構之理論滲透度Kw模式與傳導性Kwick 17
2-2毛細結構實驗與設備 18
2-2-1滲透度(Permeability, Kw) 19
2-2-2最大毛細半徑(Maximum Capillarity Radius,rc) 20
2-2-3孔隙比(Porosity,ε) 22
2-3毛細結構幾何參數實驗結果 24
2-3-1滲透度(Permeability)Kw 24
2-3-2最大毛細半徑(Maximum Capillary Radius) rc 25
2-3-3孔隙比(Porosity) ε 25
第三章 最大熱傳量實驗測量與設備介紹 27
3-1毛細結構熱管最大熱傳量量測設備與儀器 28
3-1-1熱管最大熱傳實驗步驟 31
3-1-2熱管量測軟體 34
3-2熱管製造流程 35
3-2-1熱管填充及封管設備與方法 35
第四章 實驗結果與討論 42
4-1 HPPS之應用 42
4-1-1不同填充率、工作流體為水對毛細熱管最大熱傳量的實驗與理論之比較 46
4-1-2 H廠商熱管的量測與比較 49
4-2-1不同真空度對毛細結構熱管最大熱傳量之實驗與理論比較 51
第五章 結論 54
參考文獻 55

1. H. R. Jacobs, J. P. Hartnett, “Thermal Engineering: Emerging Technologies and Critical Phenomena,” Workshop Report, NSF Grant No. CTS-91-04006, pp.139-176, 1991.
2. T. P. Cotter, “Principles and Prospects for Micro Heat Pipes,” Proc. 5th Int. Heat Pipe Conf., Tsukuba, Japan, pp. 328-335, 1984.
3. H. Chen, M. Groll, S. Rosler, “Micro Heat Pipes: Experimental Investigation and Theoretical Modelling,” Proc. 8th Int. Heat Pipe Conf., Beijing, China, 1992.
4. J. Zhou, Z. Yao, J. Zhu, “Experimental Investigation of the Application Characters of Micro Heat Pipe,” Proc. 8th Int. Heat Pipe Conf., Beijing, China, 1992.
5. T. Li, L. Cao, L. Xiang, “Research and Application for the Heat Transfer Performance of Small Heat Pipe,” Proc. 8th Int. Heat Pipe Conf., Beijing, China, 1992.
6. D. Khrustalev, A. Faghri, ”Thermal analysis of a micro heat pipe,” J. Heat transfer, Vol. 116, pp. 189-198, 1994.
7. D. Khrustalev, A. Faghri, ” Thermal Characteristics of Conventional and Flat Miniature Axially Grooved Heat Pipes,” J. Heat transfer, Vol. 11, pp. 1048-1054, 1994.
8. D. Khrustalev, A. Faghri, ” Flat Miniature Heat Pipes With Micro Capillary Grooves,” ASME Journal of Transactions, Vol. 121, pp. 102-109, 1999.
9. Ioan Sauciuc, “ The Design and Testing of the Super Fiber Heat pipes for Electronics Cooling ”, IEEE 16th SEMI-THERM, pp.27-32, 2000.
10. V. Maziuk, “Miniature heat-pipe thermal performance prediction tool software development, “ Applied Thermal Engineering , Vol. 21, pp. 559-571, 2001.
11. Seok Hwman Moon, “Experimental Study on the Performance of Miniature Heat Pipes With Woven-Wire Wick”, IEEE Transaction on components and packing technologies, Vol. 24, No. 4, pp. 1521-3331, 2001.
12. Kenichi Namba, Naoki Kimura, Jun Niekawa, Yuichi Kimura, Nobuyuki Hashimoto, ” Heat-Pipes for Electronic Devices Cooling and Evaluation of Their Thermal Performance ”, IEEE InterSociety Conference on Thermal Phenomena, pp.456-459, 1998.
13. Kwang-Soo Kim, ” Heat pipe cooling technology for desktop PC CPU ”, Applied Thermal Engineering, Vol. 23, pp. 1137-1144, 2003.
14. Yasumi Sasaki, Yuichi Kimura, Kenichi Namba, ”The ultra-thin sheet-shaped heat pipe “Pera-flex” ”, 13th International Heat Pipe Conference (13th IHPC), pp.250-255, 2004.
15. P. Tadayon, “Thermal Challenge During Micro- processor Testing,” J. Intel Tech., Q3, 2000.
16. Y. Cao, A. Faghri, “Micro/Miniature Heat Pipes and Operating Limitations,” Proc. ASME HTD, Vol. 236, pp. 55-62, 1994.
17. M. Mochizuki, Y. Saito, K. Goto, T. Nguyen, “Hinged Heat Pipe for Cooling Notebooks PCs,” IEEE SEMI-THERM Symposium, pp. 64-72, 1997.
18. T. Nguyen, M. Mochizuki, K. Mashiko, Y. Saito, I. Sauciuc, R. Boggs, , “Advanced Cooling System Using Miniature Heat Pipes in Mobile PC,” IEEE Transactions on Components and Packaging Technology, Vol. 23, No. 1, pp. 86-90 2000.
19. Goldsmid, H. J., The use of semiconductors in thermoelectric refrigeration, Research Laboratories, The General Electric Co. Ltd, Wembley, Middlesex, 1954
20. Chu, R. C., 2000, “Application of Thermoelectric Cooling to Electric Equipment:A Review and Analysis,’ Semiconductor Thermal Measurement and Management Symposium, pp.1-9, 2000
21. Solbrekken, G. L., K. Yazawa, and A. Bar-Cohen, 2003, Chip Level Refrigeration of Portable Electronic Equipment Using Thermoelectric Devices, Proceedings of InterPack 2003, Maui, HA, Jul 6-11, Paper IPACK2003-35305.
22. Jim Bierschenk, Dwight Johnson, Extending the Limits of Air Cooling with Thermoelectrically Enhanced, Thermal and Thermomechanical Phenomena in Electronic Systems, Vol.1, pp.679-684, 2004
23. Y. Noda, H. Sauciuc, I. Erturk, H, Thermal Performance of Thermoelectric Cooler (TEC) Integrated Heat Sink and Optimizing Structure for Low Acoustic Noise / Power Consumption, Semiconductor Thermal Measurement and Management Symposium, pp.144-151, 2006
24. Reiyu Chein, Thermoelectric cooler application in electronic cooling, Applied Thermal Engineering, Vol.24, pp.2207–2217, 2004
25. B.J. Huang, System dynamic model and temperature control of a thermoelectric cooler, International Journal of Refrigeration, Vol.23, pp.197-207, 2000
26. P. D. Dunn, D. A. Reay, Heat Pipes, 3rd Edn., Pergamon Press, pp.100-101, 1982.
27. 盧俊彰, 林唯耕, 「滲透度對熱管性能之影響,」 中國機械工程學會第二十二屆全國學術研討會, 2005.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *