帳號:guest(18.191.45.169)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):鄒家弘
作者(外文):Tsou, Chia Hung
論文名稱(中文):細間距印刷電子奈米銀導線電化學遷移及其抗性提升之研究
論文名稱(外文):Electrochemical migration behavior and its improvement of printed fine-pitch Ag interconnects
指導教授(中文):歐陽汎怡
指導教授(外文):Ouyang, Fan Yi
口試委員(中文):葉宗洸
陸蘇財
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:103011513
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:90
中文關鍵詞:電化學遷移恆溫恆濕測試滴水測試自組裝單分子層
外文關鍵詞:electrochemical migrationTHB testwater drop testself assembly monolayer
相關次數:
  • 推薦推薦:0
  • 點閱點閱:500
  • 評分評分:*****
  • 下載下載:11
  • 收藏收藏:0
隨著智慧型電子產品的發展,電子元件朝著輕薄短小的趨勢邁進,元件中的金屬導線的尺寸與間距也將隨之逐漸縮小,因此細間距導線的使用成為了主流。金屬導線的電化學遷移(ECM)是一種在高溫度,濕度和施加偏壓的使用環境中最主要的破壞機制。本研究使用間距尺寸為20至50 um印刷銀導線進行電化學遷移行為的測試,測試方法主要為恆溫恆濕偏壓測試(THB)以及滴水(WD)測試,並且藉由labview程式可以進行其漏電流隨時間變化(CVT)的即時量測。結果顯示,在細間距的銀導線的滴水測試中,電化學遷移破壞在數秒之內就會發生,而且隨著導線間距的增加,電化學遷移破壞的時間會跟著延長。由其表面微結構可觀察到在陰陽極之間會有密集的銀樹枝狀結構生成並且連接陰陽兩極。在THB測試中,其CVT曲線呈現了兩個階段,亦即潛伏期和漏電流快速上升期。此外,在有銀導線突起缺陷的位置會發生強烈的樹枝狀結構偏析,本研究進行了電場分佈的模擬與實驗結果比較。為了瞭解電子產業中常見的氯離子污染對ECM行為所造成的影響,本研究對10 mS/cm NaCl、10 mS/cm HCl、1000 μS/cm NaCl和1000 μS/cm HCl的氯離子水溶液進行了滴水測試。在氯離子水溶液的滴水測試中,陰陽極兩端之間不再有銀樹枝狀結構的生成,取而代之的是氯化銀會在銀導線的陽極端生成並且由於氯化銀的生成會消耗銀導線內部的奈米銀膠而造成導線斷路所產生的破壞。此外,本研究亦提出藉由表面處理的方法以增加銀導線對電化學遷移行為的抗性,我們使用濃度為10 mM的十二烷基硫醇酒精溶液來進行印刷製程試片的表面處理,藉由金屬導線與硫醇溶液之間的自發性反應在試片表面形成自組裝單分子薄膜(SAMs),銀導線上的SAMs層會作為其保護層並且成功增加試片的電化學遷移破壞時間,在進行SAMs處理之後,將再次分別以滴水測試以及THB測試來確認其抵抗電化學遷移破壞的能力,在WD測試中能延長電化學遷移破壞時間達約3~5倍,而在THB測試之中其電化學遷移破壞時間約為原本的兩倍。
With the development of intelligent electronic products, usage of fine-pitch interconnects became mainstream in high performance electronic devices. Electrochemical migration (ECM) of interconnects would be a serious reliability problem under temperature, humidity and biased voltage environments. In this study, ECM behavior of nanopaste Ag interconnects with pitch size from 20 um to 50 um was evaluated by thermal humidity bias (THB) and water drop (WD) tests through in-situ leakage current versus time (CVT) curve. The results indicate that the failure time of ECM in fine-pitch samples occurs within few seconds under WD test and it increases with increasing pitch size. The microstructure examination indicates that intensive dendrite formation of Ag through the whole interface was found to bridge the two electrodes. When samples tested in the THB test, the CVT curve exhibits two stages, incubation and ramp-up stages. Intensive dendrite formation was only observed at the protrusion of Ag interconnects due to the concentration of electric field at the protrusion of Ag interconnects. To understand the effect of chloride pollution in ECM behavior, solutions of 10 mS/cm NaCl、10 mS/cm HCl、1000 μS/cm NaCl and 1000 μS/cm HCl was used to conduct the water drop test. No dendrite was observed, however another failure mechanism caused by silver chloride may lead to open circuit. Also, this study proposed one of the approaches to prevent ECM failure by surface treatment after sample preparation. 10 mM ethanolic solutions of 1-Dodecanethiol was used to treat the samples after preparation to form Self-Assembled Monolayers(SAMs), which would act as the protective thin film for ECM failure. In WD test, the time to failure was increased to about 3~5 times longer while in THB test, it was about two times longer.
摘要 I
Abstract II
誌謝 III
表目錄 VI
圖目錄 VII
第一章 前言 11
第二章 文獻回顧 13
2.1電化學遷移破壞 13
2.2 氯離子對電化學遷移行為的影響 18
2.3電化學遷移抑制 21
2.4自我組裝單分子層 27
第三章 實驗步驟 31
3.1 試片設計 31
3.2電化學遷移測試 34
3.3儀器分析 37
第四章 結果與討論 38
4.1製備試片結構分析 38
4.2電化學遷移測試 44
4.2.1滴水測試 44
4.2.2恆溫恆濕偏壓測試(THB) 50
4.3銀導線突起缺陷的影響 58
4.4 氯離子水溶液的滴水測試 60
4.4.1 10 mS NaCl水溶液滴水測試 60
4.4.2 其他氯離子水溶液下的滴水測試 64
4.5 自組裝單分子層的電化學遷移抑制 73
4.5.1 自組裝單分子層組成分析 73
4.5.2 自組裝單分子層滴水測試 77
4.5.3 自組裝單分子層THB測試 83
第五章、結論與建議 85
5.1電化學遷移測試 85
5.2銀導線表面的突起缺陷 85
5.3 氯離子水溶液的滴水測試 86
5.4 電化學遷移抑制 86
5.5 建議 86
參考文獻 87
[1] Kwang-Seok Kim, Woo-Ram Myung, and Seung-Boo Jung. "Effects of sintering conditions on microstructure and characteristics of screen-printed Ag thin film." Electronic Materials Letters 8.3 (2012) pp. 309 - 314.
[2] A. Biswas, H. Eilers, F. Hidden, O. C. Aktas, and C. V. S. Kiran. "Large broadband visible to infrared plasmonic absorption from Ag nanoparticles with a fractal structure embedded in a Teflon AFxAE matrix." Applied physics letters 88.1 (2006) id. 013103
[3] Yugang Sun and Younan Xia. "Large-scale synthesis of uniform silver nanowires through a soft, self-seeding, polyol process." Nature 353 (1991) pp. 833 - 837.
[4] Yi Li, Kyoung-sik Moon and C. P. Wong. "Electronics without lead." Science 308.5727 (2005) pp. 1419-1420.
[5]J. C. Lin, and J. Y. Chan. "On the resistance of silver migration in Ag-Pd conductive thick films under humid environment and applied dc field." Materials Chemistry and Physics 43.3 (1996) pp. 256 - 265.
[6] K. S. Kim, J. H. Ahn, B. I. Noh, and S. B. Jung, J. "Electrochemical migration characteristics of screen-printed silver patterns on FR-4 substrate." Journal of nanoscience and nanotechnology 12.4 (2012) pp. 3219 - 3223.
[7] S. Yang, J. Wu and A. Christou. "Initial stage of silver electrochemical migration degradation." Microelectronics Reliability 46.9 (2006) pp. 1915 - 1921.
[8] Harsányi, Gábor, and George Inzelt. "Comparing migratory resistive short formation abilities of conductor systems applied in advanced interconnection systems." Microelectronics Reliability 41.2 (2001) pp. 229 - 237.
[9] Kwang-Seok Kim, Kwang-Ho Jung, Bum-Geun Park, Young-Eui Shin and Seung-Boo Jung. "Characterization of Ag-Pd Nanocomposite Paste for Electrochemical Migration Resistance." Journal of nanoscience and nanotechnology 13.11 (2013) pp. 7620 - 7624.
[10] Bo-In Noha, Jeong-Won Yoon, Kwang-Seok Kim, Sayoon Kang and Seung-Boo Jung. "Electrochemical migration of directly printed Ag electrodes using Ag paste with epoxy binder." Microelectronic Engineering 103 (2013) pp. 1 - 6.
[11] J. Steppan, J. Roth, L. Hall, D. Jeannotte, and S. Carbone, “A Review of Corrosion Failure Mechanisms during Accelerated Tests,” Journal of the Electrochemical Society, 134 (1987) pp. 175 – 90
[12] Kwang-Seok Kim, Jae-Oh Bang, and Seung-Boo Jung. "Electrochemical migration behavior of silver nanopaste screen-printed for flexible and printable electronics." Current Applied Physics 13 (2013) pp. 190 - 194.
[13] Medgyes, Bálint, Balázs Illés, and Gábor Harsányi. "Effect of water condensation on electrochemical migration in case of FR4 and polyimide substrates." Journal of Materials Science: Materials in Electronics 24.7 (2013) pp. 2315 - 2321.
[14] Guo-Quan Lu, Chaoyi Yana, Yunhui Mei. "Dependence of electrochemical migration of sintered nanosilver on chloride." Materials Chemistry and Physics 151 (2015) pp: 18 - 21.
[15] Kwang-Seok Kim, Young-Tae Kwon, Yong-Ho Choa and Seung-Boo Jung. "Electrochemical migration of Ag nanoink patterns controlled by atmospheric-pressure plasma." Microelectronic Engineering 106 (2013) pp. 27 - 32.
[16] Yi Li, and C. P. Wong. "Monolayer protection for eletrochemical migration control in silver nanocomposite." Applied physics letters 89.11 (2006) id. 112112.
[17] J. Christopher Love, Lara A. Estroff, Jennah K. Kriebel, Ralph G. Nuzzo and George M. Whitesides. "Self-assembled monolayers of thiolates on metals as a form of nanotechnology." Chemical reviews 105.4 (2005) pp. 1103 - 1170.
[18] Kudelski and Andrzej. "Structures of monolayers formed from different HS—(CH2) 2—X thiols on gold, silver and copper: comparitive studies by surface‐enhanced Raman scattering." Journal of Raman Spectroscopy 34.11 (2003) pp. 853 - 862.
[19] Paul E. Laibinis, George M. Whitesides, David L. Allara, Yu Tai Tao, Atul N. Parikh and Ralph G. Nuzzo. "Comparison of the structures and wetting properties of self-assembled monolayers of n-alkanethiols on the coinage metal surfaces, copper, silver, and gold." Journal of the American Chemical Society 113.19 (1991) pp. 7152 - 7167.
[20] Rakesh A Afre, Yasuhiko Hayashi and Tetsuo Soga. "Enhanced photovoltaic device performance upon modification of indium tin oxide coated glass by liquid nitrogen treatment." Journal of Physics D: Applied Physics 42.4 (2009) id. 042002.
[21] G. DiGiacomo. “Metal Migration (Ag, Cu, Pb) in Encapsulated Modules and Time to Fail Model as a Function of the Environment and Package Properties,” IEEE/ Proceedings of the IRPS, (1982) pp. 27 – 33
[22] DS Peck, “Comprehensive testing for humidity testing correlation,” IEEE/ Proceedings of the IRPS, (1986). pp. 44 – 50
[23]林宛宣,觸控面板銀導線電化學遷移之研究,清華大學專題報告 (2015)
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *