|
[1] J.-H. Huang, C.-H. Ma, H. Chen, Effect of Ti interlayer on the residual stress and texture development of TiN thin films deposited by unbalanced magnetron sputtering, Surf. Coat. Technol., 201 (2006) 3199-3204. [2] J.-H. Huang, F.-Y. Ouyang, G.-P. Yu, Effect of film thickness and Ti interlayer on the structure and properties of nanocrystalline TiN thin films on AISI D2 steel, Surf. Coat. Technol., 201 (2007) 7043-7053. [3] F.S. Shieu, L.H. Cheng, M.H. Shiao, S.H. Lin, Effects of Ti interlayer on the microstructure of ion-plated TiN coatings on AISI 304 stainless steel, Thin Solid Films, 311 (1997) 138-145. [4] A.-N. Wang, G.-P. Yu, J.-H. Huang, Fracture toughness measurement on TiN hard coatings using internal energy induced cracking, Surf. Coat. Technol., 239 (2014) 20-27. [5] J.-H. Huang, Y.-H. Chen, A.-N. Wang, G.-P. Yu, H. Chen, Evaluation of fracture toughness of ZrN hard coatings by internal energy induced cracking method, Surf. Coat. Technol., 258 (2014) 211-218. [6] D. Pilloud, A.S. Dehlinger, J.F. Pierson, A. Roman, L. Pichon, Reactively sputtered zirconium nitride coatings: structural, mechanical, optical and electrical characteristics, Surf. Coat. Technol., 174-175 (2003) 338-344. [7] P.J. Kelly, T. vom Braucke, Z. Liu, R.D. Arnell, E.D. Doyle, Pulsed DC titanium nitride coatings for improved tribological performance and tool life, Surf. Coat. Technol., 202 (2007) 774-780. [8] J. Stimmell, Properties of dc magnetron reactively sputtered TiN, J. V. Sci Technol., B, Microelectronics and Nanometer Structures, 4 (1986) 1377-1382. [9] N Pessall, RE Gold, HA Johansen, A study of supercouductivity in interstital compounds, J. Phys. Chem. Solids., 29 (1968) 19-38. [10] W.-J. Chou, G.-P. Yu, J.-H. Huang, Bias effect of ion-plated zirconium nitride film on Si(100), Thin Solid Films 405 (2002) 162-169. [11] H.A. Wriedt, J.L. Murray, The N-Ti (Nitrogen-Titanium) System, Bulletin of Alloy Phase Diagrams 8(1987). [12] H. Okamoto, N-Zr (Nitrogen-Zirconium), J. Phase Equilib. Diffus., 27 (2006) 551-551. [13] J.-H. Huang, K.-W. Lau, G.-P. Yu, Effect of nitrogen flow rate on structure and properties of nanocrystalline TiN thin films produced by unbalanced magnetron sputtering, Surf. Coat. Technol., 191 (2005) 17-24. [14] Z.-B. Qi, P. Sun, F.-P. Zhu, Z.-C. Wang, D.-L. Peng, C.-H. Wu, The inverse Hall–Petch effect in nanocrystalline ZrN coatings, Surf. Coat. Technol., 205 (2011) 3692-3697. [15] J.O. KiM, J.D. Achenbach, P.B. Mirkarimi, M. Shinn, S.A. Barnett, Elastic constants of single-crystal transition-metal nitride films measured by line-focus acoustic microcopy, J. Appl. Phys., 72/5 (1992) 1805. [16] E. Török, A.J. Perry, L. Chollet, W.D. Sproul, Young's modulus of TiN, TiC, ZrN and HfN, Thin Solid Films, 153 (1987) 37-43. [17] K. Chen, L. Zhao, J. Rodgers, S.T. John, Alloying effects on elastic properties of TiN-based nitrides, J. Phys. D: Appl. Phys., 36 (2003) 2725-2729. [18] A.J. Perry, A contribution to the study of poisson's ratios and elasticconstants of TiN, ZrN and HfN, Thin Solid Films, 193–194, (1990) 463-471. [19] D. Mahéo, J.M. Poitevin, Microstructure and electrical resistivity of TiN films deposited on heated and negatively biased silicon substrates, Thin Solid Films, 237 (1994) 78-86. [20] P. Jin, S. Maruno, Evaluation of internal stress in reactively sputter-deposited ZrN thin films, Jpn. J. Appl. Phys., 30 (1991) 1463-1468. [21] M.B. Takeyama, T. Itoi, E. Aoyagi, A. Noya, Diffusion barrier properties of nano-crystalline TiZrN films in Cu/Si contact systems, Appl. Surf. Sci., 216 (2003) 181-186. [22] G. Abadias, V.I. Ivashchenko, L. Belliard, Ph. Djemia, Structure, phase stability and elastic properties in the Ti1–xZrxN thin-film system: Experimental and computational studies, Acta Mater., 60 (2012) 5601-5614. [23] Y.-W. Lin, J.-H. Huang, G.-P. Yu, Microstructure and corrosion resistance of nanocrystalline TiZrN films on AISI 304 stainless steel substrate, J. Vac. Sci. Technol A., 28 (2010) 774-778. [24] Y.-W. Lin, J.-H. Huang, G.-P. Yu, Effect of nitrogen flow rate on properties of nanostructured TiZrN thin films produced by radio frequency magnetron sputtering, Thin Solid Films, 518 (2010) 7308-7311. [25] D.-Y. Wang, C.-L. Chang, C.-H. Hsu, H.-N. Lin, Synthesis of (Ti, Zr)N hard coatings by unbalanced magnetron sputtering, Surf. Coat. Technol., 130 (2000) 64-68. [26] G.-P.Y. His-An Chen, Jia-Hong Huang, Effect of Bias on the Structure and Properties of TiZrN Thin Films Deposited by Unbalanced Magnetron Sputtering, Thin Solid Films, Master Thesis, National Tsing Hua University, R.O.C, (2014). [27] E.W. Niu, L. Li, G.H. Lv, H. Chen, X.Z. Li, X.Z. Yang, S.Z. Yang, Characterization of Ti–Zr–N films deposited by cathodic vacuum arc with different substrate bias, Appl. Surf. Sci., 254 (2008) 3909-3914. [28] Y.-F. Chen, Effect of Composition on Fracture Toughness of Ti1-xZrxN Hard Coating, Master Thesis, National Tsing Hua University, R.O.C, (2014). [29] H.-M. Tung, P.-H. Wu, G.-P. Yu, J.-H. Huang, Microstructures, mechanical properties and oxidation behavior of vacuum annealed TiZrN thin films, Vacuum, 115 (2015) 12-18. [30] K.-L. Lin, W.-H, Chao, C.-D, Wu, The performance and degradation behaviours of the TiA1N with interlayer coatings on drills, Surf. Coat. Technol., 89(1997) 279-284. [31] R. Polini, F.P. Mantini, M. Braic, M. Amar, W. Ahmed, H. Taylor, M.J. Jackson, Effects of Ti- and Zr-Based Interlayer Coatings on Hot-Filament Chemical Vapor Deposition of Diamond on High-Speed Steel, J. Mater. Eng. Perform., 15 (2006) 201-207. [32] J. Gerth, U. Wiklund, The influence of metallic interlayers on the adhesion of PVD TiN coatings on high-speed steel, Wear, 264 (2008) 885-892. [33] J.P. Hirth, J. Lothe, Theory of Dislocations, Krieger Publishing Company, 1982. [34] J.-H. Huang, Y.-P. Tsai, G.-P. Yu, Effect of processing parameters on the microstructure and mechanical properties of TiN film on stainless steel by HCD ion plating, Thin Solid Films, 355-356 (1999) 440-445. [35] J.D. Yepes, J.M.G. Carmona, A.R. Munoz, E.R. Parra, F.S. Osorio, MECHANICAL, AND TRIBOLOGICAL PROPERTIES OF TI/TIN BILAYERS: THE DEPENDENCE OF TI INTERLAYER THICKNESS, Dyna-Colombia, 80 (2013) 115-122. [36] D.S. Rickerby, S.J. Bull, T. Robertson, A. Hendry, The role of titanium in the abrasive wear resistance of physically vapour-deposited TiN, Surf. Coat. Technol., 41 (1990) 63-74. [37] J.-Y. Chen, G.-P. Yu, J.-H. Huang, Corrosion behavior and adhesion of ion-plated TiN films on AISI 304 steel, Mater. Chem. Phys., 65 (2000) 310-315. [38] W.-L. Pan, G.-P. Yu, J.-H. Huang, Mechanical properties of ion-plated TiN films on AISI D2 steel, Surf. Coat. Technol., 110 (1998) 111-119. [39] S. Bull, P.R. Chalker, C.F. Ayres, D.S. Rickerby, The influence of titanium interlayers on the adhesion of titanium nitride coatings obtained by plasma-assisted chemical vapour deposition, J. Mater. Sci. Eng. A., 139 (1991) 71-78. [40] K.A. Pischow, L. Eriksson, E. Harju, A.S. Korhonen, E.O. Ristolainen, The influence of titanium interlayers on the adhesion of PVD TiN coatings on oxidized stainless steel substrates, Surf. Coat. Technol., 58 (1993) 163-172. [41] K.-S. Kim, H.-K. Kim, J.-H. La, S.-Y. Lee, Effects of interlayer thickness and the substrate material on the adhesion properties of CrZrN coatings, Jpn. J. Appl. Phys., 55 (2015) 01AA02- 01AA02-5. [42] J.-H. Huang, C.-H. Ma, H. Chen, Effect of Ti interlayer on the residual stress and texture development of TiN thin films, Surf. Coat. Technol., 200 (2006) 5937-5945. [43] H.O. Pierson, Handbook of Refractory Carbides & Nitrides: Properties, Characteristics, Processing and Apps, Elsevier Science, 1996. [44] H.H. Mofidi, A.S. Rouhaghdam, S. Ahangarani, M. Bozorg, M. Azadi, Fracture Toughness of TiN Coating as a Function of Interlayer Thickness, Adv. Mater. Res., 829 (2013) 466-470. [45] G.A. Fontalvo, R. Daniel, C. Mitterer, Interlayer thickness influence on the tribological response of bi-layer coatings, Tribol. Int., 43 (2010) 108-112. [46] P.R. Chalker, S.J. Bull, D.S. Rickerby, A review of the methods for the evaluation of coating-substrate adhesion, J. Mater. Sci. Eng. A., 140 (1991) 583-592. [47] M.T. Laugier, An energy approach to the adhesion of coatings using the scratch test, Thin Solid Films, 117 (1984) 243-249. [48] M.T. LAUGIER, Adhesion of TiC and TiN coatings prepared by chemical vapour deposition on WC-Co-based cemented carbides, J. Mater. Sci., 21 (1986) 2269-2272. [49] P.A. Steinmann, Y. Tardy, H.E. Hintermann, Adhesion testing by the scratch test method: The influence of intrinsic and extrinsic parameters on the critical load, Thin Solid Films, 154 (1987) 333-349. [50] W. Heinke, A. Leyland, A. Matthews, G. Berg, C. Friedrich, E. Broszeit, Evaluation of PVD nitride coatings, using impact, scratch and Rockwell-C adhesion tests, Thin Solid Films, 270 (1995) 431-438. [51] J. Takadoum, H.H.Bennani, Influence of substrate roughness and coating thickness on adhesion, friction and wear of TiN films, Surf. Coat. Technol., 96 (1997) 272-282. [52] C.A. Carrasco, V. Vergara S, R. Benavente G, N. Mingolo, Rı, J.C. Rı´os, The relationship between residual stress and process parameters in TiN coatings on copper alloy substrates, Materials Characterization, 48 (2002) 81-88. [53] P.J. Burnett, D.S.Rickerby, The relationship between hardness and scratch adhession, Thin Solid Films, 154 (1987) 403-416. [54] Z.P. Huang, Y. Sun, T. Bell, Friction behaviour of TiN, CrN and (TiAl)N coating, Wear, 173 (1994) 13-20. [55] S. Wilson,A. T. Alpas, Dry sliding wear of a PVD TiN coating against Si3N4 at elevated temperatures, Surf. Coat. Technol., 86-87 (1996) 75-81. [56] P. Yan, J. Deng, Z. Wu, S. Li, Y. Xing, J. Zhao, Friction and wear behavior of the PVD (Zr,Ti)N coated cemented carbide against 40Cr hardened steel, Int. J. Refract. Met. Hard Mater., 35 (2012) 213-220. [57] A. Leyland, A. Matthews, On the significance of the H to E ratio in wear control a nanocomposite coating approach to optimised tribological behaviour, Wear, 246 (2000) 1-11. [58] L. Aihua, D. Jianxin, C. Haibing, C. Yangyang, Z. Jun, Friction and wear properties of TiN, TiAlN, AlTiN and CrAlN PVD nitride coatings, Int. J. Refract. Met. Hard Mater., 31 (2012) 82-88. [59] J. Tang, L. Feng, J.S. Zabinski, The effects of metal interlayer insertion on the friction, wear and adhesion of TiC coatings, Surf. Coat. Technol., 99 (1998) 242-247. [60] P. Scherrer, Bestimmung der Grösse und der innern Struktur von Kolloidteilchen mittels Röntgenstrahlen, Gött. Nachr., 2 (1918) 98-100. [61] L.V. Azaroff, M.J.Buger The powder method in X-ray crystallography, McGraw-Hill New York, 1958. [62] W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res., 7 (1992) 1564-1583. [63] C.-H. Ma, J.H. Huang, H. Chen, Residual stress measurement in textured thin film by grazing-incidence X-ray diffraction, Thin Solid Films, 418 (2002) 73-78. [64] B.B. He, Stress Measurement, in: Two-Dimensional X-Ray Diffraction, John Wiley & Sons, Inc., 2009, pp. 249-328. [65] C.L. Azanza Ricardo, M. D'Incau, P. Scardi, Revision and extension of the standard laboratory technique for X-ray diffraction measurement of residual stress gradients, J. Appl. Crystallogr., 40 (2007) 675-683. [66] V. Hauk, B. Krüger, A New Approach to Evaluate Steep Stress Gradients Principally Using Layer Removal, Mater. Sci. Forum., 347 (2000) 80-82. [67] J. Kõo, J. Valgur, Layer growing/removing method for the determination of residual stresses in thin inhomogeneous discs, Mater. Sci. Forum., 347 (2000) 89-94. [68] I. Kraus, G. Gosmanová, On X-ray measurements of residual stresses in materials with lattice strain gradient, Czech. J. Phys. B., 39 (1989) 751-756. [69] H.K. Tönshoff, J. Plöger, H. Seegers, Determination of residual stress gradients in brittle materials using an improved spline algorithm, Mater. Sci. Forum., 347 (2000) 83-88. [70] B.B. He, Two-dimensional X-ray diffraction, John Wiley & Sons, 2011. [71] M. Odén, C. Ericsson, G. Håkansson, H. Ljungcrantz, Microstructure and mechanical behavior of arc-evaporated Cr–N coatings, Surf. Coat. Technol., 114 (1999) 39-51. [72] C.-I. Chiu, Effect of processing parameters on wear resistance and mechanical properties of thick TiN coatings on D2 steel deposited by unbalanced magnetron sputtering, Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan, (2014). [73] G. Abadias, Stress and preferred orientation in nitride-based PVD coatings, Surf. Coat. Technol., 202 (2008) 2223-2235. [74] C.-H. Ma, J.-H. Huang, H. Chen, Nanohardness of nanocrystalline TiN thin films, Surf. Coat. Technol., 200 (2006) 3868-3875. [75] J.D. Eshelby, F.C. Frank, F.R.N. Nabarro, XLI. The equilibrium of linear arrays of dislocations, Lond. Edinb. Dubl. Phil. Mag., 42 (1951) 351-364.
|