帳號:guest(3.142.195.61)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃振磊
作者(外文):Huang, Chen Lei
論文名稱(中文):鋯介層對氮化鋯薄膜殘留應力之影響
論文名稱(外文):Effect of Zr Interlayer on Residual Stress of ZrN Thin Films
指導教授(中文):黃嘉宏
喻冀平
指導教授(外文):Huang, Jia Hong
Yu, Ge Ping
口試委員(中文):林郁洧
李志偉
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:103011516
出版年(民國):105
畢業學年度:104
語文別:英文
論文頁數:115
中文關鍵詞:鋯介層氮化鋯薄膜殘留應力介面破裂韌性
外文關鍵詞:Zr interlayerZrN thin flmresidual stressinterfacial fracture toughness
相關次數:
  • 推薦推薦:0
  • 點閱點閱:94
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究之目的為探討鋯介層對於上方氮化鋯薄膜殘留應力之影響。並判斷含鋯介層之氮化鋯薄膜之可用性,從過去研究發現鍍覆在矽基材或其他冶金基材之金屬介層可以大幅釋放上方薄膜之殘留應力並改善薄膜之附著性,並且在工業上介層厚度往往控制在50至300奈米之間,然而,很少文獻精確地分別計算上層薄膜與金屬介層之殘留應力。本研究中,利用兩種非破壞性方法分別量測雙層薄膜中各自地殘留應力以及整體殘留應力,光學曲率法量測整體薄膜之平均殘留應力;新開發之X光平均應變量測法結合奈米壓印法可準確地分別量測上層氮化鋯薄膜以及鋯介層之殘留應力,根據整體之平均應力以及上層氮化鋯薄膜與鋯介層各自地應力,並可以量化鋯介層對於上方氮化鋯薄膜應力釋放之程度,由結果可以得知,鋯介層可以大幅釋放上層氮化鋯薄膜之殘留應力,然而,卻發現在Z12, Z22, Z23以及Z33試片中超過一半之試片發生脫膜現象。因此,可以認定鋯介層無法改善上方氮化鋯薄膜之附著性,此脫膜現象是由其儲存能大於介面破裂韌性而導致,另外,觀察到氮化鋯薄膜與鋯介層間之介面破裂韌性遠遠小於單層氮化鋯薄膜破裂韌性,並且估計出其介面破裂韌性為約2.8J/m2,因此我們可以判定,薄膜內殘留應力大小對於含鋯介層之氮化鋯薄膜的附著性僅是間接因素,界面破裂韌性才是影響薄膜附著性的最主要原因。
The purpose of this study was to investigate the effect of Zr interlayer on the residual stress of the upper ZrN thin film and to evaluate the usability of ZrN/Zr bilayer coatings. It is commonly acknowledged that using a metal interlayer can relieve the residual stress and enhance the adhesion of transition metal-nitride hard coatings on metallic or Si substrates. The interlayer thickness usually ranges from 50 to 300 nm. However, there were few studies on the separate measurement of stresses in the top coating and interlayer. In this study, two nondestructive stress measurement techniques were applied to obtain the residual stress in the entire bilayer specimen and the individual layers. The wafer curvature method was used to measure the bulk average stress of the specimen and a newly developed average X-ray strain (AXS) technique combining with nanoindentation was adopted in accurately determining the stresses in ZrN thin film and Zr interlayer, respectively. From the bulk average stress of the entire specimen and the stresses in ZrN coating and Zr interlayer, the extent of stress relief by Zr interlayer could be quantitatively revealed. The results showed that the Zr interlayer could significantly relieve the residual stress of the upper ZrN thin film, whereas delamination was found to occur in more than 50% of samples Z12, Z22, Z23 and Z33. Therefore, adding a Zr interlayer could not improve the adhesion of the top ZrN film. The delamination was due to the stored energy exceeding the interfacial fracture toughness of the ZrN/Zr interface. The interfacial fracture toughness was much lower than the fracture toughness of the monolayer ZrN thin film, and estimated to be about 2.8 J/m2. The residual stress of the film was an indirect factor for the delamination of bilayer specimen. The major factor that determined the adhesion of the bilayer ZrN/Zr coating was the interfacial fracture toughness of the ZrN/Zr interface.
摘要 .................................................. i
Abstract ............................................. ii
Content ............................................. iii
List of Figures ...................................... vi
List of Tables ........................................ x
Chapter 1 Introduction ................................ 1
Chapter 2 Literature review ........................... 3
2.1 Characteristics of ZrN and coatings ............... 3
2.2 Measurement of residual stress .................... 5
2.2.1 Wafer curvature method .......................... 5
2.2.2 Grazing Incidence XRD Method .................... 6
2.2.3 The Averaged X-ray Strain (AXS) ................. 8
2.3 Effect of the metal interlayer on upper film ..... 10
2.4 Theoretical basis of the interfacial fracture toughness ............................................ 11
Chapter 3 Experimental Procedures .................... 16
3.1 Specimen Preparation and Deposition Process ...... 16
3.2 Characterization for structure and composition ... 20
3.2.1 Auger Electron Spectroscopy (AES) .............. 20
3.2.2 X-ray Photoelectron Spectroscopy (XPS) ......... 20
3.2.3 X-ray Diffraction (XRD) ........................ 21
3.2.4 Grazing Incidence X-ray Diffraction (GIXRD) .... 22
3.2.5 Field-Emission Scanning Electron Microscopy (FEG-SEM) and Dual Beam (focused ion beam & electron beam) System (FIB/SEM) ..................................... 22
3.2.6 Atomic Force Microscopy (AFM) .................. 23
3.3 Characterization for Properties .................. 23
3.3.1 Nano-indentation (NIP) ......................... 23
3.3.2 Optical Laser Curvature Method ................. 24
3.3.3 XRD cos2αsin2ψ method .......................... 26
3.3.4 Electrical Resistivity ......................... 27
3.3.5 Contact angle test ............................. 29
3.3.6 Measurement of the interfacial fracture toughness . ...................................................... 30
Chapter 4 Results .................................... 31
4.1 Chemical compositions ............................ 34
4.2 Crystal structure ................................ 37
4.3 Roughness ........................................ 39
4.4 Microstructure ................................... 41
4.5 Surface and Fracture Morphology .................. 43
4.6 Mechanical Properties ............................ 46
4.6.1 Hardness and young’s modulus ................... 46
4.6.2 Residual stress by laser curvature method (ORS)
...................................................... 47
4.6.3 X-ray residual stress (XRS) .................... 50
4.6.4 Electrical Resistivity ......................... 55
4.6.5 Contact angle test ............................. 57
Chapter 5 Discussion ................................. 58
5.1 Stress relief of bilayer ZrN/Zr specimens ........ 58
5.2 The delamination of specimens and interfacial fracture toughness ................................... 61
Chapter 6 Conclusions ................................ 71
Chapter 7 References ................................. 72
Appendix ............................................. 77
Appendix A. Deconvolution XPS spectra of samples ..... 77
Appendix B. The SEM image of the samples ............. 98
Appendix C. AXS regression line ...................... 99
[1] H. Oettel, R. Wiedemann, S. PreiBler, Residual stresses in nitride hard coatings prepared by magnetron sputtering and arc evaporation, Surf. Coat. Technol., 74-75 (1995) 273-278.
[2] V. Valvoda, R. Kuzel. Jr., R. Cerny, D. Rafaja, J. Musil. C. Kadlec, A. J. Perry, Structural analysis of tin films by Seemann-Bohlin X-ray diffraction, Thin Solid Films, 193-194 (1990) 401-408.
[3] J.-H. Huang, C.-H. Ma, H. Chen, Effect of Ti interlayer on the residual stress and texture development of TiN thin films, Surf. Coat. Technol., 200 (2006) 5937-5945.
[4] J.-H. Huang, C.-H. Ma, H. Chen, Effect of Ti interlayer on the residual stress and texture development of TiN thin films deposited by unbalanced magnetron sputtering, Surf. Coat. Technol., 201 (2006) 3199-3204.
[5] M. Leoni, P. Scardi, S. Rossi, L. Fedrizzi, Y. Massiani, (Ti,Cr)N and Ti/TiN PVD coatings on 304 stainless steel substrates: Texture and residual stress, Thin Solid Film, 345 (1999) 263-269.
[6] J.-H. Huang, F.-Y. Ouyang, G.-P Yu, Effect of film thickness and Ti interlayer on the structure and properties of nanocrystalline TiN thin films on AISI D2 steel, Surf. Coat. Technol., 201 (2007) 7043-7053.
[7] F.S. Shieu, L.H. Cheng, M.H. Shiao, S.H. Lin, Effects of Ti interlayer on the microstructure of ion-plated TiN coatings on AISI 304 stainless steel, Thin Solid Films, 311 (1997) 138-145.
[8] Z. Soukup, J. Lhotka, J. Musil, D. Rafaja, Effect of Ti interlayer and bias on structure and properties of TiN films, Phys. 50 (2000) No.5 655-663.
[9] J.-Y. Chen, G.-P. Yu, J.-H. Huang, Corrosion behavior and adhesion of ion-plated TiN films on AISI 304 steel, Mater. Chem. Phys., 65 (2000) 310-315.
[10] W.-L. Pan, G.-P. Yu, J.-H. Huang, Mechanical properties of ion-plated TiN films on AISI D2 steel, Surf. Coat. Technol., 110 (1998) 111-119.
[11] W. Lur, L.J. Chen, Growth kinetics of amorphous interlayer formed by interdiffusion of polycrystalline Ti thin‐film and single‐crystal silicon, Appl. Phys. Lett., 54 (13) (1989) 1217.
[12] S.J. Bull, P.R. Chalker, C.F. Ayres, and D.S. Rickerby, The influence of titanium interlayers on the adhesion of titanium nitride coatings obtained by plasma-assisted chemical vapour deposition. Sci. Eng., A 139 (1991) 71-78.
[13] B. Subramanian, V. Swaminathan, and M. Jayachandran, Microstructural. Tribological and Electrochemical Corrosion Studies on Reactive DC Magnetron Sputtered Zirconium Nitride Films with Zr Interlayer on Steel, Met. Mater. Int., V 18, No. 6 (2012) 957-964.
[14] H. Yanagisawa, K. Sasaki, H. Miyake and Y. Abe. Single-Oriented Growth of (111) Cu Film on Thin ZrN/Zr Bilayered Film for ULSI Metallization, Jpn. J. Appl. Phys. Vol. 39 (2000) 5987–5991.
[15] S.- G. Oh and J.- G. Han. The effects of precoating and bias voltage on the adhesion of reactive arc evaporated TiN and ZrN coatings, J. Vac. Sci. Technol., A 9 (4) (1991), p. 2557
Materials Science and Engineering, A 139 ( 1991 ) 71-78.
[16] J. Deng, J. Liu, Z. Ding, M. Niu. Unlubricated friction and wear behaviors of ZrN coatings against hardened steel, Mater. Des., 29 (2008), 1828-1834.
[17] Y.-H. Chen, G.-P. Yu, J.-H. Huang. Master thesis, Measurment of residual stress of ZrN thin film by using average X-ray strain method combined with nano-indentation, National Tsing Hua University, Taiwan, (R.O.C), 2015.
[18] P. Panjan, B. Navinšek, A. Žabkar, V. Marinković, D. Mandrino, J. Fišer, Structural analysis of ZrN and TiN films prepared by reactive plasma beam deposition, Thin Solid Films, 228 (1993) 233-237.
[19] P. Johnson, H. Randhawa, Zirconium nitride films prepared by cathodic arc plasma deposition process, Surf. Coat. Techol., 33 (1987) 53-62.
[20] E. Kelesoglu, C. Mitterer, M. Kazmanli, M. Ürgen, Microstructure and properties of nitride and diboride hard coatings deposited under intense mild-energy ion bombardment, Surf. Coat. Techol., 116 (1999) 133-140.
[21] S. Horita, M. Kobayashi, H. Akahori, T. Hata, Material properties of ZrN film on silicon prepared by low-energy ion-assisted deposition, Surf. Coat. Techol., 66 (1994) 318-322.
[22] L. Toth, Transition metal carbides and nitrides, Elsevier, 2014.
[23] E. Budke, J. Krempel-Hesse, H. Maidhof, H. Schüssler, Decorative hard coatings with improved corrosion resistance, Surf. Coat. Techol., 112 (1999) 108-113.
[24] U.K. Wiiala, I.M. Penttinen, A.S. Korhonen, J. Aromaa, E. Ristolainen, Improved corrosion resistance of physical vapour deposition coated TiN and ZrN, Surf. Coat. Techol., 41 (1990) 191-204.
[25] L. Van Leaven, M. Alias, R. Brown, Corrosion behavior of ion plated and implated films, Surf. Coat. Techol., 53 (1992) 25-34.
[26] W.-J. Chou, G.-P. Yu, J.-H. Huang, Mechanical properties of TiN thin film coatings on 304 stainless steel substrates, Surf. Coat. Technol., 149 (2002) 7-13.
[27] Okamoto, H., N-Zr (Nitrogen-Zirconium). Journal of Phase Equilibria and Diffusion, 2006. 27(5): p. 551-551., DOI.
[28] JCPDS file 35-0753.
[29] J.E. Hove, W.C. Riley, Modern ceramics: some principles and concepts, J. Wiley, 1965.
[30] A. Perry, A contribution to the study of poisson's ratios and elasticconstants of TiN, ZrN and HfN, Thin Solid Films, 193 (1990) 463-471.
[31] E. Török, A. Perry, L. Chollet, W. Sproul, Young's modulus of TiN, TiC, ZrN and HfN, Thin Solid Films, 153 (1987) 37-43.
[32] A.J. Perry, V. Valvoda, D. Rafaja, X-ray residual stress measurement in TiN, ZrN and HfN films using the Seemann-Bohlin method, Thin Solid Films, 214 (1992) 169-174.
[33] P. Jin, S. Maruno, Evaluation of internal stress in reactively sputter-deposited ZrN thin films, Jpn. J. Appl. Phys., 30 (1991) 1463-1468.
[34] H. Oettel, R. Wiedemann, S. Preissler, Residual-stresses in nitride hard coatings prepared by magnetron sputtering and arc evaporation, Surf. Coat. Technol., 74-5/1-3 (1995) 273-278.
[35] D. Burgreen. Elements of Thermal Stress Analysis, C.P. Press, New York (1971) p. 462
[36] H.-M. Tung, J.-H. Huang, D.-G. Tsai, C.-F. Ai, G.-P. Yu, Hardness and residual stress in nanocrystalline ZrN films: Effect of bias voltage and heat treatment, Mat. Sci. Eng. A-Struct., 500 (2009) 104-108.
[37] J.-L. Ruan, D.-F. Lii, J.-S. Chen, J.-L. Huang, Investigation of substrate bias effects on the reactively sputtered ZrN diffusion barrier films, Ceram. Int., 35 (2009) 1999-2005.
[38] G. Abadias, Y. Tse, P. Guérin, V. Pelosin, Interdependence between stress, preferred orientation, and surface morphology of nanocrystalline TiN thin films deposited by dual ion beam sputtering, J. Appl. Phys., 99 (2006) 113519.
[39] G.G.Stoney, The tension of metallic films deposited by electrolysis, Proc. Roy. Soc. Lond. A Mat., A82 (1909) 172-175.
[40] C.A. Klein, How accurate are Stoney’s equation and recent modifications, J. Appl. Phys., 88 (2000) 5487.
[41] J.-Y. Chang, G.-P. Yu, J.-H. Huang, Determination of Young's modulus and Poisson's ratio of thin films by combining sin2ψ X-ray diffraction and laser curvature methods, Thin Solid Films, 517 (2009) 6759-6766.
[42] A.K. A.R.Shetty, Texture change through film thickness and off accommodation of (002) planes, Appl. Surf. Sci., 258 (2011) 1630-1638.
[43] C.H. Ma, J.H. Huang, H. Chen, Residual stress measurement in textured thin film by grazing-incidence X-ray diffraction, Thin Solid Films, 418 (2002) 73-78.
[44] B.D. Cullity, S.R. Stock, Elements of X-ray Diffraction, Prentice Hall, NewJersey, 2001. 466.
[45] V. Hauk, Structural and Residual Stress Analysis by Nondestructive Methods, 1st Edition ed., Elsevier Science.
[46] A.-N. Wang, C.-P. Chuang, G.-P. Yu, J.-H. Huang. Determination of average X-ray strain (AXS) on TiN hard coatings using cos2αsin2ψ X-ray diffraction method, Surf. Coat. Techol., 262 (2015) 40-47.
[47] J.H. Huang, Y.P. Tsai, G.P. Yu. Effect of processing parameters on the microstructure and mechanical properties of TiN film on stainless steel by HCD ion plating, Thin Solid Films 355-356 (1999) 440-445.
[48] H. Yanagisawa, K. Sasaki, H. Miyake, Y. Abe, Preparation of a Contact System with a Single-Oriented (111)Al Overlayer by Interposing a Thin ZrN/Zr Bilayered Barrier Applicable to Sub-0.25-µm Design Rule, Jpn. J. Appl. Phys. 40 (2001) 4193-4194.
[49] L.B. Freund, S. Suresh, Thin film materials: stress, defect formation and surface evolution, Cambridge University Press, 2004.
[50] A.A. Griffith, The Phenomena of Rupture and Flow in Solids, Philos. Tr. R. Soc. S-A, 221 (1921) 163-198.
[51] D. Broek, Elementary engineering fracture mechanics, Springer Science & Business Media, 1982.
[52] J.-H. Huang, Y.-H. Chen, A.-N. Wang, G.-P. Yu, H.- Chen. Evaluation of fracture toughness of ZrN hard coatings by internal energy induced cracking method, Surf. Coat. Techol., 258 (2014), 211-218.
[53] J.-H. Huang, H.-C. Yang, X.-J. Guo, G.-P. Yu, Effect of film thickness on the structure and properties of nanocrystalline ZrN thin films produced by ion plating, Surf. Coat. Techol., 195 (2005) 204-213.
[54] J.-H. Huang, C.-H. Ho, G.-P. Yu, Effect of nitrogen flow rate on the structure and mechanical properties of ZrN thin films on Si(100) and stainless steel substrates, Mater. Chem. Phys., 102 (2007) 31-38.
[55] G.E. Dieter, D. Bacon, Mechanical metallurgy, McGraw-Hill New York, 1986.
[56] R.H. Dauskardt, M. Lane, Q. Ma, N. Krishna, “Adhesion and debonding of multi-layer thin film structures”, Eng. Frac. Mech., 61 (1998) 141-162.
[57] T.L. Becker, J.M. McNaney, R.M. Cannon, R.O. Ritchie, “Limitations on the use of the mixed-mode delamination beam test specimen: effects of the size of the region of K-dominance”, Mech. Mat., 25(1997)291-308.
[58] D.A. Shirley, High-resolution X-ray photoemission spectrum of the valence bands of gold, Phys. Rev. B, 5 (1972) 4709-4714.
[59] M. Del Re, R. Gouttebaron, J.-P. Dauchot, P. Leclère, G. Terwagne, M. Hecq, Study of ZrN layers deposited by reactive magnetron sputtering, Surf. Coat. Techol., 174 (2003) 240-245.
[60] C. Morant, J.M. Sanz, L. Galán, L. Soriano, F. Rueda, An XPS study of the interaction of oxygen with zirconium, Surf. Sci., 218 (1989) 331-345.
[61] I. Milošev, H.H. Strehblow, M. Gaberšček, B. Navinšek, Electrochemical oxidation of ZrN hard (PVD) coatings studied by XPS, Surf. Interface Anal., 24 (1996) 448-458.
[62] M. Matsuoka, S. Isotani, W. Sucasaire, N. Kuratani, K. Ogata, X-ray photoelectron spectroscopy analysis of zirconium nitride-like films prepared on Si (100) substrates by ion beam assisted deposition, Surf. Coat. Techol., 202 (2008) 3129-3135.
[63] P. Scherrer, Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen, Gött. Nachr., 1918 (1918) 98-100.
[64] JCPDS file 89-5269
[65] JCPDS file 89-4892
[66] L.V. Azároff, M.J. Buerger, The powder method in X-ray crystallography, McGraw-Hill, 1958.
[67] W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res., 7 (1992) 1564-1583.
[68] J. Wortman, R. Evans, Young's modulus, shear modulus, and Poisson's ratio in silicon and germanium, J. Appl. Phys., 36 (1965) 153-156.
[69] Metals Handbook, Vol. 2 - Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, 10th Ed., 1990, ASM International, Metals Park, OH, B493-79, B523-79, B550-79, B551-79
[70] https://www.webelements.com/zirconium/physics.html
[71] B.B. He, "Two-dimensional x-ray diffraction", John Wiley & Sons Ltd., New Jersey, USA (2009) 312.
[72] S.M. Sze, VLSI technology, McGraw-Hill, 1983.
[73] J.-H. Huang, T.-C. Lin, G.-P. Yu, Phase transition and mechanical properties of ZrNxOy thin films on AISI 304 stainless steel, Surf. L.B. Freund, S. Suresh, Techol., 206 (2011) 107-116.
[74] D.K. Owens, R.C. Wendt, Estimation of the surface free energy of polymers, J. Appl. Polym. Sci. 13 (1969) 1741-1747.
[75] T. Young, An Essay on the Cohesion of Fluids, Philos. Trans. R. Soc. Lond. 95 (1805) 65-87.
[76] R. Hull, Properties of crystalline silicon, the Institution of Electrical Engineers, London, 1999.
[77] Fairchild HB, The Properties of Zirconium and Its Possibilities for Thermal Reactors. Laboratory, Oak Ridge National Laboratory, Oak Ridge, TN (1949).
[78] H. Holleck, Material selection for hard coatings, Journal of Vacuum Science & Technology A, 4 (1986) 2661-2669.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *