帳號:guest(3.142.210.157)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):鄭維仁
作者(外文):Cheng, Wei Jen
論文名稱(中文):鈦介層對鍍覆於AISI D2 鋼之氮化鈦鋯薄膜機械性質之影響
論文名稱(外文):Effect of Ti interlayer on Mechanical Properties of TiZrN Coatings on D2 Steel
指導教授(中文):喻冀平
黃嘉宏
指導教授(外文):Ge-Ping Yu
Jia-Hong Huang
口試委員(中文):李志偉
林郁洧
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:103011517
出版年(民國):105
畢業學年度:104
語文別:英文
論文頁數:99
中文關鍵詞:氮化鈦鋯鈦介層磨耗
外文關鍵詞:TiZrNTi interlayerWear resistance
相關次數:
  • 推薦推薦:0
  • 點閱點閱:650
  • 評分評分:*****
  • 下載下載:12
  • 收藏收藏:0
本研究目的採用非平衡磁控濺鍍法添加鈦介層鍍覆氮化鈦鋯之薄膜在AISI D2 鋼上,其厚度超過3微米並保持著良好機械性質,同時,探討添加鈦介層對於氮化鈦鋯薄膜之機械性質影響。主要控制實驗參數為鍍膜的薄膜厚度和鈦介層的添加。實驗中共分成三系列,分別為:氮化鈦薄膜、氮化鈦鋯薄膜以及添加鈦介層之氮化鈦鋯薄膜。由於氮化鈦鋯薄膜的鈦鋯比為3:1 時和其他鈦鋯成份比例相比較下,此成分具有最低的殘留應力,故在本實驗中被採用。研究中薄膜的氮和金屬比例介於1.0-1.2 之間,且氮化鈦鋯中的鈦鋯比也約為3:1,氮化鈦薄膜硬度在25 GPa且氮化鈦鋯薄膜硬度皆大於30 GPa,不受介層之影響。在氮化鈦鋯薄膜厚度小於1微米下,添加鈦介層可以明顯增加氮化鈦鋯薄膜之(111)織構係數的增加並同時幫助了氮化鈦鋯薄膜的應力釋放。在添加鈦介層的氮化鈦鋯薄膜系統中的殘留應力變化,在膜厚度小於1微米下之殘留應力保持固定,但當厚度由1.5微米增加到3微米時,殘留應力是隨著薄膜厚度上升而增加,表示著鈦介層在釋放應力的效果中有一定的限制在存在。刮痕試驗結果中,添加了鈦介層對氮化鈦鋯薄膜的附著力只稍微增加,在磨耗試驗結果中發現當薄膜有較大的破裂韌性之值,薄膜的抗磨耗性質較佳,同時,薄膜中的儲存能越小,薄膜的抗磨耗性也越佳。表示薄膜之破裂韌性和其本身的儲存能是主導該薄膜的抗磨耗性之重要因素。
The objective of this study was to deposit thick TiZrN coatings with Ti interlayer above 3 μm on AISI D2 steel by dc unbalanced magnetron sputtering and investigated the effect of Ti interlayer on mechanical properties, simultaneously. The controlling deposition parameters were the adding of Ti interlayer and thickness of the coating. The Ti0.75Zr0.25N coating was selected due to the lowest residual stress comparing with Ti0.45Zr0.55N and Ti0.15Zr0.85N. There were three experimental conditions, namely, TiN(t) coating, TiZrN(tz) coating, and TiZrN/Ti(tzt) coating. The results showed that TiZrN coating with Ti interlayer, which thickness up to 3 μm were successfully deposited on D2 steel substrate. The N/Ti ratio for TiN coatings and N/(Ti+Zr) ratio for TiZrN coatings were nearly constant ranging from 1.0 to 1.2 and Zr/(Zr+Ti) ratio for TiZrN coatings were about 0.25. The hardness of TiN coatings was 24.2 and 26.2 GPa and the hardness of TiZrN coatings higher than 30 GPa. The texture of TiZrN coatings were with strong (111) by adding the Ti interlayer when the thickness of TiZrN coating smaller than 1 μm. The residual stress of TiZrN coatings was higher than TiN coatings and the residual stress were released by adding Ti interlayer. The residual stress of tzt-series was about constant until the TiZrN coating thickness reached 1 μm, then the residual stress increased with increasing TiZrN coating thickness. This pointed out the limitation of stress relief by adding Ti interlayer. From the results of scratch test, the adhesion of TiZrN/Ti coating slight increased. In the wear test, the coating with higher toughness possessed better wear resistance; meanwhile, the coating with smaller store energy possessed better wear resistance. The effect of store energy and toughness were the dominate factors on the wear resistance of coatings.
致謝............ I
摘要............ III
Abstract....... IV
Contents....... V
List of Figures....... VIII
List of Tables....... XII
Chapter 1 Introduction.......1
Chapter 2 Literature Review.......2
2.1 Characteristics of Transition Metal Nitride (TiN and ZrN).......2
2.2 Characteristics of TiZrN.......5
2.2.1 Structure of TiZrN.......5
2.2.2 Property of TiZrN .......8
2.3 Effect of Ti Interlayer.......9
2.4 Tribological Behavior.......12
2.4.1 Adhesion Strength.......12
2.4.2 Wear Resistance.......13
Chapter 3 Experimental details.......15
3.1 Substrate Preparation.......15
3.2 Deposition procedures.......15
3.3 Characterization Methods for structure and compositions.......19
3.3.1 Auger electron spectroscopy (AES).......19
3.3.2 X-ray Photoelectron Spectroscopy (XPS).......19
3.3.3 X-Ray Diffraction (XRD) and Grazing Incidence XRD (GIXRD).......20
3.3.4 Field-Emission Gun Scanning Electron Microscopy (FEG-SEM).......22
3.3.5 Dual Beam Focused Ion Beam (FIB).......22
3.3.6 Atomic Force Microscopy (AFM).......23
3.4 Characterization Properties measurement method .......24
3.4.1 Hardness and Young’s Modulus.......24
3.4.2 Residual Stress measured cos2αsin2Ψ method and Layer-by-layer method.......25
3.4.3 Scratch test.......28
3.4.4 Wear test.......30
Chapter 4 Results.......33
4.1 Structure.......36
4.1.1 Chemical composition.......36
4.1.2 Crystal Structure.......37
4.1.3 Microstructure.......41
4.2 Property.......47
4.2.1 Residual stress.......47
4.2.2 Stress gradient.......47
4.2.3 Hardness and Young’s modulus.......52
4.2.4 Scratch Test.......53
4.2.5 Wear test.......57
Chapter 5 Discussion.......67
5.1 Comparison performance between TiN and TiZrN coating .......67
5.2 Effect of Ti interlayer.......68
5.2.1 Variation of texture.......68
5.2.2 Harness of TiZrN coating.......69
5.2.3 Variation of residual stress.......70
5.3 Wear test.......74
5.3.1 Mechanism of failure mode.......74
5.3.2 Wear rate.......75
5.3.3 On the significance of both H/E and Store energy .......81
Chapter 6 Conclusions.......82
Future work.......83
Reference.......84
Appendix A.......89
Appendix B.......94
Appendix C.......96
Appendix D.......97
Appendix E.......98
[1] J.-H. Huang, C.-H. Ma, H. Chen, Effect of Ti interlayer on the residual stress and texture development of TiN thin films deposited by unbalanced magnetron sputtering, Surf. Coat. Technol., 201 (2006) 3199-3204.
[2] J.-H. Huang, F.-Y. Ouyang, G.-P. Yu, Effect of film thickness and Ti interlayer on the structure and properties of nanocrystalline TiN thin films on AISI D2 steel, Surf. Coat. Technol., 201 (2007) 7043-7053.
[3] F.S. Shieu, L.H. Cheng, M.H. Shiao, S.H. Lin, Effects of Ti interlayer on the microstructure of ion-plated TiN coatings on AISI 304 stainless steel, Thin Solid Films, 311 (1997) 138-145.
[4] A.-N. Wang, G.-P. Yu, J.-H. Huang, Fracture toughness measurement on TiN hard coatings using internal energy induced cracking, Surf. Coat. Technol., 239 (2014) 20-27.
[5] J.-H. Huang, Y.-H. Chen, A.-N. Wang, G.-P. Yu, H. Chen, Evaluation of fracture toughness of ZrN hard coatings by internal energy induced cracking method, Surf. Coat. Technol., 258 (2014) 211-218.
[6] D. Pilloud, A.S. Dehlinger, J.F. Pierson, A. Roman, L. Pichon, Reactively sputtered zirconium nitride coatings: structural, mechanical, optical and electrical characteristics, Surf. Coat. Technol., 174-175 (2003) 338-344.
[7] P.J. Kelly, T. vom Braucke, Z. Liu, R.D. Arnell, E.D. Doyle, Pulsed DC titanium nitride coatings for improved tribological performance and tool life, Surf. Coat. Technol., 202 (2007) 774-780.
[8] J. Stimmell, Properties of dc magnetron reactively sputtered TiN, J. V. Sci Technol., B, Microelectronics and Nanometer Structures, 4 (1986) 1377-1382.
[9] N Pessall, RE Gold, HA Johansen, A study of supercouductivity in interstital compounds, J. Phys. Chem. Solids., 29 (1968) 19-38.
[10] W.-J. Chou, G.-P. Yu, J.-H. Huang, Bias effect of ion-plated zirconium nitride film on Si(100), Thin Solid Films 405 (2002) 162-169.
[11] H.A. Wriedt, J.L. Murray, The N-Ti (Nitrogen-Titanium) System, Bulletin of Alloy Phase Diagrams 8(1987).
[12] H. Okamoto, N-Zr (Nitrogen-Zirconium), J. Phase Equilib. Diffus., 27 (2006) 551-551.
[13] J.-H. Huang, K.-W. Lau, G.-P. Yu, Effect of nitrogen flow rate on structure and properties of nanocrystalline TiN thin films produced by unbalanced magnetron sputtering, Surf. Coat. Technol., 191 (2005) 17-24.
[14] Z.-B. Qi, P. Sun, F.-P. Zhu, Z.-C. Wang, D.-L. Peng, C.-H. Wu, The inverse Hall–Petch effect in nanocrystalline ZrN coatings, Surf. Coat. Technol., 205 (2011) 3692-3697.
[15] J.O. KiM, J.D. Achenbach, P.B. Mirkarimi, M. Shinn, S.A. Barnett, Elastic constants of single-crystal transition-metal nitride films measured by line-focus acoustic microcopy, J. Appl. Phys., 72/5 (1992) 1805.
[16] E. Török, A.J. Perry, L. Chollet, W.D. Sproul, Young's modulus of TiN, TiC, ZrN and HfN, Thin Solid Films, 153 (1987) 37-43.
[17] K. Chen, L. Zhao, J. Rodgers, S.T. John, Alloying effects on elastic properties of TiN-based nitrides, J. Phys. D: Appl. Phys., 36 (2003) 2725-2729.
[18] A.J. Perry, A contribution to the study of poisson's ratios and elasticconstants of TiN, ZrN and HfN, Thin Solid Films, 193–194, (1990) 463-471.
[19] D. Mahéo, J.M. Poitevin, Microstructure and electrical resistivity of TiN films deposited on heated and negatively biased silicon substrates, Thin Solid Films, 237 (1994) 78-86.
[20] P. Jin, S. Maruno, Evaluation of internal stress in reactively sputter-deposited ZrN thin films, Jpn. J. Appl. Phys., 30 (1991) 1463-1468.
[21] M.B. Takeyama, T. Itoi, E. Aoyagi, A. Noya, Diffusion barrier properties of nano-crystalline TiZrN films in Cu/Si contact systems, Appl. Surf. Sci., 216 (2003) 181-186.
[22] G. Abadias, V.I. Ivashchenko, L. Belliard, Ph. Djemia, Structure, phase stability and elastic properties in the Ti1–xZrxN thin-film system: Experimental and computational studies, Acta Mater., 60 (2012) 5601-5614.
[23] Y.-W. Lin, J.-H. Huang, G.-P. Yu, Microstructure and corrosion resistance of nanocrystalline TiZrN films on AISI 304 stainless steel substrate, J. Vac. Sci. Technol A., 28 (2010) 774-778.
[24] Y.-W. Lin, J.-H. Huang, G.-P. Yu, Effect of nitrogen flow rate on properties of nanostructured TiZrN thin films produced by radio frequency magnetron sputtering, Thin Solid Films, 518 (2010) 7308-7311.
[25] D.-Y. Wang, C.-L. Chang, C.-H. Hsu, H.-N. Lin, Synthesis of (Ti, Zr)N hard coatings by unbalanced magnetron sputtering, Surf. Coat. Technol., 130 (2000) 64-68.
[26] G.-P.Y. His-An Chen, Jia-Hong Huang, Effect of Bias on the Structure and Properties of TiZrN Thin Films Deposited by Unbalanced Magnetron Sputtering, Thin Solid Films, Master Thesis, National Tsing Hua University, R.O.C, (2014).
[27] E.W. Niu, L. Li, G.H. Lv, H. Chen, X.Z. Li, X.Z. Yang, S.Z. Yang, Characterization of Ti–Zr–N films deposited by cathodic vacuum arc with different substrate bias, Appl. Surf. Sci., 254 (2008) 3909-3914.
[28] Y.-F. Chen, Effect of Composition on Fracture Toughness of Ti1-xZrxN Hard Coating, Master Thesis, National Tsing Hua University, R.O.C, (2014).
[29] H.-M. Tung, P.-H. Wu, G.-P. Yu, J.-H. Huang, Microstructures, mechanical properties and oxidation behavior of vacuum annealed TiZrN thin films, Vacuum, 115 (2015) 12-18.
[30] K.-L. Lin, W.-H, Chao, C.-D, Wu, The performance and degradation behaviours of the TiA1N with interlayer coatings on drills, Surf. Coat. Technol., 89(1997) 279-284.
[31] R. Polini, F.P. Mantini, M. Braic, M. Amar, W. Ahmed, H. Taylor, M.J. Jackson, Effects of Ti- and Zr-Based Interlayer Coatings on Hot-Filament Chemical Vapor Deposition of Diamond on High-Speed Steel, J. Mater. Eng. Perform., 15 (2006) 201-207.
[32] J. Gerth, U. Wiklund, The influence of metallic interlayers on the adhesion of PVD TiN coatings on high-speed steel, Wear, 264 (2008) 885-892.
[33] J.P. Hirth, J. Lothe, Theory of Dislocations, Krieger Publishing Company, 1982.
[34] J.-H. Huang, Y.-P. Tsai, G.-P. Yu, Effect of processing parameters on the microstructure and mechanical properties of TiN film on stainless steel by HCD ion plating, Thin Solid Films, 355-356 (1999) 440-445.
[35] J.D. Yepes, J.M.G. Carmona, A.R. Munoz, E.R. Parra, F.S. Osorio, MECHANICAL, AND TRIBOLOGICAL PROPERTIES OF TI/TIN BILAYERS: THE DEPENDENCE OF TI INTERLAYER THICKNESS, Dyna-Colombia, 80 (2013) 115-122.
[36] D.S. Rickerby, S.J. Bull, T. Robertson, A. Hendry, The role of titanium in the abrasive wear resistance of physically vapour-deposited TiN, Surf. Coat. Technol., 41 (1990) 63-74.
[37] J.-Y. Chen, G.-P. Yu, J.-H. Huang, Corrosion behavior and adhesion of ion-plated TiN films on AISI 304 steel, Mater. Chem. Phys., 65 (2000) 310-315.
[38] W.-L. Pan, G.-P. Yu, J.-H. Huang, Mechanical properties of ion-plated TiN films on AISI D2 steel, Surf. Coat. Technol., 110 (1998) 111-119.
[39] S. Bull, P.R. Chalker, C.F. Ayres, D.S. Rickerby, The influence of titanium interlayers on the adhesion of titanium nitride coatings obtained by plasma-assisted chemical vapour deposition, J. Mater. Sci. Eng. A., 139 (1991) 71-78.
[40] K.A. Pischow, L. Eriksson, E. Harju, A.S. Korhonen, E.O. Ristolainen, The influence of titanium interlayers on the adhesion of PVD TiN coatings on oxidized stainless steel substrates, Surf. Coat. Technol., 58 (1993) 163-172.
[41] K.-S. Kim, H.-K. Kim, J.-H. La, S.-Y. Lee, Effects of interlayer thickness and the substrate material on the adhesion properties of CrZrN coatings, Jpn. J. Appl. Phys., 55 (2015) 01AA02- 01AA02-5.
[42] J.-H. Huang, C.-H. Ma, H. Chen, Effect of Ti interlayer on the residual stress and texture development of TiN thin films, Surf. Coat. Technol., 200 (2006) 5937-5945.
[43] H.O. Pierson, Handbook of Refractory Carbides & Nitrides: Properties, Characteristics, Processing and Apps, Elsevier Science, 1996.
[44] H.H. Mofidi, A.S. Rouhaghdam, S. Ahangarani, M. Bozorg, M. Azadi, Fracture Toughness of TiN Coating as a Function of Interlayer Thickness, Adv. Mater. Res., 829 (2013) 466-470.
[45] G.A. Fontalvo, R. Daniel, C. Mitterer, Interlayer thickness influence on the tribological response of bi-layer coatings, Tribol. Int., 43 (2010) 108-112.
[46] P.R. Chalker, S.J. Bull, D.S. Rickerby, A review of the methods for the evaluation of coating-substrate adhesion, J. Mater. Sci. Eng. A., 140 (1991) 583-592.
[47] M.T. Laugier, An energy approach to the adhesion of coatings using the scratch test, Thin Solid Films, 117 (1984) 243-249.
[48] M.T. LAUGIER, Adhesion of TiC and TiN coatings prepared by chemical vapour deposition on WC-Co-based cemented carbides, J. Mater. Sci., 21 (1986) 2269-2272.
[49] P.A. Steinmann, Y. Tardy, H.E. Hintermann, Adhesion testing by the scratch test method: The influence of intrinsic and extrinsic parameters on the critical load, Thin Solid Films, 154 (1987) 333-349.
[50] W. Heinke, A. Leyland, A. Matthews, G. Berg, C. Friedrich, E. Broszeit, Evaluation of PVD nitride coatings, using impact, scratch and Rockwell-C adhesion tests, Thin Solid Films, 270 (1995) 431-438.
[51] J. Takadoum, H.H.Bennani, Influence of substrate roughness and coating thickness on adhesion, friction and wear of TiN films, Surf. Coat. Technol., 96 (1997) 272-282.
[52] C.A. Carrasco, V. Vergara S, R. Benavente G, N. Mingolo, Rı, J.C. Rı´os, The relationship between residual stress and process parameters in TiN coatings on copper alloy substrates, Materials Characterization, 48 (2002) 81-88.
[53] P.J. Burnett, D.S.Rickerby, The relationship between hardness and scratch adhession, Thin Solid Films, 154 (1987) 403-416.
[54] Z.P. Huang, Y. Sun, T. Bell, Friction behaviour of TiN, CrN and (TiAl)N coating, Wear, 173 (1994) 13-20.
[55] S. Wilson,A. T. Alpas, Dry sliding wear of a PVD TiN coating against Si3N4 at elevated temperatures, Surf. Coat. Technol., 86-87 (1996) 75-81.
[56] P. Yan, J. Deng, Z. Wu, S. Li, Y. Xing, J. Zhao, Friction and wear behavior of the PVD (Zr,Ti)N coated cemented carbide against 40Cr hardened steel, Int. J. Refract. Met. Hard Mater., 35 (2012) 213-220.
[57] A. Leyland, A. Matthews, On the significance of the H to E ratio in wear control a nanocomposite coating approach to optimised tribological behaviour, Wear, 246 (2000) 1-11.
[58] L. Aihua, D. Jianxin, C. Haibing, C. Yangyang, Z. Jun, Friction and wear properties of TiN, TiAlN, AlTiN and CrAlN PVD nitride coatings, Int. J. Refract. Met. Hard Mater., 31 (2012) 82-88.
[59] J. Tang, L. Feng, J.S. Zabinski, The effects of metal interlayer insertion on the friction, wear and adhesion of TiC coatings, Surf. Coat. Technol., 99 (1998) 242-247.
[60] P. Scherrer, Bestimmung der Grösse und der innern Struktur von Kolloidteilchen mittels Röntgenstrahlen, Gött. Nachr., 2 (1918) 98-100.
[61] L.V. Azaroff, M.J.Buger The powder method in X-ray crystallography, McGraw-Hill New York, 1958.
[62] W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res., 7 (1992) 1564-1583.
[63] C.-H. Ma, J.H. Huang, H. Chen, Residual stress measurement in textured thin film by grazing-incidence X-ray diffraction, Thin Solid Films, 418 (2002) 73-78.
[64] B.B. He, Stress Measurement, in: Two-Dimensional X-Ray Diffraction, John Wiley & Sons, Inc., 2009, pp. 249-328.
[65] C.L. Azanza Ricardo, M. D'Incau, P. Scardi, Revision and extension of the standard laboratory technique for X-ray diffraction measurement of residual stress gradients, J. Appl. Crystallogr., 40 (2007) 675-683.
[66] V. Hauk, B. Krüger, A New Approach to Evaluate Steep Stress Gradients Principally Using Layer Removal, Mater. Sci. Forum., 347 (2000) 80-82.
[67] J. Kõo, J. Valgur, Layer growing/removing method for the determination of residual stresses in thin inhomogeneous discs, Mater. Sci. Forum., 347 (2000) 89-94.
[68] I. Kraus, G. Gosmanová, On X-ray measurements of residual stresses in materials with lattice strain gradient, Czech. J. Phys. B., 39 (1989) 751-756.
[69] H.K. Tönshoff, J. Plöger, H. Seegers, Determination of residual stress gradients in brittle materials using an improved spline algorithm, Mater. Sci. Forum., 347 (2000) 83-88.
[70] B.B. He, Two-dimensional X-ray diffraction, John Wiley & Sons, 2011.
[71] M. Odén, C. Ericsson, G. Håkansson, H. Ljungcrantz, Microstructure and mechanical behavior of arc-evaporated Cr–N coatings, Surf. Coat. Technol., 114 (1999) 39-51.
[72] C.-I. Chiu, Effect of processing parameters on wear resistance and mechanical properties of thick TiN coatings on D2 steel deposited by unbalanced magnetron sputtering, Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan, (2014).
[73] G. Abadias, Stress and preferred orientation in nitride-based PVD coatings, Surf. Coat. Technol., 202 (2008) 2223-2235.
[74] C.-H. Ma, J.-H. Huang, H. Chen, Nanohardness of nanocrystalline TiN thin films, Surf. Coat. Technol., 200 (2006) 3868-3875.
[75] J.D. Eshelby, F.C. Frank, F.R.N. Nabarro, XLI. The equilibrium of linear arrays of dislocations, Lond. Edinb. Dubl. Phil. Mag., 42 (1951) 351-364.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *