帳號:guest(18.116.38.243)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):郭孟倫
作者(外文):Kuo, Tonny Meng-Lun
論文名稱(中文):應用磨課師/師博課以促進生命科學深度理解之設計本位研究
論文名稱(外文):Applying MOOCs/SPOCs to promote deeper conceptual understanding in life science via design-based research
指導教授(中文):楊叔卿
指導教授(外文):Young, Shelley Shwu-Ching
口試委員(中文):孫之元
楊接期
口試委員(外文):Sun, Jerry Chih-Yuan
Yang, Jie-Chi
學位類別:碩士
校院名稱:國立清華大學
系所名稱:學習科學研究所
學號:103002503
出版年(民國):105
畢業學年度:104
語文別:中文
論文頁數:237
中文關鍵詞:磨課師師博課翻轉教室高等教育電腦輔助協作學習
外文關鍵詞:MOOCsSPOCsflipped classroomhigher educationcomputer-supported collaborative learning (CSCL)
相關次數:
  • 推薦推薦:0
  • 點閱點閱:263
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
磨課師與翻轉教室已經引發全球高等教育的數位海嘯,但如何善用現有磨課師線上資源以促進深度學習並提升傳統高教機構價值之研究卻付之闕如。本論文回顧並統整磨課師/師博課特點、學生為中心教學策略(包含:翻轉學習、深度學習、同儕互評)並從生命科學領域中教師過度講述、缺乏小組協同學習等難點進行學科本位研究。
本論文以設計本位研究法為基礎,系統性整合問卷、訪談、能力評量、觀課紀錄等質性與量化資料,歷經一年半共三次迭代試驗發展出適用於在地高校的S-IDEAL翻轉教學模式,其步驟分別為:(1)自主學習(Self-paced video-based learning)、(2)提出疑惑(Identifying uncertainty in learning community)、(3)定義問題(Defining group- constructed question)、(4)闡發假設(Elaborating hypothesis through inquiry-based learning)、(5)廣及意見(Assembling ideas from multiple sources)和(6)促進反思(Leveraging reflection)。
研究結果顯示:(一)S-IDEAL教學模式不僅能夠顯著提升學習成效,逐步提升問題發現以及問題解決能力,更能夠提升學生高層次的學習表現;(二)結合實體與虛擬的學習環境之S-IDEAL教學模式,學生在掌握核心學科內容、批判思考與複雜問題解決能力、協同工作、發展學術思維皆等深度學習素養在九週後皆顯著提升;(三)在電腦輔助協作學習情境中,學生能善用廣泛網路資源(如:期刊、影片、網站、MOOCs等)於探究式問題解決歷程,深化問題討論的質量與層次;(四)學生、老師在S-IDEAL教學模式中扮演多元卻不同傳統的角色,學生認為自己趨向較積極的角色(會議參與者、學者、知識傳遞者等),教師的角色則成為教練、學習促進者、評量及課程設計者等。
本研究以證據驅動、迭代改善、扎根經驗所發展的生命科學領域之S-IDEAL創新教學模式可作為未來高等教育機構採用磨課師作為師博課深度學習的參照模式。本論文歸納促進深度學習之科技能供性角色並分析學習行為以提供未來磨課師/師博課平台設計以及學習策略之建議,對於高教教師、高等教育機構、平台設計者、教育政策都極富參考價值。
Although MOOCs and flipped classrooms have triggered the digital tsunami in higher education, how to make the most use of existing MOOCs resources to promote deeper conceptual understanding and therefore add values to traditional postsecondary institutes remains unclear. Based on the disciplinary difficulties in life science such as over-lecturing and lack of collaborative learning, this thesis reviews, identifies, and integrates features of MOOCs/SPOCs and student-centric pedagogies to conduct a Discipline-Based Education Research for one and a half year.
Using Design-Based Research, this thesis systematically collects qualitative and quantitative data from interviews, questionnaires, pre-/post-tests, classroom observation, and video record to develop residential-university-based S-IDEAL flipped model through three iterations. The proposed and certified S-IDEAL steps are: (1) Self-paced video-based learning; (2) Identifying uncertainty in learning community; (3) Defining group-constructed question; (4) Elaborating hypothesis through inquiry-based learning; (5) Assembling ideas from multiple sources; and (6) Leveraging reflection.
The results show as follows. First, the S-IDEAL model not merely significantly improves learning effectiveness and gradually develops problem finding/solving ability, but also enhances the higher-order learning performance. Second, the deeper learning competences of learners’ including academic content, critical thinking and complex problem solving, collaborative working, and academic mindset have significantly improved after nine weeks. Third, in the context of computer-supported collaborative learning (CSCL), students can make good use of the Internet resources (such as journals, videos, websites, MOOCs and so on) in the process of inquiry-based problem solving, deepening the quality and levels of discussion. Fourth, the students, teacher, and teaching assistants play diverse but untraditional roles in S-IDEAL model. Students become more active roles, such as conference participants, scholars, and knowledge transmitters while the teacher acts as coaches, learning facilitators, assessment and curriculum designers.
The evidence-based, iterative-driven, and grounded innovative S-IDEAL model especially for life science could be a deeper-learning reference model for higher education institutes that aim to deploy MOOCs for SPOCs. This thesis concludes the technology affordances for promoting deeper learning as well as analyzes the underpinning learning behaviors to provide with MOOCs/SPOCS pedagogical insights. This thesis serves as a systematical and constructive reference for higher education institutes, instructors, platform designers, and educational policy makers.
致謝 i
摘要 iii
Abstract v
目次 vii
表目錄 xi
圖目錄 xiii
第一章 緒論 1
1.1 研究背景與動機 1
1.1.1 MOOCs引發高等教育海嘯 1
1.1.2 MOOCs學習應用的研究缺口 3
1.2 研究重要性 4
1.3 形塑研究框架 6
1.4 研究目的與研究問題 7
1.5 名詞解釋 8
1.5.1 磨課師(MOOCs) 8
1.5.2 師博課(SPOCs) 8
1.5.3 翻轉教室(Flipped classroom) 8
1.5.4 深度理解(Deeper conceptual understanding) 8
1.5.5 深化學習素養(Deeper learning competences) 8
第二章 文獻探討 9
2.1大規模開放線上課程MOOCs 9
2.1.1 MOOCs的緣起、發展與特色 9
2.1.2 不同類型與教學法主導的MOOCs:xMOOCs, cMOOCs 12
2.1.3 從MOOCs走向SPOCs 16
2.2 學生為中心的教學策略 20
2.2.1 翻轉教室/學習 20
2.2.2 深化學習 28
2.2.3 同儕互評 32
2.3 生命科學教育 35
2.3.1 學科本位研究 35
2.3.2 生命科學教育 38
2.3.3 電腦輔助生命科學學習之研究 39
第三章 研究方法 43
3.1 設計本位研究 43
3.1.1 設計本位研究定義與特點 43
3.1.2 設計本位研究作為研究方法 45
3.2 研究情境與對象 47
3.2.1 研究情境 47
3.2.2 學習環境 48
3.2.3 研究對象 50
3.2.4 分組方式 53
3.3 研究流程與設計 54
3.3.1 第一階段:初探— MOOC融入翻轉SPOC課程初探 54
3.3.2 第二階段:修改— 基於協作問題解決的深化學習設計 55
3.3.3 第三階段:發展— 精緻化S-IDEAL模式與實踐 55
3.3.4 研究設計 56
3.4 研究工具 60
3.4.1 系統/細胞神經科學能力測驗(前測) 60
3.4.2 系統/神經細胞科學期中/期末理解測驗(後測) 60
3.4.3 系統/細胞神經科學高層次整合性寫作(後測) 61
3.4.4 學習經驗問卷 61
3.4.5 同儕互評教師評分紀錄 63
3.4.6 教師、助教、學生之半結構訪談與觀課反思筆記 64
3.4.7 學生講解簡報 65
3.4.8 學生線上平台討論紀錄 65
3.4.9 實體課堂影像紀錄 65
3.5 資料收集與分析 66
第四章 ShareCourse系統平台 67
4.1 ShareCourse平台簡介 67
4.2 ShareCourse平台網頁端功能 68
4.3 ShareCourse平台行動端功能 72
4.4 ShareCourse平台作為本研究之主要學習平台 74
第五章 研究結果與討論 75
5.1 研究一:SPOC融入神經科學課程初探 75
5.1.1平台功能、學習素材使用與學習經驗 75
5.1.2學習滿意度與學習成就表現 81
5.1.3 線上討論與高層次學習的關係 84
5.1.4 SPOC教學模式的機會與挑戰 85
5.1.5 反思與討論 88
5.2研究二:運用S-IDEAL模式促進深度概念理解 94
5.2.1 學習成就表現 94
5.2.2 學習感受、學習活動與平台使用 102
5.2.3 小組協作學習行為分析 116
5.2.4 學習困難、影片設計與平台改善 122
5.2.5反思與討論 127
5.3研究三:S-IDEAL模式精緻化與實踐 132
5.3.1 學習成就表現 132
5.3.2 學習行為分析 138
5.3.3 學生對於S-IDEAL教學模式之感受 141
5.3.4 S-IDEAL模式中學生、老師及助教角色 145
5.4 三階段要點歸納 149
5.5 綜合討論 151
5.5.1 S-IDEAL模式是否能作為生命科學領域創新教學法? 152
5.5.2 因應MOOCs帶來的高等海嘯—以本研究為視角 157
5.5.3角色之意義於資訊中介之時代 162
5.5.4 S-IDEAL模式如何以學生為中心? 164
5.5.5 研究建議:MOOCs/SPOCs對於高等教育之啟示 167
第六章 結論與未來研究 169
6.1 研究貢獻 169
6.2 各階段要點歸納 170
6.3 研究結論 172
6.4 研究限制與未來研究 172
參考文獻 175
附錄一:清華磨課師系統神經科學學習經驗問卷(2015春) 189
附錄二:清華磨課師細胞神經科學學習經驗問卷(2015秋) 195
附錄三:清華磨課師系統神經科學學習經驗問卷(2016春) 205
附錄四:細胞神經科學能力測驗前測試題卷 213
附錄五:系統神經科學能力測驗前測試題卷 221
附錄六:第一階段教師訪談大綱 228
附錄七:第一階段助教訪談大綱 230
附錄八:第一階段學生訪談大綱 232
附錄九:第二階段老師/助教訪談大綱 233
附錄十:第二階段學生訪談大綱 234
附錄十一:第三階段老師/助教訪談大綱 235
附錄十二:細胞神經科學高層次整合性寫作(2015秋) 236
附錄十三:系統神經科學高層次整合性寫作(2016春) 237
Alexander, B. (2011). Imagining the future of higher education. EDUCAUSE Review. Retrieved from http://er.educause.edu/articles/2011/12/imagining-the-future-of-higher-education
Alraimi, K. M., Zo, H., & Ciganek, A. P. (2015). Understanding the MOOCs continuance: The role of openness and reputation. Computers & Education, 80, 28-38.
Anderson, T., & Shattuck, J. (2012). Design-based research: a decade of progress in education research? Educational Researcher, 41(1), 16-25.
Auletta, K. (2012, April 30). Get Rich U: There are no walls between Stanford and Silicon Valley. Should there be? The New Yorker. Retrieved from http://www.newyorker.com/magazine/2012/04/30/get-rich-u
Bakeman, R., & Gottman, J. M. (1997). Observing interaction : an introduction to sequential analysis. New York: Cambridge University Press.
Barab, S. A. (2014). The future of learning: Grounding educational innovation in the Learning Sciences. In R. K. Sawyer (Ed.), The Cambridge handbook of learning sciences (2nd edition., pp. 726-746). New York, NY: Cambridge University Press.
Barab, S. A., & Squire, K. (2004). Design-based research: Putting a stake in the ground. The Journal of the Learning Sciences, 13(1), 1-14.
Başal, A. (2012, November 15-17). The use of flipped classroom in foreign language teaching. Paper presented at the Proceedings of the 3rd Black Sea ELT Conference: Technology: A bridge to language learning. OMU, Samsun, Turkey, 8-12.
Bereiter, C. (2002). Education and mind in the knowledge age. Mahwah, NJ: Lawrence Erlbaum Associates.
Bergmann, J., & Sams, A. (2012). Flip your classroom: Reach every student in every class every day. Washington, DC: Internal Society for Technology in Education.
Bishop, J. L., & Verleger, M. A. (2013, June). The flipped classroom: A survey of the research. In ASEE National Conference Proceedings, Atlanta, GA.
Brooks, D. (2012, May 3). The campus tsunami. The New York Times. Retrieved from http://www.nytimes.com/2012/05/04/opinion/brooks-the-campus-tsunami.html?_r=0
Brown, A. L. (1992). Design experiments: Theoretical and methodological challenges in creating com- plex interventions in classroom settings. The Journal of the Learning Sciences, 2(2), 141–178.
Cassidy, S. (2006). Developing employability skills: Peer assessment in higher education. Education & Training, 48(7), 508–517.
Chan, T-W., Milrad, M., and 15 others. (2006). One-to-one technology-enhanced learning: An opportunity for global research collaboration. Research and Practice in Technology Enhanced Learning Journal, 1(1), 3-29.
Charlton, T., Devlin, M., & Drummond, S. (2009). Using Facebook to improve communication in undergraduate software development teams. Computer Science Education, 19(4), 273-292. DOI: 10.1080/08993400903384935
Chen, C. M., & Wu, C. H. (2015). Effects of different video lecture types on sustained attention, emotion, cognitive load, and learning performance. Computers & Education, 80, 108-121.
Chen, N.-S., & Tsai, C.-C. (2009). Knowledge infrastructure of the future. Educational Technology & Society, 12(1), 1-4.

Chen, Y. H., & Chen, P. J. (2015). MOOC study group: Facilitation strategies, influential factors, and student perceived gains. Computers & Education, 86, 55-70.
Chen, Y., Wang, Y., & Chen, N. S. (2014). Is FLIP enough? Or should we use the FLIPPED model instead? Computers & Education, 79, 16-27.
Cheng, K.H., Liang, J.C., & Tsai, C.C. (2015). Examining the role of feedback messages in un- dergraduate students' writing performance during an online peer assessment activity. The Internet and Higher Education, 25, 78–84.
Clark, R. C., & Mayer, R. E. (2003/2011). E-learning and the science of instruction: Proven guidelines for consumers and designers of multimedia learning. John Wiley & Sons.
Cobb, P., Confrey, J., Lehrer, R., & Schauble, L. (2003). Design experiments in educational research. Educational Researcher, 32(1), 9-13.
Collins, A. (1990). Toward a design science of education (CTE Technical Report No. 1). New York: Center for Children and Technology, Education Development Center, Inc. Retrieved March 25, 2016, from http://www.edc.org/CCT/ccthome/reports/tr1.html
Collins, A., & Halverson, R. (2010). The second educational revolution: Rethinking education in the age of technology. Journal of Computer Assisted Learning, 26(1), 18-27.
Collins, A., Joseph, D., & Bielaczyc, K. (2004). Design research: Theoretical and methodological issues. The Journal of the Learning Sciences, 13(1), 15-42.
Connell, J. P. (1990). Context, self, and action: A motivational analysis of self-system processes across the life-span. In D. Cicchetti (Ed.), The selfin tmnsition: lnfancy to childhood, 61-67. Chicago: University of Chicago Press.
Connell, J. P., & Wellborn, J. G. (1991). Competence, autonomy, and relatedness: A motivational analysis of self-system processes. In M. Gunnar & L. A. Sroufe (Eds.), Minnesota Symposium on Child Psychology (Vol. 23). Chicago: University of Chicago Press.
Conway, M. R. (2013, June 21). HarvardX’s new fall offerings to include Two SPOCs. The Harvard Crimson. Retrieved from http://www.thecrimson.com/article/2013/6/21/new-edx-fall-2013/
Coughlan, S. (2013, September 24). Harvard plans to boldly go with ‘SPOCs’. BBC Business. Retrieved from http://www.bbc.com/news/business-24166247
Cross, A., Bayyapunedi, M., Cutrell, E., Agarwal, A., & Thies, W. (2013, April). TypeRighting: combining the benefits of handwriting and typeface in online educational videos. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 793-796. ACM.
Crowley, J. (2013). cMOOCs: Putting collaboration first. Campus Technology. Retrieved from https://campustechnology.com/Articles/2013/08/15/cMOOCs-Putting-Collaboration-First.aspx?Page=1
Cummins, S., Beresford, A., & Rice, A. (2015). Investigating Engagement with In-Video Quiz Questions in a Programming Course. IEEE Transactions on Learning Technologies (TLT), 99, 1-10. DOI: 10.1109/TLT.2015.2444374.
Danielson, J., Preast, V., Bender, H., & Hassall, L. (2014). Is the effectiveness of lecture capture related to teaching approach or content type? Computers & Education, 72, 121-131.
Davies, R. S., Dean, D. L., & Ball, N. (2013). Flipping the classroom and instructional technology integration in a college-level information systems spreadsheet course. Educational Technology Research and Development, 61(4), 563-580.
Day, J. A., Foley, J. D., & Catrambone, R. (2006). Investigating multimedia learning with web lectures.
Dede, C. (2013). Connecting the dots: New technology-based models for postsecondary learning. EDUCAUSE Review, 48(5), 33-52. Retrieved from http://er.educause.edu/articles/2013/10/connecting-the-dots-new-technologybased-models-for-postsecondary-learning
Dede, C. (2014). The role of digital technologies in deeper learning. Boston, MA: Jobs for the Future.
Delors, J. (1998). Learning: The treasure within. Paris: Unesco.
Design-Based Research Collective. (2003). Design-Based Research: An Emerging Paradigm for Educational inquiry. Educational Researcher, 32(1), 5-8.
Dewey, J. (1916). Democracy and education. Toledo, OH: Student Handouts, Inc.

Dey, E. L., Burn, H. E., & Gerdes, D. (2009). Bringing the classroom to the web: Effects of using new technologies to capture and deliver lectures. Research in Higher Education, 50(4), 377-393.
Downes, S. (2008). Places to go: Connectivism & connective knowledge. Innovate, 5(1). Retrieved from http://www.innovateonline.info/index.php?view=article&id=668
Engestrom, Y. (1987). Learning by expanding: An activity-theoretical approach to developmental research. Helsinki, Finland: Orienta-Kosultit Oy.
Finn, J. D. (1989). Withdrawing from school. Review of Educational Research, 59(2), 117-142.
Fischer, G. (2014). Beyond hype and underestimation: identifying research challenges for the future of MOOCs. Distance Education, 35(2), 149-158. doi: 10.1080/01587919.2014.920752
Fishman, B., & Dede, C. (2016). Teaching and technology: New tools for new times. In Gitomer, D. H. & Bell, C. A. (Eds.) Handbook of Research on Teaching, 5th edition. American Educational Research Association. New York, NY: Springer.
Forsey, M., Low, M., & Glance, D. (2013). Flipping the sociology classroom: Towards a practice of online pedagogy. Journal of Sociology, 49(4), 471-485.
Fox, A. (2013). From moocs to spocs. Communications of the ACM, 56(12), 38-40. doi: 10.1145/2535918
Fredricks, J. A., & McColskey, W. (2012). The measurement of student engagement: A comparative analysis of various methods and student self-report instruments. In Handbook of research on student engagement, 763-782. Springer US.
Fredricks, J. A., Blumenfeld, P. C. & Paris, A. H. (2004). School engagement: Potential of the concept, state of the evidence. Review of Educational Research, 74, 1, 59–109.
Fredricks, J. A., Blumenfeld, P., Friedel, J. & Paris, A. (2005). School engagement. In K. A. Moore & L. Lippman (Eds), What do children need to flourish? Conceptualizing and measuring indicators of positive development, 305–321. New York: Springer.
Freitas, S. I., Morgan, J., & Gibson, D. (2015). Will MOOCs transform learning and teaching in higher education? Engagement and course retention in online learning provision. British Journal of Educational Technology, 46(3), 455-471. doi:10.1111/bjet.12268
Froyd, J. E. (2008). White paper on promising practices in undergraduate STEM education. Commissioned paper presented at NRC Workshop on Evidence on Promising Practices in Undergraduate Science, Technology, Engineering, and Mathematics (STEM) Education. Retrieved from http://www7.nation- alacademies.org/bose/Froyd_Promising_Practices_CommissionedPaper.pdf
Garlock, S. (2015, July 15). Is small beautiful? Harvard Magazine. Retrieved from http://harvardmagazine.com/2015/07/is-small-beautiful
Gliddon, C. M., & Cridge, B. (2015). Psychoactive substances bill and act of New Zealand: A chance to engage undergraduate scientists with society using a transfer learning paradigm. Journal of Undergraduate Neuroscience Education, 14(1), A1.
Goodwin, B., & Miller, K. (2013). Evidence on flipped classrooms is still coming in. Educational Leadership, 70(6), 78-80.
Griffin, D. K., Mitchell, D., & Thompson, S. J. (2009). Podcasting by synchronising PowerPoint and voice: What are the pedagogical benefits? Computers & Education, 53(2), 532-539.
Guo, P. J., Kim, J., & Rubin, R. (2014, March). How video production affects student engagement: An empirical study of MOOC videos. In Proceedings of the first ACM conference on Learning@ scale conference, 41-50, ACM.
Halloun, I. A., & Hestenes, D. (1985). Common sense concepts about motion. American Journal of Physics, 53(11), 1056-1065.
Halpern, D. F., & Hakel, M. D. (2003). Applying the science of learning to the university and beyond: Teaching for long-term retention and transfer. Change: The Magazine of Higher Learning, 35(4), 36-41.
Hamdan, N., McKnight, P., McKnight, K., & Arfstrom, K. M. (2013). The flipped learning model: a white paper based on the literature review titled a review of flipped learning. Arlington, VA: Flipped Learning Network.  
Hashmi, A. H. (2013, September 17). HarvardX set to launch Second SPOC. The Harvard Crimson. Retrieved from http://www.thecrimson.com/article/2013/9/17/kennedy-school-spoc-edx/
Henrie, C. R., Halverson, L. R., & Graham, C. R. (2015). Measuring student engagement in technology-mediated learning: A review. Computers & Education, 90, 36-53.
Herman, J. L. (2010). Coherence: Key to Next Genera on Assessment Success (AACC Report). Los Angeles, CA: University of California.
Hew, K. F., & Cheung, W. S. (2014). Students’ and instructors’ use of massive open online courses (MOOCs): Motivations and challenges. Educational Research Review, 12, 45-58. doi: j.edurev.2014.05.001
Hollands, F. M., & Tirthali, D. (2014). MOOCs: expectations and reality (Full report). Center for Benefit-Cost Studies of Education, Teachers College, Columbia University, NY. Retrieved from: http://cbcse.org/wordpress/wp- content/uploads/2014/05/MOOCs_Expectations_and_Reality.pdf 
Hou, H. T., Chang, K. E., & Sung, Y. T. (2010). Applying lag sequential analysis to detect visual behavioral patterns of online learning activities. British Journal of Educational Technology, 41(2), 25-27.
Howland, J. L., Jonassen, D. H., & Marra, R. M. (2012). Meaningful learning with technology. Upper Saddle River, NJ: Pearson.
Hung, H. T. (2015). Flipping the classroom for English language learners to foster active learning. Computer Assisted Language Learning, 28(1), 81-96. doi:10.1080/09588221.2014.967701 
Ilioudi, C., Giannakos, M. N., & Chorianopoulos, K. (2013). Investigating differences among the commonly used video lecture styles. In Proceeding of WAVe 2013 the Workshop on Analytics on video-based learning, 21-26.
Illig, K. R. (2015). Techniques and technology to revise content delivery and model critical thinking in the neuroscience classroom. Journal of Undergraduate Neuroscience Education, 13(3), A160-165.
Johnson, L., Adams Becker, S., Estrada V., and Freeman, A., (2014). NMC Horizon Report:2014 Higher Education Edition. Austin, Texas: The New Media Consortium.
Johnson, L., Adams Becker, S., Estrada, V., and Freeman, A. (2015). NMC Horizon Report: 2015 Higher Education Edition. Austin, Texas: The New Media Consortium.
Kansra, N., & Weinstock, S. Y. (2013, September 17). Newly created vice provost position to oversee edX. The Harvard Crimson. Retrieved from http://www.thecrimson.com/article/2013/9/17/bol-provost-advanced-learning/
Kay, R. H. (2012). Exploring the use of video podcasts in education: A comprehensive review of the literature. Computers in Human Behavior, 28(3), 820-831.
Kay, J., Reimann, P., Diebold, E., & Kummerfeld, B. (2013). MOOCs: So Many Learners, So Much Potential... IEEE Intelligent Systems, (3), 70-77.
Kim, J., Guo, P. J., Seaton, D. T., Mitros, P., Gajos, K. Z., & Miller, R. C. (2014, March). Understanding in-video dropouts and interaction peaks inonline lecture videos. In Proceedings of the first ACM conference on Learning@ scale conference, 31-40. ACM.
Kizilcec, R. F., Piech, C., & Schneider, E. (2013, April). Deconstructing disengagement: analyzing learner subpopulations in massive open online courses. In Proceedings of the third international conference on learning analytics and knowledge, 170-179. ACM.
Kopecks, R., Fournier, H., & Mak, J. S. F. (2011). A pedagogy of abundance or a pedagogy to support human beings? Participant support on massive open online courses. The International Review of Research In Open And Distributed Learning, 12(7), 74-93.
Lépez-Meneses, E., Vázquez-Cano, E., & Román, P. (2015). Analysis and Implications of the Impact of MOOC Movement in the Scientific Community: JCR and Scopus (2010-13). Comunicar, 22(44), 73-80.
Lewin, T. (2013, April 29). Adapting to blended courses, and finding early benefits. The New York Times. Retrieved from http://www.nytimes.com/2013/04/30/education/adapting-to-blended-courses-and-finding-early-benefits.html
Li, N., Verma, H., Skevi, A., Zufferey, G., Blom, J., & Dillenbourg, P. (2014). Watching MOOCs together: investigating co-located MOOC study groups. Distance Education, 35(2), 217-233.
Liang, J. C., & Tsai, C. C. (2010). Learning through science writing via online peer assessment in a college biology course. The Internet and Higher Education, 13(4), 242-247.
Linge, N., & Parsons, D. (2006). Problem-based learning as an effective tool for teaching computer network design. Education, IEEE Transactions, 49(1), 5-10.
Lipponen, L., Hakkarainen, K., & Paavola, S. (2004). Practices and orientations of CSCL. In J.-W. Strijbos, P. Kirschner, & R. Martens (Eds.), What we know about CSCL: And implementing it in higher education (pp. 31-50). Dordrecht, Netherlands: Kluwer Academic Publishers.
Liyanagunawardena, T. R., Adams, A. A., & Williams, S. A. (2013). MOOCs: A systematic study of the published literature 2008-2012. The International Review of Research in Open and Distributed Learning, 14(3), 202-227.
Liyanagunawardena, T. R., Lundqvist, K. Ø., & Williams, S. A. (2015). Who are with us: MOOC learners on a FutureLearn course. British Journal of Educational Technology, 46(3), 557-569.
Looi, C.-K. (2013, April). Connecting the boundaries of theories and practice: the known and unknown in Learning Sciences. Keynote Address, presented at 2013 1st Symposium of Learning Sciences, National Tsing Hua University, Hsinchu, Taiwan, Aprial 25, 2013.
Mayer, R. E. (2009). Multimedia learning. Cambridge university press.
Mayer, R. E. (Ed.). (2005). The Cambridge handbook of multimedia learning. Cambridge University Press.
Mayer-Schönberger, V., & Cukier, K. (2014). Learning with big data: The future of education. Houghton Mifflin Harcourt.
McLaughlin, J. E., Griffin, L. M., Esserman, D. A., Davidson, C. A., Glatt, D. M., Roth, M. T., & Gharkholonarehe, N. (2013). Pharmacy student engagement, performance, and perception in a flipped satellite classroom. American journal of pharmaceutical education, 77(9), 1-8.
Moore, M. G. (1993). Theory of transactional distance. In D. Keegan (Ed.), Theoretical principles of distance education (pp. 22-38). New York, NY: Routledge.

National Research Council. (2012). Education for life and work: Developing transferable knowledge and skills in the 21st Century. Washington, DC: The National Academies Press.
O'Flaherty, J., & Phillips, C. (2015). The use of flipped classrooms in higher education: A scoping review. The Internet and Higher Education, 25, 85-95.
Oremus, W. (2013, September 18). Forget MOOCs. Slate. Retrieved from http://www.slate.com/articles/technology/technology/2013/09/spocs_small_private_online_classes_may_be_better_than_moocs.html
Owston, R., Lupshenyuk, D., & Wideman, H. (2011). Lecture capture in large undergraduate classes: Student perceptions and academic performance. The Internet and Higher Education, 14(4), 262-268.
Pearson & The Flipped Learning Network (2013). Flipped Learning Professional Development. Retrieved from http://www.pearsonschool.com/flippedlearning
Perna, L. W., Ruby, A., Boruch, R. F., Wang, N., Scull, J., Ahmad, S., & Evans, C. (2014). Moving through MOOCs: Understanding the progression of users in massive open online courses. Educational Researcher, 43(9), 421–432. doi: 10.3102/0013189X14562423.
Poulos, J. (2015, July 1). Are small, private online courses the future of higher education in America? THE WEEK. Retrieved from http://theweek.com/articles/563541/are-small-private-online-courses-future-higher-education-america
Ramesh, A., Goldwasser, D., Huang, B., Daumé III, H., & Getoor, L. (2013). Modeling learner engagement in MOOCs using probabilistic soft logic. In NIPS Workshop on Data Driven Education.
Reeves, T. (2006). Design research from a technology perspective. In J. V. D. Akker, K. Gravemeijer, S. McKenney, & N. Nieveen (Eds.), Educational design research (pp. 52-66). New York: Routledge.
Robins, A., Rountree, J., & Rountree, N. (2003). Learning and teaching programming: A review and discussion. Computer Science Education, 13(2), 137-172.
Rodriguez, C. O. (2012). MOOCs and the AI-Stanford Like Courses: Two successful and distinct course formats for massive open online courses. European Journal of Open, Distance and E-Learning. Retrieved from http://www.eurodl.org/?p=current&article&article=516
Roschelle, J. M., Pea, R. D., Hoadley, C. M., Gordin, D. N., & Means, B. M. (2000). Changing how and what children learn in school with computer-based technologies. The Future of Children, 76-101.
Saltarelli, A. J., Collier, A., and Glass, C. R. (2015, August 3). MOOC professors’ agency in the face of disruption. EDUCAUSE REVIEW. Retrieved from http://er.educause.edu/articles/2015/8/mooc-professors-agency-in-the-face-of-disruption
Sankey, M., & Hunt, L. (2014). Flipped University Classrooms: Using Technology to Enable Sound Pedagogy. Journal of Cases on Information Technology, 16(2), 26-38.
Sawyer, R. K. (2014). The future of learning: Grounding educational innovation in the Learning Sciences. In R. K. Sawyer (Ed.), The Cambridge handbook of learning sciences (2nd edition., pp. 726-746). New York, NY: Cambridge University Press.

Schwartz, D. L., & Bransford, J. D. (1998). A time for telling. Cognition and instruction, 16(4), 475-5223.
Sfard, A. (1998). On two metaphors for learning and the dangers of choosing just one. Educational Researcher, 27(2), 4-13.
Singer, S. R., Nielsen, N. R., & Schweingruber, H. A. (Eds.). (2012). Discipline-based education research: understanding and improving learning in undergraduate science and engineering. National Academies Press.
Singer, S., & Smith, K. A. (2013). Discipline‐Based Education Research: Understanding and Improving Learning in Undergraduate Science and Engineering. Journal of Engineering Education, 102(4), 468-471.
Sinha, T., Jermann, P., Li, N., & Dillenbourg, P. (2014). Your click decides your fate: Inferring information processing and attrition behavior from mooc video clickstream interactions. In 2014 Empirical Methods in Natural Language Processing Workshop on Modeling Large Scale Social Interaction in Massively Open Online Courses (No. EPFL-TALK-202095).
Skinner, E. A., & Belmont, M. J. (1993). Motivation in the classroom: Reciprocal effects of teacher behavior and student engagement across the school year. Journal of Educational Psychology, 85(4), 571.
Smith, J. D. (2013). Student attitudes toward flipping the general chemistry classroom. Chemistry Education Research and Practice, 14(4), 607-614.
Spector, J. M. (2014). Remarks on MOOCS and Mini-MOOCS. Educational Technology Research and Development, 62(3), 385-392.
Stahl, G., Koschmann, T. & Suthers, D. (2014). Computer-supported collaborative learning. In R. K. Sawyer (Ed.), The Cambridge handbook of learning sciences (2nd edition., pp. 501-521). New York, NY: Cambridge University Press.

Stephenson, J. E., Brown, C., & Griffin, D. K. (2008). Electronic delivery of lectures in the university environment: An empirical comparison of three delivery styles. Computers & Education, 50(3), 640-651.
Sun, J. C. Y., & Rueda, R. (2012). Situational interest, computer self‐efficacy and self‐regulation: Their impact on student engagement in distance education. British Journal of Educational Technology, 43(2), 191-204.
Sun, J. C.-Y., & Wu, Y.-T. (2016). Analysis of learning achievement and teacher–student interactions in flipped and conventional classrooms. International Review of Research in Open and Distributed Learning, 17(1), 79-99.
Sun, J. C.-Y., Wu, Y.-T., & Lee, W.-I. (2016). The effect of the flipped classroom approach to OpenCourseWare instruction on students' self-regulation. British Journal of Educational Technology.
Taiwan Ministry of Education. (2016). The Next Generation E-learning Plan. Retrieved from http://goo.gl/Xo15jF
Thomas, D., & Brown, J. S. (2011). A new culture of learning: Cultivating the imagination for a world of constant change. Lexington, KY: CreateSpace.
Thurston, A., Van de Keere, K., Topping, K. J., Kosack, W., Gatt, S., Marchal, J., Mestdagh, N., Schmeinck, D., Sidor, W., & Donnert, K. (2007). Peer learning in primary school science: Theoretical perspectives and implications for classroom practice. Electronic Journal of Research in Educational Psychology, 5(3), 477–496.
Topping, K. (2009). Peer assessment. Theory into Practice, 48, 20−27.
Topping, K., & Ehly, S. (1998). Peer-assisted learning. Mahwah: Law- rence Erlbaum Associates.
Tsivitanidou, O. E., & Constantinou, C. P. (2016). A study of students' heuristics and strategy patterns in web-based reciprocal peer assessment for science learning. The Internet and Higher Education, 29, 12-22.
Tucker, B. (2012). The flipped classroom. Education Next, 12(1), 82-83.

Tucker, B. (2012). The flipped classroom: online instruction at home frees class time for learning. Education Next, 12(1), 82-83.
Tzeng, J. -Y. (2015). Learning Sciences: Core issues and research trends. Bulletin of Educational Research, 61(3), 105-121.
U.S. Department of Education. (2016). Future ready learning: Reimagining the role of technology in education (2016 National Education Technology Plan). Retrieved from http://tech.ed.gov/netp/
UNESCO Institute for Education. (2003). Nurturing the treasure: Vision and strategy 2002-2007. Hamburg, Germany: Author.
VanderArk, T., & Schneider, C. (2013). Deeper learning for every student every day. Boston, MA: Jobs for the Future. Retrieved from http://www.hewlett.org/sites/default/files/Deeper%20Learning%20for%20Every%20Student%20EVery%20Day_GETTING%20SMART_1.2014.pdf
Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Cambridge: Harvard University Press.
Walker, A. (2002). British psychology students’ perceptions of group-work and peer assessment. Psychology Learning and Teaching, 1(1), 28–36.
Wang, F., & Hannafin, M. J. (2005). Technology-enhanced learning environments. Educational Technology Research & Development, 53(4), 5-23.

Watson, T. D. (2015). Snack cake ‘Dissection’: A flipped classroom exercise to engage undergraduates with basic neuroanatomy. Journal of Undergraduate Neuroscience Education, 14(1), A8-A12.
Wiese, C. & Newton, G. (2013). Use of lecture capture in undergraduate biological science education. Canadian Journal for the Scholarship of Teaching and Learning, 4(2), 4.
Willcox, K. E., Sarma, S., & Lippel, P. H. (2016). Online Education: A Catalyst for Higher Education Reforms. Retrived from http://eadtu.eu/documents/Publications/SD/MIT_Online_Education_Policy_Initiative_April_2016.pdf
Williams, L., Wiebe, E., Yang, K., Ferzli, M. & Miller, C. (2002). In support of pair programming in the introductory computer science course. Computer Science Education, 12(3), 197-212. DOI: 10.1076/csed.12.3.197.8618
Wood, W. B. (2009). Innovations in teaching undergraduate biology and why we need them. Annual Review of Cell and Developmental Biology, 25, 93-112. doi: 10.1146/annurev.cellbio.24.110707.175306
Xiao, Y., & Lucking, R. (2008). The impact of two types of peer assessment on students' performance and satisfaction within a Wiki environment. The Internet and Higher Education, 11(3), 186-193.
Xie, Q., Zhong, X., Wang, W. C., & Lim, C. P. (2014). Development of an item bank for assessing generic competences in a higher-education institute: A Rasch modelling approach. Higher Education Research & Development, 33(4), 821-835.
Young, S. S.-C., & Hung, H.-C. (2014). Coping with the challenges of open online education in Chinese societies in the mobile Era: NTHU OCW as a case study. The International Review of Research in Open and Distance Learning, 15(3), 158-184.
Yu, P. T., Wang, B. Y., & Su, M. H. (2015). Lecture capture with real‐time rearrangement of visual elements: impact on student performance. Journal of Computer Assisted Learning, 31(6), 655-670. doi: 10.1111/jcal.12109
Yuan, L., Powell, S., & Olivier, B. (2014). Beyond MOOCs: Sustainable online learning in institutions. Cetis. White paper. Retrieved from http://publications.cetis.ac.uk/2014/898
Zhang, D., Zhou, L., Briggs, R. O., & Nunamaker, J. F. (2006). Instructional video in e-learning: Assessing the impact of interactive video on learning effectiveness. Information & Management, 43(1), 15-27.
Ziebarth, S., & Hoppe, H. U. (2014). Moodle4SPOC: A resource-intensive blended learning course. Open Learning and Teaching in Educational Communities, 359-372. Springer International Publishing. doi: 10.1007/978-3-319-11200-8_27
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *