|
[1] 楊德仁, “太陽能電池材料” , 五南圖書出版股份有限公司 (2008). [2] J.E Jaffe, A Zunger, “Theory of the band-gap anomaly in ABC2 chalcopyrite semiconductors,” Phys. Rev. B, 29: 1882~1906 (1984). [3] G. Hanna, A. Jasenek, U. Rau, H.W. Schock, “Influence of the Ga-content on the bulk defect densities of Cu(In,Ga)Se2,” Thin Solid Films, Volume 387, Issues 1-2, 29 May, 71-73 (2001). [4] Arturo Morales-Acevedo, “Solar Cells - Research and Application Perspectives,” ISBN 978-953-51-1003-3, Published: March 6 (2013). [5] N.Kohara, S.Nishiwaki, Y.Hashimoto, T.Negami , and T.Wada, “Electrical properties of the Cu(In,Ga)Se2/MoSe2/Mo structure,” Solar Energy Materials and Solar Cells 67 209–215 (2001). [6] S. Seyrlinga, A. Chirilaa, D. Guttler, P. Blosch, F. Pianezzi, R. Verma, S. Bucheler, S. Nishiwaki , “CuIn1xGaxSe2 growth process modifications: Influences on microstructure, Na distribution, and device properties,” Solar Energy Materials & Solar Cells 95 1477–1481 (2011). [7] M. C. Joliet1, C. Antoniadis1, R. Andrew1 and L. D. Laude1, “Laser‐induced synthesis of thin CuInSe2 films,” Appl. Phys. Lett. 46, 266 (1985). [8] Brown B J, “Chemical spray pyrolysis of copper indium diselenide/cadmium sulfide solar cells,” Stanford University, (1989). [9] W. N. Shafarman and J. Zhu, “Effect of substrate temperature and deposition profile on evaporated Cu(In,Ga)Se2 films and devices,” Thin Solid Films, 361, 473-477 (2000). [10] M.L. Fearheiley, “The phase relations in the Cu,In,Se system and the growth of CuInSe2 single crystals,” Solar Cells, vol 16, 91-100, (1986). [11] Rudmann, D., “Effects of Sodium on Growth and Properties of Cu(In,Ga)Se2 Thin Films and Solar Cells,” Department of Physics, 17, (2004). [12] C. Platzer-Bjo¨ rkman, J. Lu, J. Kessler, L. Stolt, “Interface study of CuInSe2/ZnO and Cu(In, Ga)Se2/ZnO devices using ALD ZnO buffer layers,” Thin Solid Films 431 –432, 321-325 (2003). [13] Uwe Zimmermann, Marta Ruth, Marika Edoff, “CADMIUM-FREE CIGS MINI-MODULES WITH ALD-GROWN Zn(O,S)-BASED BUFFER LAYERS,” European Photovoltaic Solar Energy Conference 4-8 (2006). [14] Takashi Minemoto, Akira Okamoto, Hideyuki Takakura, “Sputtered ZnO-based buffer layer for band offset control in Cu(In,Ga)Se2 solar cells,” Thin Solid Films 519, 7568–7571, (2011). [15] A. Hultqvist, C.Platzer-Bj ¨orkman, E.Coronel, M.Edoff, “Experimental investigation of Cu(In1-x,Gax)Se2/Zn(O1-z,Sz) solar cell performance,” Solar Energy Materials & Solar Cells 95, 497–503, (2011). [16] Taizo Kobayashi, Tokio Nakada, “Efficient Cu(In,Ga)Se2 thin film solar cells with reduced thickness of ZnS(O,OH) Buffer Layer,” Solar Energy Materials & Solar Cells 117, 526–530, (2013). [17] C. Platzer-Björkman, T. Törndahl, D. Abou-Ras, J. Malmström, J. Kessler, L. Stolt, “Zn(O,S) buffer layers by atomic layer deposition in Cu(In, Ga)Se2 based thin film solar cells: Band alignment and sulfur gradient,” JOURNAL OF APPLIED PHYSICS 100, 044506 (2006). [18] Ji Hyun Choi, Adrian Adalberto Garay, Su Min Hwang, Chee Won Chung, “Influence of oxygen on characteristics of Zn(O,S) thin film deposited by RF magnetron sputtering,” J. Vac. Sci. Technol. 33, No. 4 (2015). [19] Adam Hultqvist, Jian V. Li, Darius Kuciauskas, Patricia Dippo, Miguel A. Contreras, “Reducing interface recombination for Cu(In, Ga)Se2 by atomic layer depositied buffer ,” APPLIED PHYSICS LETTERS 107, 033906 (2015). [20] Joonho Bae, Hyunjin Kim, Ee Le Shim, Young Jin Choi, Young Jun Park, and Jong Min Kim, “Fabrication of vertically aligned ZnO nanocone arrays by wet chemical etching on various substrates and enhanced photoluminescence emission from nanocone arrays compared to nanowire arrays”, Phys. Status Solidi A 210, No. 12, 2662 – 2667 (2013). [21] M. Gaba´ s, N.T.Barrett, J.R.Ramos-Barrado, S.Gotac, T.C.Rojas, “Chemical and electronic interface structure of spray pyrolysis deposited undoped and Al-doped ZnO thin films on a commercial Cz-Si solar cell substrate,” Solar Energy Materials & Solar Cells 93 1356-1365 (2009). [22] Anneli Önsten , Dunja Stoltz, Pål Palmgren, Shun Yu, Thomas Claesson, Mats Göthelid, and Ulf O. Karlsson, “SO2 interaction with Zn(0001) and ZnO(0001) and the influence of water,” Surface Science 608, 31–43, (2013). [23] S. Ben Amor, M. Jacquet, P. Fioux and M. Nardin, “XPS characterisation of plasma treated and zinc oxide coated PET,” Applied Surface Science 255, 5052–5061 (2009). [24] Satoshi Hashimoto, Kichinosuke Hirokawa, Yasuo Fukuda, “Correction of Peak Shift and Classification of Change of X-ray Photoelectron Spectra of Oxides as a Result of Ion Sputtering,” SURFACE AND INTERFACE ANALYSIS 18 (1992). [25] DENG Hong, B. GONG2, A. J. Petrella2, “Characterization of the ZnO thin film prepared by single source chemical vapor deposition under low vacuum condition,” SCIENCE IN CHINA (Series E) Vol. 46 No. 4, (2003).
[26] M. Gaba´ s, N.T.Barrett, J.R.Ramos-Barrado, S.Gotac, T.C.Rojas, “Chemical and electronic interface structure of spray pyrolysis deposited undoped and Al-doped ZnO thin films on a commercial Cz-Si solar cell substrate,” Solar Energy Materials & Solar Cells 93 1356-1365 (2009). [27] David W. Niles, Kannan Ramanathan, Falah Hasoon, Rommel Noufi, and Brian J. Tielsch, “Na impurity chemistry in photovoltaic CIGS thin films: Investigation with x-ray photoelectron spectroscopy,” J. Vac. Sci. Technol. A 15, 3044 (1997). [28] Jon M. Azpiroz and Ivan Infante, “A first-principles study of II–VI (II = Zn; VI =O, S, Se, Te) semiconductor nanostructures,” J. Mater. Chem. 22 (2012). [29] Joachim Paier, “Cu2ZnSnS4 as a potential photovoltaic material: A hybrid Hartree-Fock density functional theory study,” PHYSICAL REVIEW B 79, 115126 (2009). [30] Liudmila Larina, Donghyeop Shin and Ji Hye Kim, “Alignment of energy levels at the ZnS/Cu(In,Ga)Se2 interface,” Energy Environ. Sci. 4, 3487-3493 (2011).
[31] Anup L. Dadlani, “Exploring the local electronic structure and geometric arrangement of ALD Zn(O,S) buffer layers using X-ray absorption spectroscopy,” J. Mater. Chem. C 3, 12192-12198 (2015). [32] C. L. Dong, “Electronic structure of nanostructured ZnO from x-ray absorption and emission spectroscopy and the local density approximation,” PHYSICAL REVIEW B 70, 195325 (2004). [33] M. Bär, W. Bohne, J. Röhrich and E. Strub, “Determination of the band gap depth profile of the penternary Cu(In(1 X)GaX)(SYSe(1 Y))2 chalcopyrite from its composition gradient,” J. Appl. Phys., Vol. 96, 7 (2004). [34] Andreas Klein, “Energy band alignment in chalcogenide thin film solar cells from photoelectron spectroscopy,” J. Phys.: Condens. Matter 27, 134201, (2015). [35] M. T. Nichols, W. Li, D. Pei, G. A. Antonelli, Q. Lin, S. Banna, “Measurement of bandgap energies in low-k organosilicates,” JOURNAL OF APPLIED PHYSICS 115, 094105, (2014). [36] Jayeeta Lahiri, Matthias Batzill, “Surface Functionalization of ZnO Photocatalysts with Monolayer ZnS,” J. Phys. Chem. C, 112, 4304-4307, (2008). [37] Taizo Kobayashi, Toyokazu Kumazawa, Zacharie Jehl Li Kao, Tokio Nakada, “Cu(In,Ga)Se2 thin film solar cells with a combined ALD-Zn(O,S) buffer and MOCVD-ZnO:B window layers,” Solar Energy Materials & Solar Cells 119, 129–133, (2013). [38] Clas Persson, “Strong Valence-Band Offset Bowing of ZnO1-xSx Enhances p-Type Nitrogen Doping of ZnO-like Alloys,” PRL 97, 146403, (2006). [39] Amin Torabi, Viktor N. Staroverov, “Band Gap Reduction in ZnO and ZnS by Creating Layered ZnO/ZnS Heterostructures,” J. Phys. Chem. Lett. 6, 2075−2080 (2015). [40] Hao Ming Chen, Chih Kai Chen , Ru-Shi Liu , “A New Approach to Solar Hydrogen Production: a Zno-ZnS Solid Solution Nanowire Array Photoanode,” Adv. Energy Mater., 1 742–747 (2011). [41] M. Igalson, A. Urbaniak, A. Krysztopa, Y. Aida , “Sub-bandgap photoconductivity and photocapacitance in CIGS thin films and devices,” Thin Solid Films, 519 7489–7492, (2011). [42] Stephan Lany, Alex Zunger, “Light and bias induced metastabilities in Cu(In,Ga)Se2 based solar cells caused by the (VSe-VCu) vacancy complex,” JOURNAL OF APPLIED PHYSICS 100, 113725 (2006). [43] I.L. Eisgruber, J.E. Granata, J.R. Sites, J. Hou, “Blue-photon modification of nonstandard diode barrier in CuInSe2 solar cells,” Solar Energy Materials and Solar Cells 53, 367-377, (1998). [44] Takashi Minemoto, Takuya Matsui, Hideyuki Takakura, Yoshihiro Hamakawa, “Theoretical analysis of the effect of conduction band offset of window/CIS layers on performance of CIS solar cells using device simulation,” Solar Energy Materials & Solar Cells 67, 83-88, (2001). [45] Yuanping Sun, Tao He, Hongying Guo, Tao Zhang, Weitian Wang, Zhenhong Dai, “Structural and optical properties of the S-doped ZnO particles synthesized by hydrothermal method,” Applied Surface Science 257, 1125–1128, (2010). [46] Peter Schroer, Peter Kriiger, Johannes Pollmann, “First-principles calculation of the electronic structure of the wurtzite semiconductors ZnO and ZnS,” PHYSICAL REVIEW B VOLUME 47, NUMBER 12, (1993). [47] B. K. Meyer, A. Polity, B. Farangis, “Structure properties and bandgap bowing of ZnO1-XSX thin films deposited by reactive sputtering,” Applied Physics Letters Vol. 85 No. 21, (2004). [48] Seong-Un Park, Rahul Sharma, K. Ashok, San Kang, “A study on composition, structure and optical properties of copper-poor CIGS thin film deposited by sequential sputtering of CuGa/In and In/(CuGa+In) precursors,” Journal of Crystal Growth 359, 1–10 (2012).
|