帳號:guest(3.15.206.133)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):劉鈞
作者(外文):Liu Chun
論文名稱(中文):高性能甲醇重組器與濃度梯度法
論文名稱(外文):High Performance Methanol Reformer and Gradient Concentration of Catalysts
指導教授(中文):曾繁根
指導教授(外文):Tseng, Fan Gang
口試委員(中文):黃鈺軫
薛康琳
口試委員(外文):Huang, Yuh-Jeen
Hsueh, Kan Lin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:103011522
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:98
中文關鍵詞:氧化性蒸氣重組反應甲醇部分氧化反應熱點觸媒梯度
外文關鍵詞:OSRMPOMHot SpotGradient Concentration of Catalysts
相關次數:
  • 推薦推薦:0
  • 點閱點閱:257
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
甲醇重組產氫反應器可在燃料電池系統將液態甲醇燃料轉換成富有氫氣的氣體,解決氫氣儲存和運輸的困難,極具發展潛力。其中甲醇氧化性蒸氣重組反應(OSRM)結合甲醇部分氧化反應(POM)與蒸氣重組反應(SRM)兩種反應的優點,對外在熱源的依賴降低以及具有較高的單位甲醇產氫量。OSRM反應內的部分氧化反應會在反應器流道入口端造成高溫集中區,由先前對POM反應的實驗得知,此熱點的產生易加速觸媒壽命的終結,然則文獻卻較少提及OSRM反應器的壽命問題。
本研究的反應器以瑞士捲流道設計,以造成熱點的POM反應建立模擬模型,模擬結果顯示濃度梯度觸媒配置法可有效緩解熱點的形成。實作上以洗鍍觸媒的銅絲泡綿與觸媒床實現濃度梯度觸媒配置。實驗結果顯示POM反應器起始產氫量2.5×10-3 (mol/min),觸媒床反應器產氫量10小時後降至50%,濃度梯度反應器產氫量50小時後降至50%,證實濃度梯度觸媒配置可增強其壽命表現。OSRM反應器起始產氫量6.5×10-3 (mol/min),當反應溫度大於280°C時才有穩定的壽命表現,此產氫量足以供應10W的PEM燃料電池。GO製程的POM觸媒在起始產氫量1.8×10-3 (mol/min) 的條件下,40小時後的產氫量比標準POM觸媒高2.93倍,其成因於後續實驗探討。
Oxidative Steam Reforming of Methanol (OSRM) needs lower heat supply and higher hydrogen production per methanol molecule, which is ideal for portable and vehicle fuel cell application. However, POM reaction, which composes OSRM, caused formation of hot spot at the entrance of the reactor’s channel. The hot spot accelerated degradation of performance of the catalysts.
A Swiss-Roll channel was designed for the reactor used in this study. The simulation of POM preforming showed that gradient loading of catalysts could eliminate formation of hot spot. Washcoated copper foam and packed-bed catalysts were placed in the channel to achieve gradient loading of catalysts. The experiment results showed that the initial hydrogen production rate (HPR) of the POM reformer was 2.5×10-3 (mol/min). HPR of packed-bed reformer decreased to 50% after 10 hr. HPR of catalysts gradient loading reformer decreased to 50% after 50 hr, proving that gradient loading of catalysts could enhance life performance of a POM reformer. The initial HPR of the OSRM reformer was 6.5×10-3 (mol/min), which was sufficient to supply a 10 W PEM fuel cell. The life performance was stable only if the operating temperature above 280°C. The HPR of POM catalysts made by GO process after 40 h was 193% higher than standard POM catalysts, the causes of the performance was still under research.
第一章 緒論
1.1研究背景與前言………………………………………………………1
1.2研究動機………………………………………………………………6

第二章 文獻回顧
2.1 甲醇重組反應器(表現回顧)………………………………………….7
2.2甲醇部分氧化觸媒
2.2.1 研究背景…………………………………………………………..10
2.2.2 Cu…………………………………………………………………..11
2.2.3 ZnO………………………………………………………………...11
2.2.4 Mn………………………………………………………………….12
2.3觸媒反應動力學………………………………………………………13
2.4反應器的熱分佈性質…………………………………………………16
2.5銅網製造與觸媒塗布方式……………………………………………18

第三章 實驗設計與規劃
3.1實驗設計與架構………………………………………………………20
3.1.1瑞士捲流道, 高導熱多孔觸媒載體與觸媒濃度梯度……………21
3.1.2模擬預測設計效果與最佳化……………………………………...22
3.1.3實驗測試效能與壽命……………………………………………22
3.2實驗流程設計
3.2.1動力學推導與Comsol模擬…………………………………….22
3.2.2瑞士捲流道設計與製作…………………………………………23
3.2.3高導熱多孔觸媒載體製作………………………………………24
3.2.4 觸媒製作………………………………………………………...24
3.2.5測試系統架設……………………………………………………25
3.3實驗步驟
3.3.1動力學推導與Comsol模擬……………………………………25
3.3.2瑞士捲流道設計與製作…………………………………………29
3.3.3高導熱多孔觸媒載體製作………………………………………30
3.3.4 觸媒製作………………………………………………………..34
3.3.5於觸媒載體上黏著觸媒………………………………………...35

第四章 結果與討論
4.1動力學推導與Comsol模擬………………………………………37
4.1.1單一觸媒濃度與熱分佈關係…………………………………..38
4.1.2流速與熱分佈關係……………………………………………..40
4.1.3泡綿觸媒載體孔隙率與熱分佈關係…………………………..42
4.1.4單一濃度觸媒與濃度梯度觸媒的熱分佈關係對照……………43
4.1.5改變泡綿觸媒載體材料與熱分佈關係對照……………………45
4.1.6最佳化範例………………………………………………………46
4.2 瑞士捲流道設計與製作……………………………………………48
4.3高導熱多孔觸媒載體製作………………………………………….49
4.3.1銅電鍍法………………………………………………………....49
4.3.2 縮甲基纖維素鈉網與銅粉粉末冶金法………………………...49
4.3.3水膠球犧牲結構網………………………………………………53
4.3.4氧化石墨烯添加之特殊觸媒結構……………………………...55
4.4觸媒製作……………………………………………………………57
4.5於觸媒載體上黏著觸媒
4.5.1 縮甲基纖維素鈉基觸媒液與Wash-coat法…………………59
4.5.2甲醇基觸媒溶液與Wash-coat法…………………………….60
4.5.3甲醇基觸媒溶液與Wash-coat法…………………………….62
4.6氣相層析儀與反應器實作
4.6.1.1黏著觸媒之銅網測試……………………………………….63
4.6.1.2水膠基觸媒液與Wash-coat法……………………………..64
4.6.1.3甲醇基觸媒液與Wash-coat法……………………………..65
4.6.2特殊型態之觸媒POM測試
4.6.2.1氧氣煅燒……………………………………………………67
4.6.2.2氮氣煅燒……………………………………………………69
4.6.3反應器實作與觸媒分佈法
4.6.3.1水膠基觸媒塗布銅網………………………………………73
4.6.3.2水膠基觸媒塗布銅網與類觸媒床…………………………74
4.6.3.3觸媒床位置…………………………………………………75
4.6.3.4全流道塗布…………………………………………………78
4.6.3.5濃度梯度
4.6.3.5.1觸媒床與濃度梯度比較………………………………79
4.6.3.5.2全流道塗布與濃度梯度比較…………………………81
4.6.3.5.3濃度梯度與全流道觸媒床比較………………………82
4.6.3.6摻OSRM觸媒全流道塗布………………………………..84
4.6.4溫度分佈………………………………………………………...86
4.6.5 OSRM反應器
4.6.5.1觸媒床反應器………………………………………………..88
4.6.5.2濃度梯度反應器(未來工作)………………………………...90
第五章 結論…………………………………………………………..91
參考文獻………………………………………………………………93
[1] C.G. Hill, An Introduction to Chemical Engineering Kinetics and Reactor Design, Wiley, New York, 1977, p. 88.
[2] J. Agrell et al. J.L.G. Fierro, Appl. Catal. A Gen. 253 (2003) 201–211.
[3] K.L.Lee et al. Appl. Catal. B Gen 150-151(2014)506-514
[4] K.C. Waugh. Catal. Today 15 (1992) 51-75.
[5] B.A. Peppleyet al. Appl. Catal. A Gen. 179 (1999) 31-49
[6] W.C. Conner et al.Chem. Rev. 95 (1995) 759
[7] W. Liu et al, J. Catal. 153 (1995) 317–332.
[8] Y.J. Huang et al. Int. J. Hydrogen Energy 36 (2011) 15203–15211.
[9] S.D. Oosterhout et al. Adv. Energy Mater. 1 (2011) 90–96.
[10] S. Polarz et al. Chem. 45 (2006) 2965–2969.
[11] G.J. Millaret al. Faraday Trans. 87(17) (1991) 2795.
[12] C.J. Jiang et al. Appl. Catal. A 97 (1993) 145.
[13]K. Y. Lee et al. Ind. Eng. Chem. Res. 2014, 53, 12622-12630
[14]M. P. Harold et al. Chemical Engineering Science, 2003, 58, 2551-2571
[15]H. S. Wang et al. Applied Energy, 2015, 138, 21-30
[16]N. O. Richards et al. Hydrogen Energy, 2014, 39, 18077-18083
[17] H. Y. Tang et al. Hydrogen Energy, 2015, 40, 8034-8050
[18]I. Graf et al.Chemical Engineering Journal, 2014, 244, 234-242
[19]W. Zhou et al. Hydrogen Energy, 2015, 40, 244-255
[20]G. Wang et al. Energy, 2013, 51, 267-272
[21]L. E. Briand et al. Catalysis Today, 2000, 62, 219-229
[22]M. Badlani et al. Catalsis Letters, 2001, 75, 3-4
[23]J. Yu et al. Microporous and Mesoporous Materials, 2016, 225, 472-481
[24]A. Montebelli et al. Applied Catalysis A : General, 2014, 481, 96-103
[25]A. Antenucci et al. Materials and Design, 2014, 59, 124-129
[26]H. Wu et al., Nano Letters, 2010, 4242-4248
[27]J. R. Lattner et al. Catalysis Today, 2007, 120, 78-89
[28]M. Paakko et al. Soft Matter, 2008, 4, 2492-2499
[29]R. L. McCormick et al. Applied Catalysis, 2002, 226, 129-138
[30]S. H. Chan et al. Journal of Power Sources, 2004, 126, 8-15
[31]S. K. Tiwari et al. J Mater Sci, 2016, 51, 6156-6165
[32]S. Pei et al. Carbon, 2011, xxx, xxx-xxx
[33]D.H. Kim et al. Chemical Engineering Journal, 2015, 280, 468-474
[34]H. Giesche et al. Syst. Charact, 2006, 23, 1-11
[35]R. S. Dhamrat et al. Combustion and Flame, 2006, 144, 698-709
[36]M. A. Mujeebu et al. Journal of Enviro. Manag., 2009, 90, 2287-2312
[37]W. Zhou et al. Hydrogen Energy, 2009, 34, 9745-9753
[38]C. Y. Zhao, Inter. Jour. of Heat and mass Trans, 2012, 55, 3618-3632
[39]J. M. C Pereira et al. Fuel, 2010, 89, 1928-1935
[40]Z. Al-Hamamre et al. Hydrogen Energy, 2009, 34, 827-832
[41]H. P. Mjaanes et al. Inter. Jour. of Hydrogen Energy, 2005, 30, 579-592
[42]M. Toledo et al. Hydrogen Energy, 2009, 34, 1818-1827
[43]H. Yu et al. Applied Catalysis, 2007, 327, 106-113
[44]A. M. Parvanian et al, Materials and Design, 2014, 53, 681-690
[45]J. G. Jinet al. Thin Solid Films, 2004, 466, 272-278
[46]S. M. Jung et al. Scientific Reports, 2012
[47]G. I. Garrido et al. Chen. Engineer. Scien. 2008, 63, 5202-5217
[48]E. G. Lecina et al. Surface & Coatings Technology, 2012, 206, 2998-3005
[49]K. Kobayashi et al. Ultrasonics, 2000, 38, 676-681
[50]T. F. M. Chang, Thin Solid Films, 2013, 529, 25-28
[51]H.Zhang et al. Materials Letters, 2016, 106, 360-362
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *