|
[1] H. Oettel, R. Wiedemann, S. PreiBler, Residual stresses in nitride hard coatings prepared by magnetron sputtering and arc evaporation, Surf. Coat. Technol., 74-75 (1995) 273-278. [2] V. Valvoda, R. Kuzel. Jr., R. Cerny, D. Rafaja, J. Musil. C. Kadlec, A. J. Perry, Structural analysis of tin films by Seemann-Bohlin X-ray diffraction, Thin Solid Films, 193-194 (1990) 401-408. [3] J.-H. Huang, C.-H. Ma, H. Chen, Effect of Ti interlayer on the residual stress and texture development of TiN thin films, Surf. Coat. Technol., 200 (2006) 5937-5945. [4] J.-H. Huang, C.-H. Ma, H. Chen, Effect of Ti interlayer on the residual stress and texture development of TiN thin films deposited by unbalanced magnetron sputtering, Surf. Coat. Technol., 201 (2006) 3199-3204. [5] M. Leoni, P. Scardi, S. Rossi, L. Fedrizzi, Y. Massiani, (Ti,Cr)N and Ti/TiN PVD coatings on 304 stainless steel substrates: Texture and residual stress, Thin Solid Film, 345 (1999) 263-269. [6] J.-H. Huang, F.-Y. Ouyang, G.-P Yu, Effect of film thickness and Ti interlayer on the structure and properties of nanocrystalline TiN thin films on AISI D2 steel, Surf. Coat. Technol., 201 (2007) 7043-7053. [7] F.S. Shieu, L.H. Cheng, M.H. Shiao, S.H. Lin, Effects of Ti interlayer on the microstructure of ion-plated TiN coatings on AISI 304 stainless steel, Thin Solid Films, 311 (1997) 138-145. [8] Z. Soukup, J. Lhotka, J. Musil, D. Rafaja, Effect of Ti interlayer and bias on structure and properties of TiN films, Phys. 50 (2000) No.5 655-663. [9] J.-Y. Chen, G.-P. Yu, J.-H. Huang, Corrosion behavior and adhesion of ion-plated TiN films on AISI 304 steel, Mater. Chem. Phys., 65 (2000) 310-315. [10] W.-L. Pan, G.-P. Yu, J.-H. Huang, Mechanical properties of ion-plated TiN films on AISI D2 steel, Surf. Coat. Technol., 110 (1998) 111-119. [11] W. Lur, L.J. Chen, Growth kinetics of amorphous interlayer formed by interdiffusion of polycrystalline Ti thin‐film and single‐crystal silicon, Appl. Phys. Lett., 54 (13) (1989) 1217. [12] S.J. Bull, P.R. Chalker, C.F. Ayres, and D.S. Rickerby, The influence of titanium interlayers on the adhesion of titanium nitride coatings obtained by plasma-assisted chemical vapour deposition. Sci. Eng., A 139 (1991) 71-78. [13] B. Subramanian, V. Swaminathan, and M. Jayachandran, Microstructural. Tribological and Electrochemical Corrosion Studies on Reactive DC Magnetron Sputtered Zirconium Nitride Films with Zr Interlayer on Steel, Met. Mater. Int., V 18, No. 6 (2012) 957-964. [14] H. Yanagisawa, K. Sasaki, H. Miyake and Y. Abe. Single-Oriented Growth of (111) Cu Film on Thin ZrN/Zr Bilayered Film for ULSI Metallization, Jpn. J. Appl. Phys. Vol. 39 (2000) 5987–5991. [15] S.- G. Oh and J.- G. Han. The effects of precoating and bias voltage on the adhesion of reactive arc evaporated TiN and ZrN coatings, J. Vac. Sci. Technol., A 9 (4) (1991), p. 2557 Materials Science and Engineering, A 139 ( 1991 ) 71-78. [16] J. Deng, J. Liu, Z. Ding, M. Niu. Unlubricated friction and wear behaviors of ZrN coatings against hardened steel, Mater. Des., 29 (2008), 1828-1834. [17] Y.-H. Chen, G.-P. Yu, J.-H. Huang. Master thesis, Measurment of residual stress of ZrN thin film by using average X-ray strain method combined with nano-indentation, National Tsing Hua University, Taiwan, (R.O.C), 2015. [18] P. Panjan, B. Navinšek, A. Žabkar, V. Marinković, D. Mandrino, J. Fišer, Structural analysis of ZrN and TiN films prepared by reactive plasma beam deposition, Thin Solid Films, 228 (1993) 233-237. [19] P. Johnson, H. Randhawa, Zirconium nitride films prepared by cathodic arc plasma deposition process, Surf. Coat. Techol., 33 (1987) 53-62. [20] E. Kelesoglu, C. Mitterer, M. Kazmanli, M. Ürgen, Microstructure and properties of nitride and diboride hard coatings deposited under intense mild-energy ion bombardment, Surf. Coat. Techol., 116 (1999) 133-140. [21] S. Horita, M. Kobayashi, H. Akahori, T. Hata, Material properties of ZrN film on silicon prepared by low-energy ion-assisted deposition, Surf. Coat. Techol., 66 (1994) 318-322. [22] L. Toth, Transition metal carbides and nitrides, Elsevier, 2014. [23] E. Budke, J. Krempel-Hesse, H. Maidhof, H. Schüssler, Decorative hard coatings with improved corrosion resistance, Surf. Coat. Techol., 112 (1999) 108-113. [24] U.K. Wiiala, I.M. Penttinen, A.S. Korhonen, J. Aromaa, E. Ristolainen, Improved corrosion resistance of physical vapour deposition coated TiN and ZrN, Surf. Coat. Techol., 41 (1990) 191-204. [25] L. Van Leaven, M. Alias, R. Brown, Corrosion behavior of ion plated and implated films, Surf. Coat. Techol., 53 (1992) 25-34. [26] W.-J. Chou, G.-P. Yu, J.-H. Huang, Mechanical properties of TiN thin film coatings on 304 stainless steel substrates, Surf. Coat. Technol., 149 (2002) 7-13. [27] Okamoto, H., N-Zr (Nitrogen-Zirconium). Journal of Phase Equilibria and Diffusion, 2006. 27(5): p. 551-551., DOI. [28] JCPDS file 35-0753. [29] J.E. Hove, W.C. Riley, Modern ceramics: some principles and concepts, J. Wiley, 1965. [30] A. Perry, A contribution to the study of poisson's ratios and elasticconstants of TiN, ZrN and HfN, Thin Solid Films, 193 (1990) 463-471. [31] E. Török, A. Perry, L. Chollet, W. Sproul, Young's modulus of TiN, TiC, ZrN and HfN, Thin Solid Films, 153 (1987) 37-43. [32] A.J. Perry, V. Valvoda, D. Rafaja, X-ray residual stress measurement in TiN, ZrN and HfN films using the Seemann-Bohlin method, Thin Solid Films, 214 (1992) 169-174. [33] P. Jin, S. Maruno, Evaluation of internal stress in reactively sputter-deposited ZrN thin films, Jpn. J. Appl. Phys., 30 (1991) 1463-1468. [34] H. Oettel, R. Wiedemann, S. Preissler, Residual-stresses in nitride hard coatings prepared by magnetron sputtering and arc evaporation, Surf. Coat. Technol., 74-5/1-3 (1995) 273-278. [35] D. Burgreen. Elements of Thermal Stress Analysis, C.P. Press, New York (1971) p. 462 [36] H.-M. Tung, J.-H. Huang, D.-G. Tsai, C.-F. Ai, G.-P. Yu, Hardness and residual stress in nanocrystalline ZrN films: Effect of bias voltage and heat treatment, Mat. Sci. Eng. A-Struct., 500 (2009) 104-108. [37] J.-L. Ruan, D.-F. Lii, J.-S. Chen, J.-L. Huang, Investigation of substrate bias effects on the reactively sputtered ZrN diffusion barrier films, Ceram. Int., 35 (2009) 1999-2005. [38] G. Abadias, Y. Tse, P. Guérin, V. Pelosin, Interdependence between stress, preferred orientation, and surface morphology of nanocrystalline TiN thin films deposited by dual ion beam sputtering, J. Appl. Phys., 99 (2006) 113519. [39] G.G.Stoney, The tension of metallic films deposited by electrolysis, Proc. Roy. Soc. Lond. A Mat., A82 (1909) 172-175. [40] C.A. Klein, How accurate are Stoney’s equation and recent modifications, J. Appl. Phys., 88 (2000) 5487. [41] J.-Y. Chang, G.-P. Yu, J.-H. Huang, Determination of Young's modulus and Poisson's ratio of thin films by combining sin2ψ X-ray diffraction and laser curvature methods, Thin Solid Films, 517 (2009) 6759-6766. [42] A.K. A.R.Shetty, Texture change through film thickness and off accommodation of (002) planes, Appl. Surf. Sci., 258 (2011) 1630-1638. [43] C.H. Ma, J.H. Huang, H. Chen, Residual stress measurement in textured thin film by grazing-incidence X-ray diffraction, Thin Solid Films, 418 (2002) 73-78. [44] B.D. Cullity, S.R. Stock, Elements of X-ray Diffraction, Prentice Hall, NewJersey, 2001. 466. [45] V. Hauk, Structural and Residual Stress Analysis by Nondestructive Methods, 1st Edition ed., Elsevier Science. [46] A.-N. Wang, C.-P. Chuang, G.-P. Yu, J.-H. Huang. Determination of average X-ray strain (AXS) on TiN hard coatings using cos2αsin2ψ X-ray diffraction method, Surf. Coat. Techol., 262 (2015) 40-47. [47] J.H. Huang, Y.P. Tsai, G.P. Yu. Effect of processing parameters on the microstructure and mechanical properties of TiN film on stainless steel by HCD ion plating, Thin Solid Films 355-356 (1999) 440-445. [48] H. Yanagisawa, K. Sasaki, H. Miyake, Y. Abe, Preparation of a Contact System with a Single-Oriented (111)Al Overlayer by Interposing a Thin ZrN/Zr Bilayered Barrier Applicable to Sub-0.25-µm Design Rule, Jpn. J. Appl. Phys. 40 (2001) 4193-4194. [49] L.B. Freund, S. Suresh, Thin film materials: stress, defect formation and surface evolution, Cambridge University Press, 2004. [50] A.A. Griffith, The Phenomena of Rupture and Flow in Solids, Philos. Tr. R. Soc. S-A, 221 (1921) 163-198. [51] D. Broek, Elementary engineering fracture mechanics, Springer Science & Business Media, 1982. [52] J.-H. Huang, Y.-H. Chen, A.-N. Wang, G.-P. Yu, H.- Chen. Evaluation of fracture toughness of ZrN hard coatings by internal energy induced cracking method, Surf. Coat. Techol., 258 (2014), 211-218. [53] J.-H. Huang, H.-C. Yang, X.-J. Guo, G.-P. Yu, Effect of film thickness on the structure and properties of nanocrystalline ZrN thin films produced by ion plating, Surf. Coat. Techol., 195 (2005) 204-213. [54] J.-H. Huang, C.-H. Ho, G.-P. Yu, Effect of nitrogen flow rate on the structure and mechanical properties of ZrN thin films on Si(100) and stainless steel substrates, Mater. Chem. Phys., 102 (2007) 31-38. [55] G.E. Dieter, D. Bacon, Mechanical metallurgy, McGraw-Hill New York, 1986. [56] R.H. Dauskardt, M. Lane, Q. Ma, N. Krishna, “Adhesion and debonding of multi-layer thin film structures”, Eng. Frac. Mech., 61 (1998) 141-162. [57] T.L. Becker, J.M. McNaney, R.M. Cannon, R.O. Ritchie, “Limitations on the use of the mixed-mode delamination beam test specimen: effects of the size of the region of K-dominance”, Mech. Mat., 25(1997)291-308. [58] D.A. Shirley, High-resolution X-ray photoemission spectrum of the valence bands of gold, Phys. Rev. B, 5 (1972) 4709-4714. [59] M. Del Re, R. Gouttebaron, J.-P. Dauchot, P. Leclère, G. Terwagne, M. Hecq, Study of ZrN layers deposited by reactive magnetron sputtering, Surf. Coat. Techol., 174 (2003) 240-245. [60] C. Morant, J.M. Sanz, L. Galán, L. Soriano, F. Rueda, An XPS study of the interaction of oxygen with zirconium, Surf. Sci., 218 (1989) 331-345. [61] I. Milošev, H.H. Strehblow, M. Gaberšček, B. Navinšek, Electrochemical oxidation of ZrN hard (PVD) coatings studied by XPS, Surf. Interface Anal., 24 (1996) 448-458. [62] M. Matsuoka, S. Isotani, W. Sucasaire, N. Kuratani, K. Ogata, X-ray photoelectron spectroscopy analysis of zirconium nitride-like films prepared on Si (100) substrates by ion beam assisted deposition, Surf. Coat. Techol., 202 (2008) 3129-3135. [63] P. Scherrer, Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen, Gött. Nachr., 1918 (1918) 98-100. [64] JCPDS file 89-5269 [65] JCPDS file 89-4892 [66] L.V. Azároff, M.J. Buerger, The powder method in X-ray crystallography, McGraw-Hill, 1958. [67] W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res., 7 (1992) 1564-1583. [68] J. Wortman, R. Evans, Young's modulus, shear modulus, and Poisson's ratio in silicon and germanium, J. Appl. Phys., 36 (1965) 153-156. [69] Metals Handbook, Vol. 2 - Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, 10th Ed., 1990, ASM International, Metals Park, OH, B493-79, B523-79, B550-79, B551-79 [70] https://www.webelements.com/zirconium/physics.html [71] B.B. He, "Two-dimensional x-ray diffraction", John Wiley & Sons Ltd., New Jersey, USA (2009) 312. [72] S.M. Sze, VLSI technology, McGraw-Hill, 1983. [73] J.-H. Huang, T.-C. Lin, G.-P. Yu, Phase transition and mechanical properties of ZrNxOy thin films on AISI 304 stainless steel, Surf. L.B. Freund, S. Suresh, Techol., 206 (2011) 107-116. [74] D.K. Owens, R.C. Wendt, Estimation of the surface free energy of polymers, J. Appl. Polym. Sci. 13 (1969) 1741-1747. [75] T. Young, An Essay on the Cohesion of Fluids, Philos. Trans. R. Soc. Lond. 95 (1805) 65-87. [76] R. Hull, Properties of crystalline silicon, the Institution of Electrical Engineers, London, 1999. [77] Fairchild HB, The Properties of Zirconium and Its Possibilities for Thermal Reactors. Laboratory, Oak Ridge National Laboratory, Oak Ridge, TN (1949). [78] H. Holleck, Material selection for hard coatings, Journal of Vacuum Science & Technology A, 4 (1986) 2661-2669.
|