帳號:guest(3.145.172.56)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王崧任
作者(外文):Wang,Sung Ren
論文名稱(中文):雙相封閉熱虹吸式環路在太陽能熱水器的應用
論文名稱(外文):Feasibility study of the two-phase closed loop thermosyphon apply on the solar thermal storage system
指導教授(中文):林唯耕
指導教授(外文):Lin,Wei Keng
口試委員(中文):鄒蘊明
林鴻文
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:103011521
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:74
中文關鍵詞:雙相封閉式熱虹吸環路太陽能熱水器
外文關鍵詞:Two-phase closed loop thermosyphonSolar thermal collectors
相關次數:
  • 推薦推薦:0
  • 點閱點閱:57
  • 評分評分:*****
  • 下載下載:8
  • 收藏收藏:0
  雙相封閉式熱虹吸環路(TPCLT)是一個高效率的雙相移熱工具,其系統包含蒸發部、冷凝部、蒸氣頭、蒸氣線、液體頭以及液體線,移熱的方式主要是利用工作液體的相變化將熱能由蒸發部移至冷凝部,此裝置為自然且單向循環並不需要而外的動力裝置,並具有將熱量長距離傳輸的能力,所以十分有利於應用在太陽能熱水與建築物一體化。
  本篇論文主要是研究TPCLT環路系統在太陽能熱水器的應用,實驗中有小型與大型兩種環路,實驗參數在小型TPCLT環路為不同結構以及加入不同長度毛細物質對於熱轉換效率的影響;而大型TPCLT環路則為不同填充量測試、加熱功率啟動測試。小型TPCLT環路實驗結果顯示加熱瓦數為360瓦時,非對稱型環路的效率為70.8 %,而Top-U-Symmetric 和 Both-U-Symmetric的轉換效率分別為74.6%和76.1%,而當多孔性毛細結構放入蒸發管內時,Top-U-Symmetric的轉換效率增加為81%。大型TPCLT環路實驗結果顯示此系統填充量為70%且在加熱功率為630W時,熱轉換效率為69%;填充量為60%且在加熱功率為630W時,熱轉換效率為63%。而在系統填充量為70%時,最低可啟動的加熱功率為270W,填充量為60%時,最低可啟動的加熱功率則為180W。
A two-phase closed loop thermosyphon (TPCLT) is a high-efficiency two-phase heat transfer device, which is composed of evaporator, condenser, vapor head, vapor line, liquid head and liquid line. The basic concept is the phase change of a working fluid is used to transport heat from evaporator to condenser through natural circulation without any external driving forces. The device is capable to transport heat for a long distance, so it is proper to apply on the building integrated solar thermal systems.
This study presents the possibility of the TPCLT apply on the solar thermal storage system. This experiment contains two different types of TPCLT, the small one and the large one. In small TPCLT, experimental results show that when heating power is 360W, the non-symmetric TPCLT’s efficiency is 70.88%, the top-U-symmetric TPCLT’s efficiency is 74.6% and the both-U-symmetric TPCLT’s efficiency is 76.1%. When the porous material is put in the top-U-symmetric TPCLT, the efficiency increases to 81%. In large TPCLT, experimental results show that the storage efficiency is 69% in filling ratio 70% with heating power 630W. The storage efficiency is 63% in filling ratio 60% with heating power 630W. When the system is in filling ratio 70%, the lowest start-up heating power is 270W. When the system is in filling ratio 60%, the lowest start-up heating power is 180W.
目錄
摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VI
表目錄 VIII
符號表 IX
第一章 緒論 1
1.1 前言 1
1.2 研究動機 4
1.3 文獻回顧 5
1.3.1 傳統熱管(Heat Pipe) 5
1.3.2 迴路式熱管(LHP) 7
1.3.3 雙相封閉熱虹吸式環路(TPCLT) 8
第二章 TPCLT理論分析 14
2.1 TPCLT工作原理 14
2.2 TPCLT之熱傳限制 15
2.2.1 乾化界限(Dryout Limit) 15
2.2.2 音速界限(Sonic Limit) 15
2.2.3 沸騰界限(Boiling Limit) 16
2.2.4 黏滯界限(Viscous Limit) 16
2.2.5 非凝結氣體(Non-Condensable Gas , NCG)的影響 16
2.3 TPCLT理論基礎分析 17
第三章 TPCLT環路元件 20
3.1 工作流體的選擇 20
3.2 蒸發部之選用 22
3.3 冷凝部之設計 23
3.4 循環管路之設計 24
第四章 實驗設備與方法 33
4.1 實驗前準備工作 4.1.1 真空系統 (Vacuum system) 33
4.1.2 填充工作流體 33
4.2 TPCLT環路測試設備 35
4.2.1 小型TPCLT環路 35
4.2.2 大型TPCLT環路 37
4.3 TPCLT環路性能測試 40
4.3.1 測試平台建立 40
4.3.2 性能測試步驟 41
4.4 實驗參數 42
第五章 實驗結果與討論 53
5.1 小型TPCLT環路結構測試實驗 55
5.1.1 小型TPCLT環路結構測試總結 57
5.2 小型TPCLT環路加入毛細物質測試測試實驗 58
5.2.1 小型TPCLT環路加入毛細物質測試測試總結 60
5.3 大型TPCLT wickless環路等功率加熱測試實驗 60
5.3.1 填充量V+=60%在等功率加熱之情形 61
5.3.2 填充量V+=70%在等功率加熱之情形 66
5.3.3 大型TPCLT wickless環路等功率加熱實驗與填充量V+總結 70
第六章 結論與建議 72
6.1 結論 72
6.2 建議 73
參考文獻 75

[1] 工研院能資所,太陽能熱水系統專業技術人員講習,民國90年。
[2] 經濟部能源局,再生能源熱利用獎勵補助辦法,太陽能熱水器補助辦法。
[3] John Archibald, “BUILDING INTEGRATED SOLAR THERMAL ROOFING SYSTEMS, HISTORY, CURRENT STATUS, AND FUTURE PROMISE”, American Solar Roofing Company, 8703 Chippendale Court, Annandale, Va. 22003
Tim Selke (TSelke) , “Building integrated Solar Thermal Systems in an Urban Scale”, AIT Austrian Institute of Technology Österreichisches Forschungs- und Prüfzentrum Arsenal Ges.m.b.H.
[4] Helena Gajbert , “Solar thermal energy systems for building integration”, Division of Energy and Building Design Department of Architecture and Built Environment Lund University, Faculty of Engineering LTH, 2008, Report EBD-T--08/10
[5] F.J. Stenger, NASA TM X-1310, 1966
[6] Gaugler, R. S., US Patent Application. Dec. 12, 1942. Published US Patent NO.2350348,June 1944.
[7] Cotter, T. P., “Theoretical of Heat Pipes”, Los Alamos Science Lab. Roport NO. LA-3246-MS, 1965.
[8] Levy, E. K., “Theoretical Investigation of Heat Pipes Operating at Low Vapor Pressure”, J. Engineering for Industry, Vol. 90, pp.547-552. 1968.
[9] Tien, C. L. and Sun, K. H.,”Minimun Meniscus Radius of Heat Pipes with a Wicking Material ”, Int. J. Heat Mass Transfer 14, pp.1853-1855, 1970.
[10] Busse, C. A., “Pressure Drop in the Vapor Phase of Long Heat Pipe”, Proceedings of International Thermionic Conversion Specialist Conference, IEEE, New York. 1973.
[11] Asselman, G. A. and Green, D. B., “Heat Pipes”, Phillips Technical Review, Vol. 16, pp. 169-186, 1973.
[12] Yoshida, K., “Flat Plate Heat Pipe for Commercial Uses”, Proc. 5 Int. Heat Pipe Conf., Tsukuba, Japan, 1984.
[13] Xie, H., Mostafa, A., Wendy, L., and Kevin, H., “Thermal Solutions to Pentium Processors in TCP in Notebooks and Sub-Notebooks”, IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part A, Vol. 19, No. 1, pp. 54-65. March 1996.
[14] Mochizuki, M., “Hinged Heat Pipes for Cooling Notebook PCs”, IEEE, pp. 64-72, 1997.
[15] Maidanik, Y. F., “Design and Investigation of Methods of Regulation of Loop Heat Pipes for Terrestrial and Space Applications”, Institute of Thermophysics, Ural Division of the Russian Academy of Sciences, SAE Technical Paper 941407, 1994.
[16] Nikitkin, N. N., Bienert, W. B., and Goncharov, K. A., “Non Condensable Gases and Loop Heat Pipe Operation”, Dynatherm Corp and TAIS Ltd, SAE Technical Paper No. 981584, 1998.
[17] Maidanik, Y. F. and Pastukhov, V. G., “Loop Pipe-Recent Developments, Test Results and Applications”, Institute of Thermophysics, Ural Division of Russian Academy of Sciences, SAE Technical Paper 1999-01-2530, 1999.
[18] Muraoka, I., Ramos, F. M., and Vlassov , V. V., “Analysis of the Operational Characteristics and Limits of Loop Heat Pipes with Porous Element in the Condenser”, International Journal of Heat and Transfer, Vol. 44, pp. 2287-2297, 2001.
[19] 張文華,”迴路式熱管參數影響之研究”,國立台灣大學機械工程學系研究所碩士論文,2003年6月。
[20] Abreu SL, Colle S. An experimental study of two-phase closed thermosy-phons for compact solar domestic hot-water systems. Sol Energy2004;76:141–5.
[21] Nada SA, El-Ghetany HH, Hussein HMS. Performance of a two-phase closed thermosyphon solar collector with a shell and tube heat exchanger. Appl Thermal Eng 2004;24:1959–68.
[22] Hussein HMS, El-Ghetany HH, Nada SA. Performance of wickless heat pipe flat plate solar collecto rshaving different pipes crosssections geometries and filling ratios. Energy Convers Manag2006;47:1539–49.
[23] Chow TT, Dong Z, Chan LS, Fong KF, Bai Y. Performance evaluation of evacuated tube solar domestic hot water systems in Hong Kong. Energy Build2011;43:3467–74.
[24] Samanci A, Berber A. Experimental investigation of single-phase and two phase closed thermosyphon solar water heater systems. Sci Res Essays2011;6(4):688–93.
[25] Xiao L, Wu SY, Zhang QL, Li YR. Theoretical investigation on thermal performance of heatpipe flat plate solar collector with cross flow heat exchanger. Heat Mass Transf 2012;48:1167–76.
[26] Zhang L, Wang W, Yu Z, Fan L, Hua Y, Ni Y, Fan J, Cen K. An experimental Investigation of a natural circulation heat pipe system applied to a parabolic trough solar collector steam generation system. Sol Energy2012:86911–9.
[27] WeiL, Yuan D, Tang D, Wua B. Astudyona flat-plate type of solar heatcollector with an integrated heat pipe. Sol Energy2013;97:19–25.
[28] Chougule SS, Sahu SK, Pise AT. Performance enhancement of two phase thermosyphon flat-plate solar collectors by using surfactant and nanofluid. Front Heat Pipes2013;4:013002.
[29] Chougule SS, Sahu SK, Pise AT. Thermal performance of two phase thermo-syphon flat-plate solar collectors using nanofluid. J Sol Energy Eng2014;136
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *